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Muon Capture anti Inelastic Electron Scattering in C" and 0"t
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The dipole (Grst-forbidden) contribution to the muon-capture matrix elements, Mg, Mg, and Mp, is cal-
culated using wave functions computed in the particle-hole theory. It is found that (My')~=(Mg)D
= (Mp~}~ to within 23'Po. The assumption that the dipole part of the nuclear matrix element may be ex-
pressed as the unretarded dipole matrix element multiplied by the elastic form factor is found to hold to
about 1%.Calculations of inelastic electron scattering from the 2, T=1 states in these nuclei predict large
cross sections for some of the states at about 100 MeV/c momentum transfer. These "giant-magnetic-
quadrupole states" are identified with observed levels found in recent 280' electron-scattering experiments.

I. INTRODUCTION

N assumption which has often been made in calcu-
'

~

~

lations of total-muon capture ratio is that all the
nuclear matrix elements are equal'; M&2= M&'= 3fI '. In
particular the results of Luyten, Rood, and Tolhoek, '
and Foldy and %alecka' rely on this assumption. In ad-
dition, Foldy and UValecka assumed the dipole-vector
matrix element may be written as the unretarded dipole-
vector matrix element multiplied by the ground-state
elastic form factor evaluated at the resonant neutrino
momentum; (M vs)g& = (Mvs) pn I

F,i(v„,) I
s. Both of these

assumptions have some theoretical justification. In
particular, Foldy and Kalecka have used the particle-
hole wave functions of Lewis4 for the 0, 1, and 2,
T=1 states of 0" to compute the unretarded dipole'
contributions of Mzs and Mvs. They found (Mv )cTD
= (M~') rrn to within 12%.

In this paper we expand their calculation in the fol-
lowing ways: In addition to (Mv')rr& and (Mz')UD we
also compute (Mr ')rrn, and we have calculated (M ) v&, i
(M~')D, and (Mr s)n. That is, the matrix elements have
been evaluated at the correct neutrino momenta instead
of in the long-wavelength limit. Finally, we have also
carried out these calculations for C"both with and with-
out the inclusion of ground-state correlations. The
ground-state correlations were included by using the
random-phase approximation (RPA) as formulated by
Lewis. 4 Since C" is not a doubly magic nucleus, the
inclusion of such correlations could be important. The
wave functions for the 1, T=1 states in C" and 0'6
have been computed by Lewis and%'alecka. "Using the

t' Supported in part by the U. S. Air Force through Air Force
OfBce of Scienti6c Research Contract AF 49(638)-2389.

~ National Science Foundation Predoctoral Fellow.' The nuclear matrix elements are deaned in Sec. III.' J. R. Luyten, H. P. C. Rood, and H. A. Tolhoek, Nucl.
Phys. 41, 236 {1963}.

3L. L. Foldy and J. D. %'alecka, Nuovo Cimento 34, 1026
(1964).'F. H. Lewis, Jr., thesis, Stanford University, 1964 (unpub-
lished); and private communication.' By "dipole" we mean Grst forbidden, that is, the L,=1 term in
the multipole expansion of the neutrino wave function.' F. H. Lewis, Jr., and J. D. Walecka, Phys. Rev. 133, B849
(1964).'F. H. Lewis, Jr., Phys. Rev. 134, B331 (1964};138, AB5
(E) (2965).

formalism of Ref. 6, we have calculated wave functions
for the 0 and 2-, T=1 states in C". This method is
merely a reformulation of the particle-hole theory de-
veloped by Brown and his co-workers. ' "However, the
residual two-particle interaction was taken from low-
energy nucleon-nucleon scattering, leaving no adjustable
parameters in the theory.

We find that (Mv')n=(M~')n=(Mr')D to within
13% in all the cases considered. This result is also found
to hold in the unretarded limit. In fact the ratios
(M')D/(M')rjn for M=Mv, M~, and Mr are almost
equal, with the average ratio being about equal to
IF i("-)Is For all cases (M')n=(M')~DIF i(v-) I' to
about 1%.Our calculated results for (Mv') rin tended to
be about twice those obtained by Foldy and Walecka
who found (Mv')Uri by integrating over the experi-
mental photoabsorption cross section.

Muon capture takes place predominantly through
the 0, 1, and 2, T=1 states. The transverse-electro-
magnetic-interaction matrix elements are very similar
to those used in muon capture. Thus, these states
(except for 0 ) may be used in a similar way to calculate
photon processes or 180' electron scattering (which in-
volves only the transverse matrix elements). The latter
method is particularly useful since the momentum trans-
fer can be varied, and the functional dependence of the
theory on this parameter can be checked.

Lewis and %alecka, ' and Lewis~ have calculated the
transverse form factors for inelastic electron scattering
from 1,7=1 states in C'~ and 0'6. In particular, they
find that the sum of the squared form factors in the
giant-resonance region agrees quite well with the square
of the experimental form factor for the giant resonance.
The experiments were done at 180' scattering angle so
that only the transverse components contributed. At
low-momentum transfer such as in photoabsorption the
contribution of higher multipoles is negligible, but when
the momentum transfer is about 100 MeV/c we expect
a fairly sizeable contribution. In particular we are inter-

I G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
(1959).' G. E. Brown, L. Castillejo, and J.A. Evans, Nucl. Phys. 23, 1
(1961).

's N. Vinh-Mau and G. E. Brown, Noel. Phys. 29, 89 (1&2).
1217



81218 TABER DEFOREST, J R.

ested in the modi6cations the 2, T= 1 states make to
the calculations mentioned above.

The calculations of the form factors for the 2-, T=1
states are carried out using the same wave functions
used for the muon-capture computations. For C" there
are three 2 states, one of them in the giant-resonance
region. However, the form factor for this state is fairly
small, leading to a small modi6cation of the results of
Lewis and %alecka. However, the theory predicts a
strong 2 state at 20.76 MeV. Since our predicted levels
tend to be about 1 or 2 MeV high, we identify this with
an experimental level seen at 19.2 MeV.""At large
momentum transfers this state becomes quite prominent
as we predict. Furthermore the tt (momentum transfer)
dependence we predict is consistent with experiment;
however, our squared form factor is a factor of 2 too
large. The remaining state is negligible for q less than
200 MeV/c.

For O" the results are similar in that one state has
most of the strength, at least below 200 MeV/c. How-

ever, the state is at 21.34 MeV which is in the giant-
resonance region, producing a large modi6cation of the
results of Lewis. Recent experiments" have been able
to resolve some of the 6ne structure of the giant reso-
nance. A prominent feature in these experiments is a
state at 20.2 MeV which is quite strong at the higher
momentum transfers. Identifying this as a 2 state, we
6nd the q-dependence of the form factor is in good agree-
ment with experiment. One of the other 2 states also
occurs in the giant resonance at 24.52 MeV having
approximately one-third the strength of the 21.34-MeV
state. Of the remaining three 2 states, the one at 13.85
MeV is the strongest and is identi6ed with the observed
13-MeV state. In all cases where identi6cation with our
observed state is possible, the calculated squared form
factor tends to be a factor of 2 larger than experiment
but otherwise in fairly good agreement.

In Sec. II the wave functions are given. Section III
contains the muon-capture calculation, and in Sec. IV
the results of the scattering from the 2 states are pre-
sented. Section V is a summary and discussion.

identified as the energy of the hole and particle without
an interaction between them and thus can be calculated
from the energy levels of the neighboring 3~1 nuclei.
The remaining, nondiagonal, term may be thought of as
a residual particle-hole interaction. Since the interaction
potential is attractive, the particle-hole interaction is
repulsive for T=1 states which raises the perturbed
energy levels several MeV. This allows identi6cation
of some of the 1- states with the giant-dipole resonance. '
A derivation of Ep and the particle-hole interaction
matrix elements for T=1 state has been given by
Lewis and %'alecka. '

For the internucleon potential we use a nonsingular
potential that 6ts low-energy nucleon-nucleon scatter-
ing. It has been shown that, at least for doubly magic
+2 nuclei, this is a fairly good approximation. ""
We use a Serber-force Yukawa well with

'V = —4687 MeV '@=08547 F—'
'Vp= —52.13 MeV, '@=0.7261 F—'

which is obtained from Ref. 14. We take our single-
particle states to be harmonic oscillator wave func-
tions with an oscillator parameter b'=b+2, where
b= (b/bi~)'12, with Ace the oscillator energy By 6. tting
Coulomb energy di6'erences in mirror nuclei, b is found
to be 1.6 F for C"and 1.67 F for 0""The values of Ep
are the same as those given in Refs. 6 and 7.

Our results for the 0 and 2 states combined those of
Lewis and Walecka6 for the 1- states in C" and are
shown in Table I.Ke have also computed the wave func-
tions for C" using the random-phase approximation as
formulated by Lewis. 4 These wave functions are not in-
cluded here since they gave results which are quite simi-
lar to those obtained using the wave functions in Table I
(for example see Pigs. 2 and 3, and Tables III and IV).
That inclusion of ground-state correlations for these
states is not very important was first pointed out by
Vinh-Mau and Brown. "The wave functions for 0"
calculated by Lewis4 are given in Table II.
TABLE I. Energies and wave functions for J-, T=1 states in C~.

G. WAVE PuzfCTIONS

The excited states of a closed-shell nucleus in the
particle-hole model are obtained by diagonalizing the
Harniltonian between states in which one nucleon is in
an excited state leaving a hole in a shell. To obtain the
negative parity states that are considered here, the
g,ucleon must be excited to at least the next oscillator
lt„vel which is an energy of about 15 MeV. The matrix
element of the Hamiltonian may be divided into two
parts, the first of which, Ep, is diagonal. Ep may be

gJ (MeV)

0 25.66
35.78

1 19.57
23.26
25.01
35.80

2 18.91
20.76
23.94

0.977
0.194—0.088—0.027

0.937
0.342
0.075

—0.168
0.952
0252—0.044

—0349
0.928
0.131

0.931
0.364

0.133—0.211
0.933
0.260

—0.025—0.149
0.988

—0.364
0.931

—0.016
0.106—0.243
0.964

»/ (&P~/) ' 14/~(ip ) ' &d' {ipse ) ' ip|/ff(»1/~) '

~ J. Goldemberg and W. C. Barber, Phys. Rev. 134, 3963
(1964).

&T. deForest, Jr., J. D. %'alecka, G. Vanpraet, and W. C.
3arber, Phys. Letters 16, 311 (1965)."0; Vanpraet (to be published); and private communication.

"J.F.Dawson, I.Talmi, and J.D. Walecka, Ann. Phys. (N. Y.)
18, 339 (1962)."J.F. Da~son and J. D. Walecka, Ann. Phys. {N.Y.) 22, l33
(1963)."S.C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
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TAsr.z II. Energies and wave functions for J-, T= 1 states in O's.

8 (MeV) 2&1/2 {1P1/2) 2&1/2 {1PS/2) 1~5/2 {1PI/2) ids/2 {1Pl/2) 1~$/2 {1Ps/2} i~s/2 {1Ps/2)

14.41
27.28

14.61
18.65
21.01
23.89
26.63

13.85
18.69
20.01
21.34
24.52

0.998—0.070

0.991—0.051
0.030
0.119
0.012

—O.Q63—0.145
0.942
Q.245—0.165

0.069—0.008
Q.730
0.672
0.100

0.974—0.020
0.086—0.178—0.110

—0.011
0.897
0.002
0.322—0.301

—O.Q25
0.965
0.177—0.185
0.042

—0.113—0.339—0.302
0,881—0.072

0.201
0.248—0.654
0.673
0.135

0.070
0.998

—0.029
0.038
0.143
0.214
0.936

0.076—0.077
0.017—0.173
0.979

IG. MUON CAPTURE

'|A'ith certain assumptions' the muon capture rate may be written as

A„.=(v„'(ly„l') /2wh'c)LGv'~v'+3Gx'~x'+(Gp' —2GvG„)M~ 1+A '

The G's are effective coupling constants. A„,' contains nucleon recoil corrections, and v„—= (m„c)/h. In particular
we are interested in My', M@, and M~' which are deaned as follows:

di«'=~'Zl — l(&IX r (i) exp( —iv, b x(i)jlo)l'
e 5 (v& 4n' i

/vay) dv»'=s E'El —
I

—
IC&l & " '(i)~(i) expl:—i"~ x(i)jlo)l-',

a kv„& 4s.

It'Vob CfV

~~'=2'Zl — —l(bl 2 r' '(i)s ~(i) expL —iv. ~ x(i)jlo)I',
~ kv„4~

where v, q=—y„/h is the neutrino wave number, and
l u) and

l h) are the initial and final states of the nucleus, and
P' means an average over the states la).

Provided isotopic spin is a good quantum number and the initial state has T=0, we may change r&—
~ to 7 &» by

substituting

r'+'(i) = +kL~~ r"'(i)]
where

&~=5K 9"'(i)~ir'"(j)j
3fy', for example, becomes

Vtsb

Mv'=5 2' 2 (ul 2 r+~(i) expl iv, q x(i)jib")
o bb'b" V JI 4x

X(&"
I ~+I &)(b I &-l &')(b'l P 'r(i) expL —ivo&. x(i)j l a) (4)

v q) dv—I(&'I 2 ~'"( )eixpL~v-~ x(i)jl ~) I

'.

4r

b' is the T3——0 component of the excited T= j state of which b is the T& ———1 component. Since 0' and a refer to the
same nucleus we can use our wave functions for C' and 0" to calculate the muon capture in these nuclei.



8 1220 TABER DEFOREST, J R.

I'zal. z III. Squared matrix elements for muon capture to individual states.

Ji (MeV) (Mp)~(') (M '}D(') (AERY)~('&

0 25.66 0.091 0.273
35.78 0.001 0.004

C~ {RPA)
Ei

Ji {MeV) (MP) ~('& (Mg~) ~('&

0 25.53 0.087
35.37 0.002

(mp)&('&

0.260
0.006

Pl%

J; (MeV) (Mp) (') (Mg')~('& (M~')D")

0 14.41 0.013 0.039
27.28 0.077 0.230

1 19.57 0.023
23.26 0.472
25.01 0.000
35.80 0.072

0.013
0.017
0.197
0.010

1 19.76 0.021 0.012
23.08 0.424 0.026
24.95 0.002 0.173
35.61 0.059 0.015

1 14.63
18.65
21.01
23.89
26.63

0.016
0.016
0.002
0.638
0.184

0.024
0.040
0.021
0.060
0.147

2 18.91
20.76
23.94

0.011
0.210
0.059

0.013 2 18.90
0.251 20.67
0.071 23.92

0.010
0.190
0.053

0.012
0.228
0.064

2 13.85
18.69
20.01
21.34
24.52

0.144
0.000
0.020
0.302
0.092

0.173
0.000
0.024
0.362
0.110

We make a multipole expansion of the matrix elements. With a 0+ ground state we have"

2g
~~'= —Z(v. siv.)'I(&'Js, 2'=1IIE r"'(s)ji(v.~;)I~, »(11.;) ~(s)IIO', &=O) I',

b'L i~1

Vab t1 I. Js. '
Mv' ——2s Q —(2K+1)~ I(b'~s &=1II2 r"'(s)j~("~')N~s ~t(f1*;) ~(s) IIO' 2'=O) I'.

b'L V~ hoo o i 1

(5)

y(i)
(M ) v&"n=4tr

3 - I/2

« &&~'vp&&s. t&} (2'l-+1)(2l +1)(2j+1)(2j +1)
y~ e'l'j'; nlj 4m

The most important contribution of these matrix elements is the Grst forbidden or dipole. The allowed terms are
small. They vanish in the unretarded limit for 0" which has doubly closed shells in the ground state. For C"
Foldy and Walecka estimate the a11owed term contributes 20'%% of the capture rate. The contribution of the in-
dividual levels to the dipole matrix elements is found to be

(~~s)nz"' = s &nz"',

(~P )DJ (4,0+s4,2)+Dj p

where

tl' 1 p '/

( '1'tj(" "'«)I l)(—1) '", (6)
ko o o j l j.

y(i)
8 g)g(') =4g—

1 l' l T

X (n'l'~gt(v, s&'&r) ~tsl)+6( 1)'(2J+—1)'~s r
sr 1

0 0 0
and

(&'1'I jt(~) I&1)=— ~- t *(v)jt(vv)&.«v)v'«
0

- 1/2

rr (;) '"""'&'""' ' —(2l+1)(2l'+2) (2j+1)(2j'+1)
y~ n'l'j';nl j 4x

where E.„l is the radial harmonic oscillator wave func-
tion dered in Ref. 6, and

y~' —= (~~v s~"b) and y„=—()v„b),
"We note that S[a)=0 does not necessarily imply 3Es=Mv

as stated by Foldy and %'alecka (Ref. 3).

where b is the oscillator parameter used in Sec. II. The
0.(;)("""""")' are the coeKcients of the basis wave
functions and are given in Tables I and II. To 6nd the
total matrix elements we sum over the individual levels;
(M')n=P;(M')n"' for M=Mv, 3E~, and Mv. The con-
tributions of the individual levels are given in Table
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TAai.E IV. Squared matrix elements for the total muon capture rate. The primed results are those of Foldy and Walecka,
(Ref. 3) who estimated (Afoot )pg by integrating over the experimental photoabsorption cross section.

Nucleus

C12
C» (RPA)
P16

(MP) U

0.567
0.506
0.857

(m&2}D

0.608
0.568
0.938

(iVP}D

0.611
0.570
0.938

(My) gg)

0.795
0.711
1.259

0.857
0.798
1.414

(Mp}pD

0.861
0.803
1.415

(m&2)D'

0.324
0.324
0.485

(3Ey'}~D'

0.45
0.45
0.77

III, and the total matrix elements are shown in Table
IV. The results of Foldy and Walecka for (Mv')& and

(Mv')~n are also included in Table IV for comparison.
In Table V the ratios (Mv')D/(Mv')vD for M=Mv,
Mz and Mv are compared with IF,~(v„.) I'."

TAsr. E V. Square of the elastic form factor and ratios of the
retarded to unretarded squared matrix elements.

Nucleus

C12
C» {RPA)
P16

(iVIt')D

(Wp) UD

0.713
0.711
0.681

(Mg2}D
(~~') UD

0.713
0.711
0.664

(3f~2}D
{~P)vn IFsi(vres) I'

0.710 0.719
0.711 0.719
0.663 0.676

If we neglect ground-state correlations we see that
the assumption

where p and h are the particle and hole wave functions
for the ith nucleon. We have arbitrarily chosen the s
component of o, since all components give the same re-
sult. For the cases being considered the sum may be
broken up into terms which contain particles with both
j=l+-,' and j=/ ——,

' for a given hole or vice versa. Thus
in every term we may change either the particles or the
holes from Inljm, ) to lnlm~m, ) states. &y quantizing
these states in the s direction we see that

'*=El(plr"'(~) expl- —rv b'x($)]I&)I' (10)

is good to within 8% for C'2 and 12% for 0'6. Letting
the energies of the excited states become degenerate,
we find the assumption holds exactly. To see this we
first make a unitary transformation to the basic particle-
hole states. For M~' and 3fJ' we must then evaluate
an expression of the form

5*=—&l(pl(r, (z)r"(z) exp[ ivoe x(~—)]I~&)I' (9)

equality is no longer exact when spin-dependent forces
are considered. We have included spin dependence in
two ways. The correct singlet-triplet ratio has been
used for the internucleon force, and the configuration
energies have been taken from the empirically observed
levels of the neighboring nuclei. %e have not included
a tensor force in the internucleon interaction; what
eGect it would have is not known.

The assumption

(M')n=(M') pnIF. &(v...)l' (11)

issatis6edtoabout1%inallcases Lincluding C"(RPA)]
in our calculation. Again we note that if we let the
energies become degenerate, the v dependences of, for
example, (Mv') g& and IF,~I' become almost identical
(to about 1% at v, b=v, «) Golde.mberg et al '0 have.
shown this relation holds whenever the neutrons and
protons oscillate with small amplitude against each
other while maintaining their ground-state spatial dis-
tributions. The Goldhaber-Teller" model of the giant-
dipole resonance satisfies these conditions. Another
example is the giant-dipole resonance for the case of a
harmonic oscillator with an interparticle harmonic
force." Furthermore, Bishop and Isabelle" find this
relation is consistent with experiment for the giant
resonance in 0".

The inclusion of ground-state correlations in the C"
calculation reduces the squared matrix elements by
about 10%. Equation (g) holds to within 13% instead
of 8%, and Eq. (11) is still found to be accurate to 1%.

FoldyandWaleckahaveobtainedavaluefor(Mv)Un
by integrating the empirical photoabsorption cross sec-
tion weighted by an energy-dependent factor. Ke find
that our value of (Mv')zn is about twice what they
obtain. Since their results for the total muon capture
rates are in good agreement with experiment, we believe
our values for all the matrix elements are too high. This
will be discussed further in Sec. V.

IV. ELECTRON SCATTERING

Since S =S„=S.=S," we find 3fy' ——M~'=M~'. Foldy
and Walecka have shown that if the nucleon-nucleon
force is spin-independent, one can apply Wigner's
supermultiplet theory" with the result that My'=&~2
=M~'. In the present calculation we find that this

"F,l(~)=(1—4y/9)e~ for C» and (1—$y) 3t for p'6 where
y= (~~be)2. As in Ref. 3 we have used Ap, =E~—E~,=83 MeV for
C" and 85 MeV for 0".

» E. Wigner, Phys. Rev. 51, 106 (1937).

The cross section for exciting a nucleus from a 0
ground state to a 2 state by inelastic electron scattering
is proportional to the square of the matrix element of
the magnetic quadrupole operator. In Born approxima-

"J.Goldemberg, Y.Torizaka, W. C. Barber, and J.D. Walecka,
Nucl. Phys. 43, 242 (1963)."M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

22 D. M. Brink, Nucl. Phys. 4, 215 (1960}.
23 G. R. Bishop and D. B. Isabelle, Nucl. Phys. 45, 209 (1963).
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tion, with neglect of nuclear recoil and the electron mass with respect to its energy,

do k2 Sxo,'—(2 ~ 0') =— 1/'r(8) I(2 II2's (q) IIO')
I
',

dQ k, a»

2kgk2
Vr(8) = sin2(8/2)P(kq+k2)2 —2kqks cos2(8/2)],

g2

&2jr (q) = dxLyN(x) (&Xjs(q*)$22x (0*))+j2(q*)$22i (fl ) jar(*)];

q and 6 are the three- and four-momentum transfers, and kq and k~ are the initial and Gnal electron energies. For
the case of a T=O ground state and a T=1 excited state only the isovector part of T2~ ~ has a nonvanishing
matrix element. Inserting single-particle operators, we have

I(+~-s;r-~;~r-oIIT's (q)Ii+0) I'=~'(q) =kl 2 ~~-2,r-i'"""'""' '(I'(l'2) j'll/2. .~ll~(ll) j)I' (13)
a'l' j', sslj

where
h h 1

VX j2(q&)1221 (8 4) (~ ~ )o+j2(q&)1221 (8 4)
23Ec Sic i

The matrix element between single-particle states may be evaluated in standard fashion'4 yielding

5 ) I/2

(&'(4') j'lit, „~(q)ll~(lk) j)=l(k/m~)
I ( l+ )(2 '+ )(2j+1)(2j'+1) I q(&.—&.)(—1)'

I 4~

(2g 1/2

x
~i

—)&10

/ 31
~l' 1 l q 3

1 &! I(//'Vl jx(qr) I
nl) ——~ ~ & 1 'I (n'l'! j&(qr)

&0 0 Oi 5 &OOO
j 2.

1

+ ( 1)l'+il-1/2+5

j l 2

.j' j 2.
(l' 2 l+1~

2 1 2 (0 0 0 / l+1 d l)
&', l'j (qr) ——

I
~, l!l+1 /'1+1 1 l ) 2l+1 dr rl

&0 00)
(l' 2 l—1

!
2 1 2 EO 0 0 l // (d+

I
~', l' j~(q)l —+ ~, 1I . (14)

l l' l—1 (l 11 —ly 2l+1( (d« ' j
&0 00)

We shall cali F(q) the (transverse) form factor for the
state. The corresponding (transverse) form factors for
excitation of the 1 states have been calculated by Lewis
and Walecka' for C" and by Lewis' for 0".All the cal-
culations are for a scattering angle of 180'. In this case
the longitudinal form factors do not contribute, leaving

~For example see A. R. Edmonds, Anger Momeatgm in
Quaefgm Mechanics (Princeton University Press, Princeton, New
Jersey, 1957).We use Edmonds' notation.

only the transverse ones mentioned above. These are the
same transverse form factors that appear in processes
involving real photons. However, such processes deter-
mine the form factor for only one momentum transfer
since the photon must be on the mass shell.

Ke note that our results using a residual interparticle
that 6ts low-energy nucleon-nucleon scattering give
energy levels which are approximately 1 or 2 MeV higher
than those using a 8-function ordinary force with a
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strength chosen to 6t the known 1 levels. ~ 9' %e
therefore compare our form factors with those of ex-
perimental levels of slightly lower energy.

Figure 1 shows the calculated spectrum of the 1 and
2-, T= 1 states in C" for various values of g. The con-
tribution of the 2 states is small for low q, but becomes
quite sizeable at about q= 100 MeV/c. In particular the
state at 20.76 MeV carries most of the 2 strength at
this q and should be clearly noticeable in experiments. '~

The experimental spectrum for 65-MeV incident elec-
trons shown in Fig. 2, indicates a very strong state at

I 2.px IO

l.5—
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Ko I.O-
l-
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IS. I MeY Ml
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FIG. 2. The experimental energy spectrum of 65-MeV electrons
scattered through 180' from C~. (Ref. 12.)
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inelastic proton-scattering experiments of Tyren and
Naris. '~

Hanna and his co-workers" have also seen a state at
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Fro. 1.Spectrum of the 1 and 2-, T=1 statesin C~. The length
of the line is proportional to the square of the transverse factor
for the state. For the 2 states the hne is extended slightly below
the base line. An additional 1- state at 35.80 MeV is not shown.

19.2 MeV."The squared form factors for these states
are compared in Fig. 3.The calculated curve is too large
by about a factor of 2. %e note, however, that the form
factor appears to be rising rapidly with g as predicted
by the theory. Sanderson" has calculated inelastic pro-
ton scattering from the 2, T= 1 state at 19.3 MeV cal-
culated by Vinh-Mau and Brown' (which corresponds
to our 20.76 MeV state) and from other states in this
region and has shown the results are consistent with the

eI'The importance of this state for 312 transitions has been
noted previously by Vinh-Mau and Brown (Ref. 10).

&e E. A. Sanderson, Nud. Phys. 35, 557 (19Q).

0.0005-

00 40 60 80 IOO I20 I40
q (Me V/c)

Fro. 3. Squared form factor versus momentum transfer for the2, T= 1 state at 20.76 MeV in C~. The dashed curve is the same
but with half the strength, while the dot-dash curve is the result
of a random-phase approximation calculation. The triangles are
from Stanford 180 scattering experiments by Goldemberg and
Barber (Ref. 11).The circles are from 152' scattering experiments
at Darmstadt (Ref. 11),and the data have been treated as though
the state had no longitudinal component. The square is from recent
Stanford 180' data {Ref.12). So& uddedirI proof. Recent experi-
ments by Vanpraet (private communication) provide two new
points in Fig. 3: &=0.0006 at q=81 MeV/c and &=0.0018 at
q=121 MeV/c with an error of about ~0.0001 in each case.

"H. Tyren and Th. A. J. Naris, Nucl. Phys. 3, 52 (1957); 4,637 (1957)~

'e R. E. Segel, S. S. Hanna, and R. C. Alias, Phys. Rev. (to be
published).
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19.2 MeV in a 8"(p,y)C" experiment with a width of
about 25 eV. Our calculations indicate the state at
20.76 MeV should have a partial width for decay to the
ground state of only 4 eV. %'e have also calculated the
partial width for this state to decay to the 2+, T=O
state at 4.43 MeV. The wave functions of Goswami and
Pal" have been used for the latter state. As a result of
almost complete cancellation of the matrix elements we

6nd a width of 1 eV. This decay has not been observed,
which is consistent with the predicted width. Since the
observed state at 19.2 MeV has a much larger width for
ground-state decay than predicted by the theory, we

believe some other state has been seen in the experiment.
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FIG. 4. Squared form factor for the giant resonance in C~. The
lower curve includes only the contribution of the 1, T=1 states
while the upper curve also includes that of the 2 states. The dot-
dash curves are the result of a random-phase approximation calcu-
lation. The point at 23 MeV/c is from photon experiments (Ref.
6). The three other circles are from Stanford 180' scattering data
(Ref. 12), and the square is more recent Stanford data (Ref. 13).
The experimental points were obtained by integrating the cross
section between 20 and 26 MeV.
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E'rG. 6. The squared form factor for the giant resonance in 0'6.
The lower line includes only the 1 states while the upper line also
includes the contribution of the 2 states. If only half of the 2
contribution is included the dashed lines result. The point at 22
MeV/c comes from photon experiments (Ref. 7), The other circles
are Stanford 180' data (Ref. 11), while the squares are more
recent Stanford data (Ref. 13). Owing to the diferent spectra
obtained in the two Stanford experiments, the experimental points
were obtained by integrating the cross section in the region 20-27
MeV in Ref. 11, and 29-27 MeV in Ref. 13.
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Fn. 5. Spectrum of 1- and 2—,T= 1 states in 0".The length of
the line is proportional to the square of the transverse form factor
for the state. For the 2 states the line is extended slightly below
the base line.

The 2 state at 23.94 MeV falls in the giant resonance
region in C".In Fig. 4 we show the correction this state
makes to the form factor of the giant resonance using
only the 1, T=1 states as calculated by Lewis and
Walecka. The modi6cation is quite small, but depends
critically on the mixing of the unperturbed states. Most
of the unperturbed strength is in the (1ds/2)(1p„, ) '
con6guration; thus only a slight admixture of this state
can greatly increase the form factor of one of the other
states. About + of the strength of the 23.94-MeV state
comes from this mixing although it is quite small (0.131).

Finally we note that the inclusion of ground-state

"A. Goswami and M. K. Pal, Xucl. Phys. 35, 544 (1962).
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correlations in the calculation does not substantially
alter the results.

The spectrum of the 1 and 2, T=1 states for 0"
for various values of q is shown in Fig. 5. The 2 state
with the largest form factor at low q occurs at 21.34
MeV, which along with the 24.52-MeV state is in the
giant resonance region. In Fig. 6 we plot the correction
these states make to the giant resonance form factor cal-
culated by Lewis using the 21.01-, 23.89-, and 26.63-MeV
1 states. This produces a greater modification than in
C" since the 2 state with the largest form factor is now
in the giant resonance region. Corresponding to the pre-
dicted level at 21.34 MeV, the experiments of Vanpraet"
show a peak in the giant resonance at 20.2 MeV. The
form factor for this state is shown in Fig. 7. We note that
the q dependence of the calculated form factor is in good
agreement with experiment. As was the case for the
20.76-MeV state in C" our results for the square of the
form factor are larger than experiment by a factor of 2.
The recent 0" experiments" show considerably more
structure in the giant resonance than predicted by the
particle-hole theory of Brown, and the identification of
individual levels is quite difficult (except for the 2 at
21.34 MeV mentioned above). For this reason only the
integrated cross section of the giant resonance has been
compared with experiment. Although comparison with
individual levels may not be possible, we should be able
to predict the shape of the giant resonance. In particular
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0.003—
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O.OOI5

O.OOIO—
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1 00 l 20 !40

Fro. 8. Squared form factor for the 13.85-MeV 2 state in Q".
Half of this result is indicated by the dashed curve. The points are
from Stanford 180' experiments. {Ref. 13).

the 1 level at 26.63 MeV should be very large at high q
(see Fig. 5).Thus as the momentum transfer is increased
we expect to see the peak of the giant resonance shift
up by about 2 MeV. The original experiments" con-
firmed this shift; however the recent experiments of
Vanpraet" indicate that such a pronounced shift does
not take place. Although there is some shift of strength
from the low-energy part to the high-energy part of the
giant resonance, it is much smaller than predicted by the
theory. '0 Since the agreement of the integrated strength
of the giant resonance with experiment is fairly good,
we believe that some of the strength predicted for the 1
state at 26.63 MeV appears instead in additional states
at a lower energy.

Of the remaining 2—states in 0",the one predicted at
13.85 MeV, which is a member of the same T= 1 multi-
plet as the ground state of N", has the greatest strength.
The form factor for this state is compared with the ex-
perimental results of the observed level at 13 MeV in
Fig. 8. Except for the point at q =73 MeV/c we find the
experiments give about half the predicted cross section.

0.00 I—

'0 20 40 60 80
q {MeV/'c)

100 1 20 I 40

V. SUMMARY AND DISCUSSION

Using the particle-hole model of the nucleus, we have
computed the dipole and unretarded dipole contribu-
tions to the matrix elements My, M~, and 3f~ for muon
capture. To do this we needed the wave functions of the
0, 1, and 2, T=1 states. The wave functions of the
1 states in C" and the 0, 1—,and 2 in 0"have been

FIG. 7. Squared form factor for the 21.34-MeV 2 state in 0".
The dashed curve is one-half of this result. The experimental
results are from Ref. 13.

' We note that with the inclusion of the 2- states, the predicted
shift is much smaller than that predicted if only 1 states are
considered.



8 1226 TAB ER DEFOREST, J R.

calculated by Lewis and Walecka. We have extended
their calculations to the 0 and 2 states in C".The cal-
culation has essentially no free parameters, since a
potential which 6ts the low-energy scattering of free
nucleons was used. The equality (My')n = (M~')n
= (Mz')D was found to hold to within 13% in all cases,
while the assumption (M')D=(M')r»o~F, ~(p„,) ~

~ was
good 'to 1%.

We have also used the wave functions for the 2-
states to compute the inelastic electron scattering from
these states. For both carbon and oxygen one state
carries most of the 2 strength. These "giant-magnetic-
quadrupole states" have been identiaed with states ob-
served in recent electron-scattering experiments. The
momentum-transfer dependence of the calculated states
are in good agreement with experiment, However, since
the spins and parities of the levels were not determined
directly from the experiment, we must consider our re-
sults as not being de6nite.

In the case of C" we have repeated the calculations
this time using the random-phase approximation to in-
clude ground-state correlations. In both muon capture
and electron scattering the results did not differ
radically from those where correlations were not
considered.

As has been noted, our results for the squared form
factors for electron scattering from the 2, T=1 states
tend to be too high by about a factor of 2. Similarly, the
matrix elements (Mv')pg& for muon capture exhibit a
factor of 2 discrepancy when compared with the results
of Foldy and Walecka. Lewis and Walecka' have shown
that if one uses current conservation to evaluate T~~"
in the limit q ~ 0,

(»1fi) = (V 2/3) 1/»

dx xp~(x) Fg~(Q,), qr; —+ 0, (15)

the resulting squared matrix element is about twice that
obtained by using the particle-hole model to evaluate
the matrix element of the current. They find the latter

method is in good agreement with photoabsorption ex-
periments. The discrepancy is due to the use of approxi-
mate wave functions. Since (Mv')r»n&'& is proportional
to the square of the matrix element of the same opera-
tor that appears in Eq. (15), we expect (Mv') pr» to be
about twice the correct value. Furthermore, since
we believe the approximate equality of (Mz') z&,
(M~')r»n, and (M~')r»o should hold for all reasonable
wave functions, we expect (Mx')or» and (M~')r»n
should also be too large by a factor of 2. However it
may easily be seen that the major contribution to

I (2» 2'=1II2'2 III0+» &=0)
I

' comes from a term which
is proportional to the contribution of this 2 state to
(M~')r»~. This is consistent with the observed dis-
crepancy in the squared form factors for the 2 states.

In our calculation of the form factors for the giant
resonance, we have only considered the contributions
of the 1 and 2, T=1 states. A 1+, T=1 state would
also contribute strongly to the form factor, but cal-
culations indicate the probable absence of such states in
the region of the giant resonance, at least for C"."
Weisskopf estimates of E2, E3, and 3f3 transitions for
g=120 MeV/c and Ef;=20 MeV are about 1% of the
observed cross section for the giant resonance for both
C" and 0"""These estimates are quite rough since
the long-wavelength limit is not appropriate for q= 120
MeV/c; however, we believe they give a reasona-
ble order of magnitude. The magnetic transitions
to 2, T=o states will be small compared with those
to the 2, T=1 states considered in their paper since
L(X„+X )/(X~ —X )$'= (0.88/4. 71)'=0.035. Finally we
note that collective efI'ects may increase the strength
of the neglected states.
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