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Broken Charge Symmetry in Static Strong Coupling*f
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Standard perturbation techniques are applied to the study of the energy level splitting in the nucleon
isobar states which results from introducing charge-symmetry violation. Whereas the scalar interaction model
shows a high sensitivity to the symmetry breaking, the corresponding asymmetries are typically suppressed
in the model with pseudoscalar mesons, owing to the interdependence of spin and isospin in the strong-
coupling theory.

I. INTRODUCTION

' N the framework of the static strong-coupling
- - theory, ' the isospin-symmetric meson-nucleon inter-
action is known to give a series of nucleon excited
sta, tes (isobars) with energies

Er eT (T+1)——; T= -'„-,'
Ts aT, +(T———1)

where T denotes the isospin of the multiplet. In the
case of the scalar interactions, all the isobar states have
their spin I=—„since in the static limit the scalar
mesons are bound only in S states. For the pseudoscalar
mesons only isobar states with equal spin (f) and
isospin (T) quantum numbers are found to occur,
associated with the fact that the spin and isospin vari-
ables play a symmetric role. In particular, the part of
the Hamiltonian describing the isobar states has the
same form as that of a spherical top, whose angular
momenta along the "space-fixed" and the "body-fixed"
axes are interpreted as the J, and T3 quantum numbers
of the isobar state, while the total "angular momentum"
is identified with both J and T.

The degeneracy among the different charge states of
these isobar multiplets will be broken if the charge
symmetry is broken. This can be achieved in essentially
two inequivalent ways. The bare neutron-proton mass
difference would produce no effect in the strong-
coupling limit, since in all the stationary states equal
mixtures of both would occur. The symmetry violation
could then be introduced either in the mass spectrum of
mesons (which we shall term the tt mechanism) or in
their couplings with the nucleon source (which will be
called the g mechanism). We will examine in this paper,
using standard perturbation techniques, the magnitude
of the level splitting thus resulting among the multiplets.

The first-order perturbation calculations for the
scalar interactions are found to give a large splitting,
particularly enhanced by a "large" g' factor. In con-
trast, in the case of pseudoscalar mesons the eAect is
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considerably inhibited, the first-order effect entirely
M,wishing if the symmetry violation is through the p
mechanism' and very small (compared with the scalar
model) in the g mechanism. This difference in sensitivity
to the symmetry breaking may be attributed to the
peculiar interdependence of spin and isospin in the
pseudoscalar model. The anisotropy in charge space
cannot be very large if the isotropy of ordinary space
is maintained.

II. SCALAR INTERACTIONS

A. p Mechanism

We write the Hamiltonian for a scalar field, omitting
the bare nucleon energy:

H=Hp+H', (2.1)

Ho=2 d'*L .'( )+4.( )(t '—~)A( )3 (2 2)

H'= g, P d'x 8.(x)rogo(x), (2.3)

where the symbols have their usual meaning. 6,(x)
specifies the form factor of the nucleon, normalized so
that

d'x b, (x)=1, d'x 8 '(x) =C'. (2.4)

8H = ,' P cr, dexies, '(x) . -(2.6)

' G. Wentzel, using a diRerent approach, has observed this
e6ect in the y mechanism, .Helv. Phys. Acta 38, 65 (1965).
The extension to the g mechanism is one main task of this work.

g, is the dimensionless coupling constant. Charge sym-
metry is strictly preserved in the interaction Hamil-
tonian H' (2.3) and the violation is carried entirely by
H p (2.2), specified through

t,'=t '+~o, ~i=~2= —p~p=~(«'t ') (2 5)

Equation (2.1) may be rewritten so that the weak
symmetry-breaking terms are explicitly expressed as a
perturbation:

H =K+6H,
where 3C is given by simply writing p,

' for p,,' and
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To treat this perturbation, we may now recapitulate
some usual techniques in the strong-coupling theory.
The meson Geld operator f, (x) is normally split into
a dominant part f,isi(x) that describes the mesons
"bound" to form the isobar states, and a part orthog-
onal to it that corresponds to the quasifree mesons and
interacts only weakly with the bound nucleon. Explicitly

n(ge, = —, or
3g 4

f~r —~sf
(2.12)

spacing ( e) between the multiplets is of the order of
3rrg, '/2li', which should be small for the perturbation
approximation to be valid. Thus

Pp&si(x) =g,C— L(x)e„("-~) (2.7)

This may be compared with Wentzel's' Eq. (22), where
it has been shown that when n reaches the critical value
(4x)'n„a strong violation of charge symmetry sets in
and the isobar levels get drastically modified.

where ep is a unit vector in a 3-dimensional space and
the corresponding polar angles 8 and p are the essential
coordinates of the bound system. In particular, the
rotational energy, with eigenvalues (1.1), is'

Hp= &I"

1 8 8 1 (8' 8
P'= — —sin8—+ ~

— +s cos8—+s I

sin8 88 88 sin'8 (8$s 8$ J II'=g, P d'x b, (x)r,g, (x), (2.13)

B. g Mechanism

Now we shall investigate the effects of introducing
the primary symmetry violation in the coupling con-
stant. The interaction Hamiltonian (2.3) is then re-
placed by

1 8
I'3————Te

z 8

4m.p
d'xb. (x) (p' —6)8.(x)

2
g8

e=zg, lt. (x) ~ (g./g. )k.(x)

~,(x) ~ (g./g. )~,(x),

(2.14a)

(2.14b)
Thus, writing only the dominant p, is'(x) for p, (x) in

(2.6), we get the transformation preserving canonical commuta-
tivity. This restores isotropy in H' and the violation of
the symmetry is once again carried in Ho.

8I1=-'g,'C'z Q a e '
P

(2.9)

(2.g)
with g, =g,+P„where Pi ——Ps= —zPs=P(((~g, ~).' It is

most convenient to make a transformation defining a
new set of field variables such that

C'z = dsx 8.(x) (li' —6)—'8.(x)=Sx/y, . II= ,' p d'xL(1+ p, /-g. )'x. '(x)

The expectation value of bH for the rotational states
gives the first-order perturbation to the energy of the
isobar states. Accordingly, using (2.4), we get

kg, 'e
DEr, r,= (T,Ts~ 1 3ess

~

T—,Ts). (2.10)

The matrix elements are easily evaluated, giving

+(1+P,/g. )-V, ( ) (~'-~)a, ( )j
(2.15)

+g, Q dsx 8.(x)r,Pp (x)

To first order in p

DE@,p, =
6T(T+1)—34mg. '0,

(2T—1)(2T+3)

1—
p (2T—1)(2T+3)

6p 2

8II=g, ' Q P dsxLx '(x) —P, (x)(p,'—h)P, (x)). (2.16)

As before, the field variables P, (x) and s, (x) have to be
split into a "bound" part and "free" terms. The con-
tributions from rr, '(x) are negligible for g,»1. On sub-

stituting for p, &si (x), the second term gives

It may be noticed that because of the factor g,s (»1),
even for a small anisotropy in the meson masses we

may have a large splitting among the isobar states. The
ratio of this level splitting within a multiplet to the

3 In the scalar model, e ' is convergent and we may let the
source radius tend to zero. Thus s, (x) -+ 5(x), the Dirac delta
function.

g
—ip p gsCspe 2

P (2.17)

' When the charge symmetry is broken, we can also have an
additional interaction term of the type g Jd x b, (x)$3(x), indi-
cating different coupling strengths for neutral mesons with protons
and neutrons. Their first-order e8ect, however, will be vanishing
for any unperturbed isobar state.
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where'

C'F = d'x b.(x) (ti' —6)-'8.(x)= . (2.18)
4xu

system. In particular, similar to the scalar model, the
rotational energy with eigenvalues (1.1) is

P g
2

AEp, r,= —— (T,TS~ 1 3—eq
~
T,T3)

ge 4X'+

6T(T+1) 3—Pg.
-- 1—

4s a (2T—1)(2T+3)

Hence, the first-order correction to the energy of the
isobar states is given by

sinO
sinO. 80. 80~

( 82 8' 8' )+ i +2 cosO + —

i , (3.4)
sin'O~ (84' 8484 8%')

1 8
p3 —— — —T3

i 8%'

6T32 with
(2.19)

(2T—1)(2T+3)

Again, because of the factor g, and the factor 1/a, the
symmetry breaking in isobar multiplets will be large.
The validity of the perturbation approximation re-
quires, since e 4mti/g, ',

d'xb. (x) a(x) 3 sa/g, ' (3.5)
(+2 g)2

~=4gn=3 —2

when cp((1. In contrast to the scalar theory, we shall
also need P, , describing the quasifree mesons, but it will

be suKcient to approximate them as "free" mesons:

(4~)'at
I gi—g~ I

(4~)'at
P«P. =

g
3

III. PSEUDOSCALAR MESONS

(2.20)
4' (x)=

(2m.)'t'

exp(ik x)
(a~,,+a' ~,,);

(2(o )'"
—($2+~2)1/2

(3.6)

A. y, Mechanism
where uti, „and QQ p act as creation and destruction

Instead of Eq. (2.3), the interaction part now reads operators and obey the usual commutation rules.
Now, substituting (3.2) and (3.3) in (2.6), we obtain

H'= g„Q d'x or,gp (x)q,b.(x) (3.1) —2

8&=k Zo, d'* g. E~*, +4"'(x) (37)

which, as in the scalar model, remains strictly charge-
symmetric. g„now has the dimensions of length, and
the strong-coupling condition requires g„)&a, the source
radius a being as defined by Eq. (2.18), supposing
again ati&(1. Then we once again have Eq. (2.6) giving
the energy perturbation:

Since

Eq. (3.7) becomes

8$ 8$
d'x ——=Z8;;,

~xi ~xj.
(3.8)

8H=-,' Q u, d'ngp'(x). (2.6) ~&=k Z ~n gn'~ Z ~'n'+2gn 2 ~~a

P, (x), when split into the relevant bound meson part
and the "free" meson part, takes the form

k.(x)=4."'(x)+0,'(x), (3.2)

' Equation (2.18) corresponds to the conventional definition for
the nucleon size a in the strong coupling theories if ap,«1. We
will indeed be primarily interested in the limit up«1.

where S;p is an orthogonal transformation matrix, ex-
pressible in terms of the 3 Eulerian angles 0~, C, 4',
which are now the essential coordinates of the bound

8$
iPxiPp'(x) + d'x f '(x)' . (3.9)

~xi

The 6rst term corresponds to Eq. (2.9), but here it van-
ishes identically in consequence of the orthogonality re-
lations P;5;,'= 1 {and P, ei, =0) This is not su. rprising
in view of the argument made in the Introduction.
%'hile the third term can have no effect on the bound

system, we find with regard to the contributions from
the second term, since the expectation value of P,'(x)
is zero for any unperturbed isobar state, that the first
order energy correction 8E vanishes. So we have to
calculate the second-order e8ect of the pertinent term
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herein (3.9):

~&r, r~

8$
P s, d'~p'(x)

~
T,T„z,)(lie. z. ,

)
(Er Er)—

(3.10)

J is an isobar eigenstate &J== T with
iho fOnl intermediate s a es

'
ute to (3.10); t us asmeson will contribu e ( .

j~ T T J ' kp). Substituting . orform
~

Eq. (3.10), we easily obtain

4z k4dk

a.' — -"(k)~&r,Z, ,J,=
P/ +3I J I

My

~x~ and the normaliza-g k~ is the Fourier transform of 5+,Sg

elements only for states with' T—
evaluated to give

4~ P4d'P 4x'
X—

~

6 & 6p

k4dk g~2 2e(T+1)
t

X
S( ) =

L2 (T+1)+ $ 6y

4 k4gk 4s2 (2&T)
e(T) =—

'g )6 ~a~L(gi 2gTj 6p,

the rotatio»lvel s acings o

exam l.e, with the e p og ' o p
3 3 resonance, t. can e e

1 tdth ' t 1an using this value we have eva uate
for the T=-,' state: With ~ 0.7 p,

4x2 4m'
e= (0.19), m(-;) =- (0.10),

6p, 6p

4X2
e(-,') =—(0.45) .

6p,

g2, r, , g, = ——1.26+0.10~Tg'j. (3.14)~~3/2, Z'3, Jg
6p

~,2[(T',T,',z.'(s;, [T,T„~,) I2

3 (~~)'"

2 pg„
~(1 or

tin the nucleon Cornpton wwavelen th forOn substitu g
the cuto6 parameteter a and ta ing g„rom

'
e of 3.15) amounts to 0.29 in corn-the right-hand si e o

fference betweenith which the actual mass i erence
0.033 in units of p, , is

b t t th
d neutral mesons, . in

indeed small. T ehe resulting con ri u i
difference betweenen the T

r small (of the order ofthe (3,3) isobar is also very smal o e
1.6 MeV). '

3T32 (3.15)

2T+1 (T+1)(2T+1)

when T'= T+1; (3.12b)

h T'= T 1. (3.12 )—
2T+1 T(2T+1)

Substituting in (3.11)& we get

~&Z, Z-, ,J.

2.11 .tor a2 as compared with 0. in
alidit of the pertur a ion,

to the level spacing ( e between e m
) 3T j& wllell T = T

& (3 12a) requires$T(T+1) 3T3 g, w en
T(T+1)

5T 6 5T 1—
(il T)+ e(T)

+3T 2g 2~2

T(T+1)

(3.13)
(T+1)(2T+1) T(2T+1)

17 181 (1944); 18, 158 (1945).' M. Fierz, Helv. Phys. Acta

B. g Mechanism

duces the anisotropy in the interaction ami on'

This, of course, omits possi e e e
h of the neutron-proton mass i erence,

alar model the additional term in the
L '~. ( )]A(), » )ida J'

-d'"-'l:-''-"h:h- "aild 'Asar coUp lng, g v

l l' h h
t'ons resulting from such mixing are

g
mixing e we

'
b t en adjacent isobar mu tip e s in

(Ref. 4.)
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As in the scalar model, the transformations on f, (x)
and m, (x), defined by (2.14 a, b), restore isotropy in H';
and corresponding to (2.16), but considering the sym-
metry violation to all orders in p, we have

bH =Q (P,/g„+-', P,'/g, ') d'x, '(x)

rr, (x) =m, &'&(x)+ir, (x), (3.19)

1 t)h, (88
m, "&(x)=—P p C'= d'x~

~

. (3.20)
C ' 'ax &ax,)

"smaller" rr,s(x) term, which must therefore be split
into the relevant bound part and the free-meson part.

X d'x gp(x)(p, '—A)P, (x). (3.16)

p;, are the conjugates of S,, and obey the commutation
relations

1
Lp;„S;,$=—(S,,S„—S,,S;,); r-e».

2F

The bound-field part of J'd'x ir,'(x) is essentially pro-
First let us examine the lt, -dependent terms. After porttonai to Q p s These terms omitting all free

sPlittmg f, (x) into P, "'(x) and P,'(x), we obtain field parts, are diagonal in the 2', 2's, g, representation.
with (3'.4)

Q p;p'=2ePs+, Q p;s'= (Ps—Pss)+ . . (3.21)

4'"'(x) (w' —~)4' "'(x)
ap

Accordingly, the pertinent part of (3.16) can be
el/ 86, written as

l9gi 8$j

=gn' 2 S'.S~'v7i'~,

where we have performed the integration over d'x. Now,
since P, S,„'=1, the terms in Eq. (3.17), the analogs
of which gave the major contribution in the scalar
model, turn out to be independent of the isobar vari-
ables. Next, the weaker term

8H =—eg2P' —3(P'—Pss)j
+-I —

i
PP'+3(P' —Ps')] (3 22)

1/p)'
2 kg„i

Hence, we have the energy correction

~P, „,, =(T,T„Z,~~H
~
T,T„~,)

2 d'x P,'(x) (p,
'—6)P, i"(x)

88= 2g„g S;, d'x P, '(x) (3.18)

also does not contribute, since the part of P,'(x) pro-
jected out by M (x)/t)x;, together with S,„defines only
the p-wave part of the "free" mesons which have
negligible interaction with the bound system. These
correspond to the variables P„, defined by Houriet. "
Thus, in contrast to the scalar model, the f-dependent
term in (3.16) plays no part in the energy splitting.

The symmetry-breaking e6ect is then given by a

' In contrast, it might be noted that in the "p, mechanism" we
had Sg/Bx; in place of SS,/Bx;, which gave a nonvanishing second-
order contribution involving the bound-system variables.

"A. Houriet, Helv. Phys. Acta 18, 473 (1945), Eq. (2.32). In
the notation of W. Pauli and S. M. Dance t Phys. Rev. 62, 85
(1942)], this corresponds to g so&. See their Eq. (70).

= ——.Lr(T'+1)—3T, )
gu

+-I —
I

el 52'(2'+1) —»ssj
2&g„i

Notice that with e a/g~' the anisotropy among the
charge states of the isobar is weaker for the pseudo-
scalar mesons, when compared with the corresponding

g mechanism in the scalar model. This confirms our
expectation based on the spin-isospin interdependence.
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