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ARNoN DAR

Department of Nuclear Physics, 8'eis'mann Institute of Science, Rehovoth, Israel

(Received 18 January 1965)

Cluster transfer reactions between complex nuclei are discussed in a simple semiclassical approximation.
For energies below the Coulomb barrier nuclear distortions are neglected, and the results coincide with the
"tunneling model" predictions of Breit. For energies above the Coulomb barrier, distortions are taken
into account by a 6nite-range diRraction model. Closed-form expressions are obtained for the angular
distribution of the reaction products and for the transfer excitation function. Coulomb eRects are shown
to play a dominant role in determining the main features of the reaction. Good agreement with experimental
data is obtained.

Butler-type hole model which neglects the important
shadowing eGects.

Another approach has been developed recently by
Frahn and Venter. 4 They treat cluster transfer re-
actions between complex nuclei as quasi-elastic processes
in the framework of the strong-absorption model for
nuclear scattering. Rather general assumptions about
the form of the scattering function in / space led them
to a closed-form expression for the angular distribution
of the outgoing particles. There are two weak points in
their treatment:

I. INTRODUCTIOH

''T was first emphasized by Breit and co-workers'
- ~ that the theoretical. description of heavy-ion proc-
esses is greatly simplified by the validity of the semi-
classical approximation characterized by the condition
of a large Coulomb parameter. This was extensively
used by Breit and Kbel' in the "tunneling model" with
its restricted applications (to single-neutron transfer
and energies below the Coulomb barrier). However,
most of the experimental data in nucleon transfer has
been obtained at energies above the Coulomb barrier
with the following typical features: (I) Their arbitrary choice for the scattering function

can be proved to hold only for collective excitations of
complex nuclei via inelastic scattering, and quite a
different form will be shown here to hold for nucleon
transfer reactions.

(2) In its present form their treatment is applicable
only in cases where the energy is well above the Cou-
lomb barrier and where no angular momentum is
transferred between the colliding particles.

(a) A peak in the angular distribution is observed,
whose height and width vary systematically with
energy.

(b) The variation of the position of the peak with
energy is found empirically to correspond, approxi-
mately, to a Rutherford scattering along a classical
trajectory with constant distance of approach of the
order of the sum of radii of the colliding particles.

(c) The transfer excitation function shows a slow
increase with energy and eventually it levels o6 at
higher energies.

An alternative approach is oBered by the distorted-
wave Born approximation (DWBA) procedure. How-
ever, for heavy projectiles the zero-range approximation
is certainly unjustified and one has to carry out labo-
rious finite-range calculations. Moreover, the typical
feature of such reactions is the strong absorption which
takes place at small impact parameters. This is taken
into account in the DWBA by a large imaginary part
in the optical potential, but doing this produces an
extra reQection. Moreover, even if one accepts the
general applicability of the DWBA treatment, it is so
general and contains so many parameters that it is not
easy to know whether agreement with experimental
data (which is generally found sooner or later by
adjusting the parameters) is really significant or not.

In order to overcome these dif5culties we present
here a simple semiclassical approach. Nuclear dis-
tortions of the incoming and outgoing waves are neg-
lected for energies below the Coulomb barrier, and the
results (simple closed-form expressions) coincide with
the "tunneling model" predictions of Breit. ' For ener-

The angular distribution in transfer reactions was
given by Greider' whose approximation is valid' for
situations wherein long-range forces are dominant.
This author demonstrated the importance of absorption
eGects in transfer reactions between complex nuclei.
However, the inclusion of these eGects was by a simple

*The research reported in this document has been sponsored
in part by the National Bureau of Standards.' (a) G. Breit, M. H. Hu, Jr., and R. L. Gluckstern, Phys. Rev.
104, 1030 (1956). {b) G. Breit and M. E. Ebel, Phys. Rev. 103,
679 (1956);104, 1030 (1956). (c) G. Breit, Encyc/opedia of Physics
(Springer-Verlag, Berlin, 1959),41/1, Sec. 48, p. 367. (d) G. Breit
in Proceedings of the Second Conference on Reactions behoeen Com p/ex
XNc/6, 1960, edited by A. Zucker et al. Qohn Wiley Bz Sons,
Inc. , New York, 1960), p. 1. (e) G. Breit, Proceedings of the Con-
ference on Direct Interactions and Euc/ear Reaction 3fechanism
(Gordon and Breach Publishers, Inc. , New York, 1962), p. 480.
(f) G. Breit, Proceedings of the 3rd Conference on Reactions betueen
Comp/ex Euc/ei (University of California Press, Berkeley, 1963),
p. 97.

~ K. R. Greider, Ref. 1{f),p. 148; Ref. 1(e), p. 971; Phys, Rev.
Letters 9, 392 {1962);Phys. Rev. 133, B1483 {1964).

s See however, L.J.Goldfarb and P. J.A. Buttle, Phys. Lett
11, 54 (1964).

ers 4 W. E. Frahn and R. H. Venter, Slellenbosch University,
1964 {unpublished).
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gies above the Coulomb barrier, distortions are taken
into account by a Rnite-range di6raction model.
Closed-form expressions are obtained for the angular
distribution of the reaction products and for the transfer
excitation function under the following conditions:

at an angle 8o which is given by

E,~= (g/k)L1+cscP80) j,
where

(3)

(1) The Q value of the reaction is small compared
with the incident energy.

(2) The mass transferred is small compared with the
masses of the colliding particles.

(3) The angular momentum transferred is small
compared with the dominant contributing / values.

(4) The value of the Coulomb parameter g is large
so that the semiclassical condition 2~&&1 is well
satisfied.

Under these conditions the particles move semi-
classically in Rutherford trajectories which are not
appreciably a6ected by the transfer of mass, energy,
and angular momentum during the collision. They are
especially well satisfied in neutron transfer reactions
between complex nuclei.

Section II outlines the model. Closed-form expressions
for the di6erential cross section and for the transfer
excitation function are derived in Sec. III. In Sec. IV
the predictions of the model are compared with experi-
mental data. Conclusions are drawn in Sec. V.

II. THE DIFFRLCTION MODEL

The simple di6raction approach to nuclear reactions'
assumes that the exit channel in reactions, dominated
by strong absorption in both the entrance and exit
channels, is fed by encounters on a well-dined ring
located around the target nucleus. This is based on the
assumption that all smaller impact parameter collisions
are completely exhausted by highly inelastic reactions,
while the exponential decrease of the bound-state
nuclear wave functions outside the nucleus restricts
the reaction to the nuclear surface. Now, in Rutherford
scattering an apsidal distance D is related to a c.m.
scattering angle 8 by

D= (q/k)L1+csc(8/2) j,
where

q = (mZ&~e')/(flak) . (2)

m is reduced mass of the colhding particles, Z and Z~
are the atomic numbers of projectile and target, re-
spectively, and k is the wave number of their relative
motion. Therefore, if the reaction takes place on a well-
defined ring with radius E, and if the colliding nuclei
move along classical Coulomb trajectories which are
not appreciably a6ected by the transfer„ then one
expects the angular distribution pattern to be peaked.

~ A. Dar, Phys. Letters 7, 339 (1963); Nucl. Phys, $5, $05
(1964).

A, and A& being the mass numbers of the projectile a
and the target A, respectively, and ro the nuclear radius
constant.

This simple model involves several assumptions that
might seem to make its validity questionable. For
instance, the forward-angle approximation breaks time
reversal invariance and limits the applicability of the
model to small scattering angles; the exchange inter-
action is surely not concentrated on a well-define ring;
Coulomb e6ects are neglected, etc. A way to remove
part of these difhculties was proposed by Henley and
Yue and by Bar.~ However, in contrast with these
references which are mainly concerned with the situ-
ation where Coulomb e6ects are negligible, we are now
concerned with circumstances where they play a domi-
nant role.

The natural extension of the earlier di6raction-model
prescription is to calculate transition amplitudes in the
Coulomb-wave Born approximation with the neglect
of both the contributions from the absorption region
and the shadow of the absorptive sphere. This is a
sharp cutoif procedure (sharp boundaries for the ab-
sorptive sphere and shadow geometry in R space).
However, the impressive improvement of the smooth
cuto6 procedure over the sharp one achieved by Blair
et ul. and by Austernl in interpreting the elastic and
inelastic scattering of medium-energy alpha particles,
suggests that similar e6ects should be looked for in
our case.

A smooth cutoff rather than a sharp one can be
introduced in a way 6rst proposed by Sopkovich" and
rederived independently by Gottfried and Jackson"
and. by Durand and Chiu. " Following these authors
one uses the partial-wave decomposition of the tran-
sition amplitude in the Coulomb-wave Born approxi-
mation, and instead of neglecting the low partial waves,
which correspond to a small impact parameter, the
amplitude of each partial wave is multiplied by the
square root of its reflection coeKcient a~. (ga&=e"',
where B~ is the phase shift of the lth partial wave. )
Such a prescription is based on a VVKB picture for

~ E.M. Henley and D. U. L. Yu, Phys. Rev. D3, 81445 {1964);
135, 31152 (1964).

7A. Dar, Proceedings of the Paris Conference on Nuclear
Physics, 1964 (unpublished).' J. S. Blair, D. Sharp, and L. Wilets, Phys. Rev. 125, 1625
(1962).

9N. Austern, Ann. Phys. 15, 229 (1961); E. Rost and N.
Austern, Phys. Rev. 120, 1375 (1959).

'0 N. J. Sopkovich, Nuovo Cimento 26, 186 (1962)."K. Gottfried and D. Jackson, Nuovo Cimento 34, 735 (1964).~L. Durand, III and Yam Tsi Chiu (Lectures presented by
L. Durand at the Boulder Conference on Particle Physics, 1964)
(unpublished); Yale University, July 1964 (unpublished).
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direct reactions, and it may be interpreted as an inter-
polating procedure for the DKBA.

In Sec. III we apply this prescription to the calcu-
lation of the transition amplitude for cluster transfer
reactions between complex nuclei.

III. THE DIFFERENTIAL CROSS SECTION AND
THE TRANSFER EXCITATION FUNCTION

In the Coulomb-wave Born approximation the tran-
sition amplitude is computed as a first-order matrix
element between channel wave functions for the col-
liding systems A, a and the separating systems B, b.
That is, the transition amplitude for the reaction
A(a, b)B has the form of a matrix element between
product wave functions

T~. (0's% ~x——l,
' '(k~, r~), V%'~@,xo'+'(k. ,r.)). (5)

Here 4'~, 4'~, 0'~, 0' are the internal wave functions
for the noninteracting separated particles B,b,A,a.
The interaction V is the interaction whose o8-diagonal
matrix elements are responsible for the transition. X,~&

—)

and I (+) are the Coulomb waves for the elastic-
scattering wave functions of the pairs A,a and B,b,
respectively.

Equation (5) may be written in the form

Tq, = dr, drqX~& &'(k~—,rb)

X&B,bl Vlc A&x. '+'(k, r ) (6&

respectively. If we further assume no coupling between
orbital and spin parts, then the approximations de-
scribed above lead to an effective interaction of the form

&B,bl VIu, A&= P (j,rm, t,p, IJ,M, )~,mc, yc, Mc

X(~.~.i.&. I
J.'M. ') (J.M.~.M.

I
~.M.)

X (j t,mQ, 'M, 'I J,M.)F~„. (.8)
Here

F....=«.(")Y...(Q.)IV( .)Ix.(")&, (9)

where X~. is the internal wave function describing the
relative motion of b and c inside particle a. The dif-
fraction model assumes that the reaction takes place
mainly outside the nucleus where

L'I, (r,)-Ce ~",'(pr, ) . (10)

p is related to the binding energy —es, of s in B through

es ——(h'P')((2M,g), (11)

with M,~ the reduced mass of particles A and c. C is a
normalization constant.

According to the di6'raction picture the reaction is
most probable for a grazing collision such that the
centers of masses of the colliding particles and that of
the transferred particle are lying all along the same
straight line with the transferred particle in the middle.
For such a situation we can use the expansion:

&B,bl Vlc,A&= 4s*%'~*V+~%.dg,

Yi,„,(Q,) 4xCY—(,„,(Qb)

(;) pl rt, r~.I-
where $ represents all the coordinates other than r,
and r&. The last matrix element plays the role of an
eGective interaction or form factor, for the transition
between the elastic scattering states X (+), X~( ). For
cluster transfer reactions, a is assumed to form a bound
state of b and c, while B is assumed to form a bound
state of A and c, i.e., the reaction is described symboli-
cally as

A+a —+ B+b=A+(c+b) ~ (A+c)+b,
where closed parentheses denote bound states. V is
taken to be the interaction between b and c. In the
projectile a, the clusters b and c are taken to be in a
relative state with a de6nite orbital angular momentum
l„while c is assumed to be captured by A into a state
with a definite angular momentum /, . Ke denote by
j„l;, and J; the spin, orbital, and total angular mo-
mentum of particle ~, respectively, and by m;, p;, and
M;, the corresponding magnetic quantum numbers.
For the overlap integral &B I A) of the target and 6nal
nucleus present in Eq. (i), we take a bound-state wave
function for particle c in the central field of the target
nucleus with quantum numbers l„j„p„m,. The radial
and angular parts of the wave function are u~„V~„

XP P j&(iPrba)hf(iPrg)Y(~(Q&)Y)„*(Q|„), (12)l~ m=—l

where j~ and h~ are the spherical Bessel and Hankel
functions, respectively.

We now introduce Eq. (12) into Eq. (9). Due to the
orthogonality of the spherical harmonics, only the term
with (l,ra)= (l„p ) in Eq. (12) contributes, and the
form factor Ii „,reduces to the form

Z„.„,= —C(4 )'&' q&, (iPr)V(r)X, (r)r dr

X &,h(ipra) Yi~, (Qs) X Yt~, (Q&) (13)

Next we introduce Eqs. (8), (13) into Eq. (5) and
approximate X,t+~ (k„r ) by X,~+'(k„rq), which amounts
to the replacement of the c.m. coordinate of particle
(b+ c) by the c.m. coordinate of particle b. This approxi-
mation is expected to be accurate enough under
condition 2.

Using the saddle-point approximation"'4 and the
"K. Ter Martirosian, Zh. Eksperim. i Teor. Fiz. 29, 620 (1955)

I English transl. : Soviet Phys. —JETP 2, 620 (1956)j.
'4 A. Dar, A. de-Shalit, and A. S. Reiner, Phys. Rev. 131, 1732

(1963).
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orthogonality relations of the Clebsch-Gordan coefIIL-

cients, the differentia1 cross section may be easily shown
to be given by

d/r 3Ibgglt/I, g kb (2Je+1)
(14)

dQ (22rh2)2 k, (2Jg+1)

obtained from %KB calculations. "The radial integrals
are then quite simple to evaluate. Ke shall only outline
here the procedure. More details are found in Refs.
1(c), 15, 16. Using the WKH forms for Fg(kor) and
Fg(kbr) and changing variables from r to go where
kr=gt(1+2 COShb4), One haS

where

F= —(42r)'/2 jg, (iPr)V(r)xg, (r)r2dr (15)

+ao

I 0 exp(gpge+i$ sinh&e —ye coshge)dge (24)

and

B,.=C xb&-& (Igb, r)'hg. (ipr) x.&+& (k.,r)dr. (16)

Next we turn to the orbital integral Bg.(8), using
partial-wave expansion, i.e.,

X'"(I,r) =2 4 (—1)"bge'*'"V --(I)

F,(kr)
X Vg, (8,&) . (17)

kr

r (1+2+in)
~2itr I (2I)

r(t+2 in—)

The orbital integrals 8 ~. then reduce to the form:

(18)

Bg.(8)= (42r)'" g (2l+1)e"'gIg'Pg(cos8), (19)

where

Here Ii
~ are the radial Coulomb wave functions and fr~

are the Coulomb phase shifts given by

for the radial integrals.
The constants appearing in this expression are defined

as follows: Let g and g~ be the values of the Coulomb
parameter in the entrance and exit channel, respec-
tively, and let r/ be their average; then &=2/, —2/b and
y=r/p/k where k is the average wave number. The
constant ~ is the eccentricity of the hyperbolic orbit of
a charged particle moving in a Coulomb Geld with
q= g and angular momentum /.

e= Lv+I(I+1)]g/2/~. (25)

Such an orbit can be roughly regarded as a smooth
average orbit of the incident and outgoing particles in
the Coulomb field of the target nucleus. This approxi-
mation may be justified by noting that the energy and
mass transferred in the reactions are small compared
to the kinetic energy and masses of the colliding par-
ticles, respectively. A change of variables transforms
I~ into a representation of a Bessel function of the
second kind and of an imaginary order

Ig'= (« '/2ph') exp( —&0)It'2L(v'+&')'"4], (26)

with
cos8= (Ir Irb)/kokb (20) tangt = $/y.

Ig' —— Fg(kbr)hg. (iPr)Fg(kar)dr. (21)
k,kg 0

According to the diffraction model prescription one
has now to multiply the summand in Eq. (19) by ag.
We therefore replace Bg.(8) by Bg.(8) where

B4(8)= (42r)'/2 P (2l+1)age'*'"Ig'Pg(cos8), (22)

Cg—v—k4-
I 0

—1/2

2Ph2 2 (/2/ $2)I/2 D(l+ 1)+$2]1/4

y expL —(/2+ P)g/2D(t+ 1)+7P]g/2/r/] (2/)

A. Energy below the Coulomb Barrier

For large values of the argument we can approximate
IP by

where

ag Jag (a)ag (b)]"—— (23)
Let us first treat the case of energies below the

Coulomb barrier.

The differences between the elastic scattering in the
entrance and exit channel have been neglected in Eqs.
(19), (22). This is justified under conditions 1—4. For
large values of l or for energies below the Coulomb
barrier the difference between I~' and I~ is negligible.
The IP integrals can be evaluated explicitly but their
result is very cumbersome. Rather, we follow Lemmer"
who, for large Coulomb parameter, replaced the radial
Coulomb functions by their classical counterparts as

"R, Lemmer, Nucl. Phys. 39, 680 (1962).

lb gg cot(-', 8) . (28)

As a result the I& factor only contributes appreciably

16 K. Alder, A. Bohr, T. Buss, B. Mottelson, and A. Winther,
Rev. Mod. Phys. 28, 432 (19S6).

(a) The DQ"erergtial Cross Sectiorg

We note that for energy well below the Coulomb
barrier g~—=1. Then, to perform the l summation in Kq.
(22) we note that its phase is stationary only at
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(do/dD)n exp( —nD —PD) . (37)

Now, for energy below the Coulomb barrier our pre-
diction is [Eq. (32)].

(do/dQ)n[sin(-, '8)) 2 exp{—[(F12+p)'/2

+ (&22+8)"') csc(28)}, (»)

(4 p)r"'ce ~ && 2r sin(-'8)
&.(8) =&(8)=

2Pk2 2 (y2+ P)'/2

Xexp[—(y'+P)"' csc(-', 8)]

XP (2l+1)e""Pt(cos8). (29)
but under conditions 1—4, (P+y2)'/2 y and from Eqs.
(1) and (36) we getThe sum on the right-hand side of Eq. (29) is propor-

tional to the Rutherford amplitude f, (8)
(do/dQ)n exp[ —y1 csc(28)—y2 csc(-,'8))

= exp( —nD —PD) . (39)f,(8) = {2//[2k(sin28)2]} exp[ 2i—rt ln(sin28)

+2io p+i1r). (30)

at l ly and we can take it outside the sum in order to distance distribution
obtain

Substitution of (30) into (29) yields
Thus, under conditions 1—4, the two predictions

coincide.
+-2C2~—2y—2$4t2

IIl(8) I'= [ (l8))-* (c) The Transfer Excitation Function
p2k4 (~2+P)1/2

Ke proceed now by calculating the transfer excitation
Xexp[—2 (y2+ P)'/2 csc(-,'8)) . (31) function

In the DNA, the choice of V~, or V~, for V in the
calculation of the transition amplitude [Eq. (6)) is
equally good. However, the choice of any one of them
breaks time reversal. It may be restored by using an
ad hoc assumption, namely: The transition amplitude
is given by the geometrical average of those calculated
with V~, and V~,.

It is easy to show that, under this modi6cation,
i B(8)i' reads

do
o (E)= —dQ.

dn

From Eqs. (14) and (22) one obtains

M,gMbe (2Jo+1) kb
o(E) = —iFi'S(E),

(22rh2)2 (2Jg+1) k,

where
S(F.) =42 P (2l+1) iI/i'.

(40)

(41)

(42)
+-2c2

I
ft(8) I'- Lsin(18)7-2

2pXd '[(~,'+P) (~,2+ P)) /'

Xexp{—[(F12+p)'/'+ (y2'+ p)"'] csc(-,'8)}, (32)

One may now introduce the asymptotic expression
for I1 [Eq. (2 t)] and approximate the sum over angular
momentum by integration over classical distance of
closest approach, i.e..

where

F1=1/p/k, F2=2/42/k,

tan/1= $/&1, tan1b2 ——$/ Y (33)

[2/+2+ l (l+ 1))1/2 =kD —4t,

(2l+1)dl 2k(kD —2/)dD,

(43)

(44)

cx is related to the binding energy —e, of b and c in u
through

prc21t exp[ —2Q —2y+ 2 (y2+ P)'/27
S(E)~

4P2kp (~2+ g2)1/2

(34)p.= (hpos)/2Mb,

(b) The A psidal Distance Distribution

2 (~2+ ]2)1/2k
D dD. (45)exp

&min
Hence

The tunneling model prediction for the angular
distribution is

Xe~{—[2(~'+&')'"»»E--}

E;. (Z&ge')/E. (47)

(36) For $/y«1 (1b= arctan($/y) =$/y), S(E) reduces to

S(E)~ (2rc2)/(8p4k2) exp( —p/y) exp( —2/8ZAze'/E),

(48)

do- —8+k der
[sin (28)]

dD g dQ

one gets the tunneling-model prediction for the apsidal

S(E)= e~[—2m+2(v2+P)'/2 —28]
(do/dQ)a[Sin(~28))-2 eXp(—aD—PD), (35) 2/82k'(y2+P)

where D and D are the apsidal distances for the de-
livering and accepting nucleus, respectively. Noting where
that
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form for the l dependence of the reflection coefBcients,
ZrsZ@8)/Q

// (49)
2EI/2 (E+Q) 1/2 2EI/2 (E+Q) )/2

Time reversal may be restored again in order to obtain

S(E) ~ (1/E) exp( —P/y) exp( aZ&—~e/E,
PZ&—oe'/E/, ) . (50)

For P/y«1, the last expression coincides with the
"tunneling-model" prediction.

(d) The Form Factor F

In order to demonstrate that the form factor does
not contribute any energy-dependent factor we treat
explicitly the important case of deuteron stripping.

Let us assume that V(r) in Eq. (15) is given by a
Hulthen potential

/'(r) = (« "")/(1—e "') (51)

i.e.,

a =(1+exp[(Lo—/)/8]) '

Le——kg, g[1—(2)t/kR, ~)]'/',
8=kot[1—()t/kE, &)][1—(2)t/kg, g)]-'/'.

(56)

I.pk is the angular momentum which corresponds to
a grazing collision, d is a constant playing the role of
the diAuseness in R space; I.p satisfies

Io(La+1)h' Z&~e'
+

2M.gR.g' R.g

(a) The Dtgerentia/ Cross Section

(5'/)

For the evaluation of the differential cross section
we introduce the following additional approximations
which are valid under conditions 1—4.

(1) For large l, and 8 satisfying

where Vp is the depth parameter of the well and p, '
is the range of the potential. The corresponding nor-
malized S-state wave function is

8»(4l) ', )r—8»(4/) ',
Pi(cos8) may be replaced by the leading term in its

asymptotic expansion

(52) Pi(cos8) [)r(2l+1) sin8]-'/'[e"/'e '&'+»'

+e—i)/4ei(l+t))/] (5g)

2a(u+ti)(2a+ti)-'/' e ~"(1—e
—-&')

2dcrl

dl
(60)

In Eq. (15) we need the product /r(r)xo(r) which can For I/+i'/tl large

be taken from the Schrodinger equation: 2[at oi/q]—r/[ 2 ln(—sin~()+)I/ cot2)//] —)r/2. (59)
d——0.' exp r =Vs exp r . 53

2M', dr'

Substitution of (53) into (15) yields where
)/=2 tan —'()t//), 0~&)/t«~)r. (61)—(8 )'"h' I'[I'(I'+ )]'"

231/„(I"—P') (I'—a)

with I'=o+p. The zero-range form factor Ii p may be
obtained by letting p,-', the range of the potential, tend
to zero, i.e.,

(Ssa)'/2h'
Fp ——lim F=

Both Ii and Ii p are energy-independent; however, in
contrast to the zero-range form factor the 6nite-range
form factor depends on both binding energies (of the
neutron in the deuteron and in the accepting nucleus)
and it increases with the range of the binding potential.

B. Energy above the Coulomb Barrier

Let us now pass to reactions with energy above the
Coulomb barrier. The data on medium-energy elastic
scattering of heavy ions, on complex nuclei may be
satisfactorily interpreted'~ assuming a %'oods-Saxon

"W. E. Frahn and R. H. Venter, Ann. Phys. 27, 40i {1964).

The angle )/t has a simple classical interpretation when
lh is interpreted as the c.m. angular momentum. In
this case, )// is the c.m. angle through which the pro-
jectile will be scattered classically in the pure Coulomb
6eld.

Because of the structure of the reflection coefficient
and the radial integrals the major contribution to
Bi.(8) in Eq. (22) arises from values of l in a small
region around Lp. As a result, the following approxi-
mations may be introduced:

(2)

where

e"" exp(2iar, ,)e'r'*)

8p ——2 tan-'(r//I. o), x=/ —I.)),

(62)

(63)

(3) For 1.~&~

(/+~))/'/t-[I-0(La+1)+v+']"'Ir. ,e "*, (64)
where

Lo(v'+8)'" //

(65)
2 )t[1.0(Lo+1)+)t']'/2 k

Finally, we introduce Eqs. (58) and (65) into Eq.
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(22) and approximate the sum over f by an integration in order to obtain

27r6

B(8) (2Lp+\)'&'Ig, e"'«X {e'«~~&" ~"& csc[&r(I&/2)b ii—rb(8+Hp)]
(sin8)"'

+e '&& P+&&P '& & csc[&r(A/2)b+iprb(8 8—p)]}, (66)

1 1 1
~B(8)[P-4(2Lp+1)I, 'ebs +

sinH cosh'[4. (8—8p)]—cos'[b(A/2)&r] cosh'[b&r (8+Hp)] —cos'[b (4/2)s]

cos[(2Lp+ 1)8—pr/2][cosh (2prbHp) —cos (prbh) cosh (2prbH)] —sin[(2Lp+ 1)8—pr/2] sin(arbor) sinh (2prbH)

+
{cosh'[b&r (8+Hp)] —cos'[b (4/2) w] }{cosh'[bir (8—Hp) ]—cos'[b (A/2pr] }

Time reversal may be restored by replacing &8 by the
arithmetic average P= (a+P)/2; i.e., b, is replaced by E
where

(a+&8)/fp. (68)

The sharp-cutoB result" may be obtained by letting 8
in Eq. (66) tend to zero.

exp (2ia g,)
lim B(8) 2(2Lp+1)"'Ii,
BM (sinH) "P

fs
—i [(Ly+$) 8—x &t4] ~+i [(L,0+))8—x j4]

conditions'" in the elastic scattering of charged par-
ticles with parameters 7/I, d, g. In many heavy-ion
experiments this condition is well satisfied. The angular
distribution around 80 is therefore given approximately
by

de 1 1—GC (75)
dQ sin8 cosh'[b&r(8 —Hp)] —cos'[b(Z/2)&r]

It was pointed out by many authors4"-' that it is
physically more significant to consider

X + . (69)
A/2+i(8 8,) —~/2 —i(8+ 8,)

do/dH= 2&r sinHdo/dQ, (76)

For Hp»Z/2, the behavior of
~
B(8)

~

"'around 8p is given
approximately by

4 (2Lp+ 1)I«P
I B(8)I'=

sinH

Expression (67) consists of two contributions: a smooth
part, and an oscillatory interference term. The con-
dition for damping of the oscillations is

slnh[&rb(8&)p —8p)]= slil(KPd) . (77)

because thereby one extracts the (sinH)
—' dependence

arising from the restriction of the reaction products to
the scattering plane in the classical limit. For this
reason we present the experimental data to be analyzed
in Sec. IV in the form (76). From (75) we see that
d&r/dH has a symmetrical peak around 8p whose half-
width satisfies

cosh'[b&r (8—Hp)] —cos'[b (Z/2) &r]
(&1.

cosh'[b&r (8+8p)]—cos'[b (E/2) pr]
(71)

For &rPd small an approximate solution of (77) is

8&gp
—

Hp &I/b P/k, (78)

which coincides with half the width obtained for zero
diffuseness.

At very small angles condition (71) is not satisfied
and one expects an oscillatory diffraction pattern. This
is not yet evident from the experimental angular dis-
tribution. On the other hand, the data are not accurate
enough to rule out slight oscillatory structure at small
angles. The experimental angular distribution does
show smooth variation with scattering angle around
8p in accordance with prediction (75). Moreover, con-
dition (1) is not satisfied for very small angles and one
should not rely on prediction (75) for such angles.

For neutron transfer reactions between complex nuclei,
irbA/2 (bZ/2=Pd) is a small number and, for 8 Hp,

the last quotient in H may be approximated by

[&rb (6/2) e
—""]'-' (72)

and the condition for damping of the oscillations reads

(73)2~be~&1.

The last condition is approximately

4 &(d/B)»1

Hence the condition for damping of the diffraction
oscillations is essentially the same as the corresponding

'9%'. E. Frahn and R. H. Venter, Ann. Phys. 24, 243 (1963).~ R. Kaufmann and R. Wolfgang, Phys. Rev. 121, 206 (1961)."A. Dar, %'eizmann Institute, October 1964 (unpublished). See also Ref. 3.
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(h) The Transfer ExciiaHon Inunction

For energy above the Coulomb barrier, the transfer
excitation function satisfies (41) with

A
'a

( N'~ N's)

Ec.m.=l02 Me

~(E)=4~ 2 (21+1) I «I'I I~ I'.

One now introduces the asymptotic expression for I7
Eq. (27) into Eq. (42) and approximates summation
over l by integration over classical distance of closest
approach. For the E dependence of the reAection co-
efFicients a~, one assumes

u(Z) = (1+expl (a.~—B)ydj}-'. (80)

2C2$2

~(&)= expL —27+2(v'+e)'" —283
2~'k'(~'+e)

-2 (~2+P)1/2-
Xexp- 'kR g

X~kdh(1 —kdE) csc(nkdh). (81)

Since a(R) 0 for R(0, one can formally extend the
integration to minus infinity in order to obtain

~ 40
D1

E

30b

lo

Ih

II l /I tg li
~l

l

2500 30,00 35,00 45.00 5CLOO 55.00 60.00
ec.rn.

6500 70.00 7500

to

7Pc
S(E) e-»& exp( —2PR.g)

2p'k'

X~Pd (1 Pd) csc—(vrPd) . (83)

FIG. 2. Angular distribution der/d8 for the reaction Au"'-
{N' N~)Au"'. Ec =102 MeV. The parameters of the theo-
retical curves are given in Table I.

The sharp cuto6 result may be obtained by letting d
in the smooth cutoff factor tend to zero, i.e.,

lim +add (1—kdZ) csc(skdZ) = 1.
dM

(82)

Since kdZ Pd for energy well above the Coulomb
barrier, 'the smooth cuto8 factor does not contribute
any energy-dependent factor. For p/y((1, S(E) reduces

IV. ANALYSIS OF EXPERIMENTAL DATA

A. Summary of Resu1ts

The final results for the diRerential cross section and
excitation function, for cluster transfer reactions
between complex nuclei, can now be summarized as
follows:

The differential cross section is given by Eq. (14).

40

do MgeM, g hp) (2Je+1)
l~l'I&(&) I'

dQ (2~k')' k.) (2Jg+1)
(84)

(N' N'. )A
A cm.~ 90.0 M F is the angle-independent form factor as defined in

Eq. (15), averaged over initial and 6nal channels.

IFI'=4m j (.(iPr)Vg, (r)X).(r)r'dr

X jqe(iar) V~, (r)X~e(r)r'dr, (85)

IO

r I I

35.00 4000 45,00 50.00 55.00 6000 65,00 7QOO 7500 80.00 8500
~c.m.

FIG. 1. Angular distribution dn/d8 for the reaction Au"'-{¹',N")Au"8. E, =90 MeV. The parameters of the theo-
retical curves are given in Table I.

where Vb„V~, are the interactions which bind c to
the cores b and A, respectively. X~., X~~ are the radial
wave functions for the relative motion of the core and
the cluster c in particles a and 8, respectively. j& is the
spherical Bessel function of order t. n and P are de6ned
in Eqs. (11), (34), respectively.

For energy well below the Coulomb barrier and for
nonidentical particles the angle-dependent factor,
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IOO
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4p
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I

25,00 30.00
I I I I

35.00 4aoo 45uo 5QOO 55.00
I I

60.00 6 5' 70.00 75.00

20

IO

I

(500 2QOO 2500 3QOO 85A)0 40.00 45.00 50.00 55.00 60.00 65.00
~c~

Fro. 3. Angular distribution der/d8 for the reaction Au'9'-
(N",N")Au" . E,.~.=11Q MeV. The parameters of the theo-
retical curves are given in Table I.

~
B(8)

~

', is given by Eq. (32)

7'-kg —v1—vm —t4 1—f42

~B(8)~2= [sin(28)] 3

2 ~k'[(v '+e) (v'+e)]'"

Xem( —Lh~'+8)'"+(vm'+k')"'] csc(l8)} (g6)

where

FIG. 4. Angular distribution do/d8 for the reaction Au' '-
(N" Ne)Au~6. E,.m. =120 MeV. The parameters of the theo-
retical curves are given in Table I.

For energy well above the Coulomb barrier, 8(8) is
given by Eq. (66)

8(8)=2mb(2LO+1)"'Ir. ,(sin8) "'(e'I& 0+&&~~"&

Xcsc[nQ/2 —Arb(8+8O)]+e "& 0+&'~ /"

Xcsc[~b/1/2+in 8 (8 80)]—) exp (2i/rr. ,),
where

Z= (e+P)/k.

Yl r/P/k Y2 r/rr/k tang 1 $/Yl tanIb2 f/ Y2

and with

2(B)'"(B+Q)'"

I pA' and Hp are the angular momentum and the
Rutherford scattering angle, respectively, which corre-
spond to a grazing collision [Eqs. (57), (63)]. I& is
given by Eq. (27). 8 is the diffuseness of the form factor

(g7) [Eq. (56)] for the l dependence of the reflection co-
ef5cients.

~
8 (8)

~

' is given by Eq. (67).

~

8 (8)
~

'= 4r' r(b2L +o1)Ir,,' +
sin8 cosh'[bn. (8—80)]—cos'[8 (Z/2) m] cosh'[4 (8+80)]—cos'[8(Z/2)m]

cos[(2LO+1)8—m/2][cosh(2~b80 —cos(sbZ) cosh(2sb8)] —sin[(2L0+1)8—m/2] sin(wbE) sinh(27rb8)+
(cosh'[bs (8+ 80)]—cos'[8 (ZE/2) n ])(cosh'[81r (8—8o)]—cos'[8 (IX/2) Ã])

For physical values of b, ~B(8) ~' may be well approximated by

1 1
iB(8) i'=4m 8'(2LO+1)Ir, ,'

sin8 cosh2[bs. (8—80)]—cos'[b(Z/2)m])

(g9)

(90)

4(2LO+1)Ir. '
IB(8)I'=

sinH
(91)

(8—8o)'+ (~/2)'

S(E)=

The transfer excitation function is given by Eq. (41).

M,~M/, e (2Je+1) k/,
a(E) = —

I
~ I'5'(&) (92)

(2sk')' (2J~+1) k,

For 8p&)E/2, 8(8) behaves in the neighborhood of 80 where
like the "zero diffuseness amplitude" given by Eq. (70). 7r'0'g'

2opk4(Y 2+ p)1/2(~ 2+ )2)1/2

Xe~[—~,—~,+ (yP+ c )'/'

+(v.*+@)"' ~ ~4.]--
XM exp[ —(Yp+ p)'/'k~. ~m'~/

(vP+8)"'k&—» "/n~] (93).
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assumed that they emerged in their ground state. The
theoretical predictions for each reaction were normalized
once to give an over-all 6t to all incident energies.

For comparison, the calculations were repeated for
the case of zero diffuseness.

Four typical sets of cluster transfer distributions were
analyzed:

(i) The data of McIntyre el al." for the Au"'-
(N'4, N")Au'9' reaction, at different projectile energies
(heavy targets).

(2) The data of Kaufrnann and Wolfgang~ for the

200

a l50

E
ED

b

IOO

50

l

4 e~{oie ie) &ae

90

80

70

gs N Ie loe
Rh {O,O )Rh
E~ +141 MeV

I I I ! I I I 1 1

5000 Rkoo 6QOO 6500 70.00 75.00 8QOO 8500 9QOO 95.00 IOQOO

f)c.~
FIG. 11. Angular distribution 4r/d8 for the reaction AP'-

(0",N")Si". E, =17.90 MeV. The parameters of the theo-
retical curves are given in Table I.
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FIG. 9. Angular distribution da/d8 for the reaction Rh'{I-
(0"0»}Rh'~. E, . =122.04 MeV. The parameters of the theo-
retical curves are given in Table I.

IOO

90

80

o 70

E
60

I I 1 I I I I I I

55,00 6QOO 65,00 7QOO 7500 8QOO 85.00 9QOO 95.00 IOQOO 10500
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FIG. 12. Angular distribution 4r/d8 for the reaction AP'-
(0~6,N»)$i. E, =18.84 MeV. The parameters of the theo-
retical curves are given in Table I.
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M ~ '
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~c~.

O
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FxG. 10. Angular distribution hr/d8 for the reaction Rh'9'-
(0'6 0»)Rh~~. E, =138.49 MeV. The parameters of the theo-
retical curves are given in Table I.

"J.A. McIntyre, T. L. Watts, and F. C. Jobes, Phys. Rev.
119, 1331 (1960);Ref. 1(f), p. 16.

~ R. Kaufmann and R. Wolfgang, Phys. Rev. 121, 1962 (1961);
121, 206 (1961);Ref. 1(d), p. 30.

IO 20 30 40 50 60 70 80 c10

8c.m.

FrG. 13. Angular distribution kr/d8 for the reaction AP'-
(0",N")Si'" E ~.——22.60 MeV. The parameters of the theo-
retical curves are given in Table I.
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summarized in Table I. They show the following
characteristics:

(a) In most cases the its are quite satisfactory.
(b) There is a clear trend for better 6ts towards

higher energies. (Such a trend is consistent with the
approximations, since they become more accurate at
higher energies. )

I z+ I
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Itic.m
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Cb 500Q

FIG. 14. Angular distribution do./d8 for the reaction AP'-
(0"N"}Si ' {1.78 MeV). E,.m. =17.90 MeV. The parameters
of the theoretical curves are given in Table I.
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FIG. 16. Angular distribution do/d8 for the reaction AP-
(0",N")Si8" (1.78 MeV). E,.~.=22.60 MeV. The parameters
of the theoretical curves are given in Table I.
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Fzo. 15. Angular distribution de/d8 for the reaction AP7-

{OIe NIs)SPs (1 78 MeV). E, =18.84 MeV. The parameters
of the theoretical curves are given in Table I.

Rh'" (0",0")Rh'" reaction, at diIferent projectile
energies (medium weight targets).

(3) The data of Newman et al" for the Al(0"&N")-
Si'" (1.78 MeV) reactions at different projectile ener-
gies (light targets).

(4) The data of Sachs et al."for the C"(B",Be')N",
C"(B",Be')N" ground-state and excited-state re-
actions, at diIferent projectile energies (small weight
targets).

The results are shown in Figs. 1—21. The 6ts are

E

4@io

LO—

O.I I

lO
I I I I

20 50 40 50
ec.m

I

60

~ E. Newman, K. S. Toth, and A. Zucker, Ref. 1(f), p. 143;
Phys. Rev. D2, 1720 (1963)."M. Sachs, C. Chasman, and D. A. Bromley, Ref. 1(f), p. 90;
Phys. Rev. 139, B92 (1965).

FIG. 17. Angular distribution do/d8 for the reactions C"-
(B",Be9)N'* (9.4 MeV). C"(B"BeII)N"' (13.1 MeV} (deuteron
transfer). E, =60.3 MeV. The parameters of the theoretical
curves are given in Table I.
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(c) The experimental data favor finite diffuseness.
(There is no evidence for a strong oscillatory behavior
of the differential cross section, which characterizes zero
diffuseness. )

(d) The diffuseness is largely energy-independent.
(e) The diffuseness tends to be somewhat smaller

than the average surface diffuseness derived from
heavy-ion elastic scattering. " (It probably accounts for
the assumed smaller dift'useness for the elastic scattering
of the unstable particles in the exit channel. )

(f) The "zero-diffuseness formula" LEq. (91)1 with

IOO—
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cIR(~IO~ 9) N13

RO 40 50

e

Fn. 20. Angular distribution do.jd8 for the reaction Au"'-
(N'4, N")Au'98. Experimental points from J. A. McIntyre, T. I.
Watts, and F. C. Jobes, Phys. Rev. 119, 133 {1960).The theo-
retical curve was calculated from Eq. (91).The parameters are
those given in Table I.
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Fm. 18. Angular distribution d~/de for the reactions C"-
(8"Be')N" C"(8"Be')N"* (3.5 MeV). E, m =57.3 MeV. The
parameters of the theoretical curves are given in Table I.
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FIG. 1&. Angular distribution do/d8 for the reactions C"-
(8",Be'0)N" C"(8",Be")N"' (3.5 MeV) C"(8"Be")N"* (7.2
MeV). E, . =60.3 MeV. The parameters of the theoretical curves
are given in Table I.

Fu;. 21. Transfer excitation function plotted against c.m.
energy. The circles, crosses, and triangles indicate results obtained
on repeated experiments. The diffraction curve was calculated
from Eq. (92).The smooth cutoff curve was calculated numerically
from Eq. (79), where the parameters of the Saxon-Woods form
factor for aq were taken from Ref. 17.

the neglect of the interference term, proves to be a
reliable interpolating formula in a small region around
ep.

(g) The radius parameter ro is appreciably larger
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TABLE I.Transfer reaction parameters.

Reaction

bios (Q15 Q16)Rhl04

Au'o (N'4 N")Au'os

APV (Q1$ N16) SjSS

jgtv (P1B N16) S1ss+ (1 78)

C1%(Bil Beo)N14+ (9 4)
Cls(B",Bee}¹4'(13.1}
C (B",Bes)N
C (B'o,Be')N~'(3. 5)
Cm(Bu'Be'o}Nm

ll(B11 Belo)Mls'" (3 5)
Cll (B11,Belo)Nls'(7. 2)

Eo.m.

87.42
104.73
122.04
138.49
90.00

102.00
110.00
120.00
126.00
133.00
17.90
18.84
22.60
17.90
18.84
22.60
603
60.3
573
57.3
60.3
60.3
60.3

~o
n (deg)

21.83 39.00
20.01 27.00
18.59 22.40
17.48 21.20
33.12 62.20
31.07 50.70
29.89 45.50
28.60 41.00
27.90 37.00
27.14 34.70
12.29 79.50
11.96 78.00
10.85 50.50
11.97 82.50
11.66 82'.50
10.63 50.00
1.50
1.53
1.43
1.45
1.47
1.49
1.53

R
(F)

61.63 1.63 11.32
8336 1.73 12.59
93.88 1.84 12.64
93.43 1.96 11.71
54.90 1.70 13.31
65.57 1.72 13.31
71.29 1.75 13.25
76.49 1.80 13.04
8338 1.83 13.36
86.87 1.87 13.26
24.78 0.90 11.18
14.76 0.74 10.68
21.07 0.72 10.82
13.64 1.52 10.40
13.29 0.78 9.87
20.42 0.73 10.32

rp d
(F) (F) (deg) Ref.

1.57 0.20 11.12 22
1.75 0.20 10.34
1.76 0.20 9.54
1.63 0.20 8.94
1.62 0.20 8.59 21
1.62 0.20 8.48
1.61 0.20 8.31
1.59 0.20 8.05
1.63 0.20 7.95
1.61 0.20 7.78
2.03 0.25 23.44 23
1.94 0.20 23.02
1.96 0.20 22.94
1.89 0.40 22.47
1.79 0.20 21.90
1.87 0.20 21.4

0.18 24
0.18
0.24
0.24
0.23
0.23
0.19

than the mean radius parameter obtained from heavy-
ion elastic scattering. '~

(h) The radius parameter ro is larger for the ground
state than it is for the excited states.

CONCLUSIONS

This article presents a quantum-mechanical deri-
vation for the tunneling-model predictions at energies
below the Coulomb barrier. For energies well above the
barrier the present work is a natural extension of the
work of Frahn and Venter. A satisfactory simple picture

for transfer reactions between complex nuclei is ob-
tained. Simple closed-form expressions based. on this
picture prove to reproduce remarkably the experimental
data. Deviations from our prediction may be attributed
to more complicated mechanisms of reactions, such as
reactions via resonant states, reactions via high-/
boiling, compound-system reactions, etc.
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