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If the coherence width I' is calculated by comparing
R(e) with a Lorentsian form near e=0, the bias and
variance of the value so obtained may be calculated.
Near &=0, the assumption is made that the bias in
R(e) is independent of e. This leads to the formulas

(I-1)—(4e 4+—1V) "
I =Fp

4n'

for the expected value I' of the coherence width and
the variance of the value obtained.

This paper is a summary of some of the results of a
report which contains plots of further Monte Carlo
results as well as a fuller treatment of the questions
considered here. Also treated are questions not con-
sidered here, such as the efI'ect of 6nite sample size on
the frequency distribution function.

and

Var (F)= (I'04/4F') VarLXR (0)j
5 W. R. Gibbs, Los Alamos Scienti6c Laboratory Report LA

3266, 1965 (available from Clearing House for Federal Scientihc
and Technical Information, National Bureau of Standards, U. S.
Department of Commerce, Springfield, Virginia}.
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The scattering of charged particles from a shielded Coulomb potential is reviewed. The limit as the
shielding radius becomes infinite is discussed. A method of determining reaction cross sections, recently
introduced by the authors is treated in detail and applied to the scattering of protons from He4 and H' at
40 MeV.

INTRODUCTIOÃ

HE study of forces between charged particles is
complicated by the presence of the in6nite-ranged

Coulomb force. For a potential which falls ofT as slowly
as r-' we cannot apply the usual scattering boundary
condition to the wave function, viz. ,

f (r) exp(ik r)+r 'f(8) exp(ikr) (1)

since even at very large distances the incident wave is
distorted. In a practical laboratory scattering experi-
ment this problem does not arise, however, because the
charges are shielded so that the potential vanishes
beyond some shielding radius R If the radiation source
is placed well beyond the shielding radius, an initial state
approximating a plane wave can be prepared. VVe shall
consider the case in which the shielding radius is very
large and both the source and detector are located very
far outside that shielding radius. Ke idealize this to the
case where E—+~, still maintaining the condition that
the source and detector are located far beyond R.

I. THE SHIELDED COULOMB FIELD

Let us consider a point charge located at the origin
shielded by a double layer of charge such that the po-
tential energy is given by

V(r) =sz'e'/r, r(R
=0, r&E.

*+fork performed under the auspices of the U. S. Atomic
Energy Commission.

%'e may treat the scattering problem with the shielded
Coulomb potential Eq. (1.1) by means of the angular-
momentum expansion. We write

P(r) = (kr) ' P ~ a&i'(21+1)F~(k,r)P~(cos8) . (1.2)

The radial function F~(k,r) is a solution of the radial
equations

O'F
g l (I+1)
+ 1— —— F&=0, r&R

de - p' p-
(1.3)

2
P

Et=0, r&E.. (1.4)

H«e p=k& and g=ss'e'/Ae. The regular solution of
Eq. (1.3) takes the asymptotic form

F~=A sinLkr —lx/2+eq —q In(2kr)] (1.5)

for kr» l, where o ~
——argl'(l+1+jq). The solutions of

Eq. (1.4) take the asymptotic form

F(= sin(kr hr/2+), )—(1.6)
for kr»1. Thus, if R»l/k, we may equate the loga-
rithmic derivatives of the two solutions at the shielding
radius E to obtain the result

cot(kR —1~/2+g, )
= (1—g/kR) cotLkR ln/2+« q in(2kR)]. —(1.7)—

The phase shift b& given by Eq. (1.'7) hss the form,

e) rl In (2kR——)+p—, (1.8)
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where b is the impact parameter. The corresponding
classical difFerential cross section is

where

y!= (g/2kR) sin2[kR —hr/2+~! —q ln(2kR)]
+0[(s/2kR)'] (1.9) (r (8)= [rl/2k sin'(-,'8)]', 8& 2g/k

=0, 8& 2g/k. (1.15)
We note that y!approaches zero as!t/kR goes to zero.

For l))kR, the angular momentum barrier dominates Here (g/k)=—mzz'e'/p' and 8 and b are related by
and b~ vanishes. Thus we have 2 cot(-', 8) = (k/g)b. The integrated cross section is sR'.

8!=!r! s ln—(2kR)+y „ l«kR
=0, l&&kE. (1.10)

II. THE LIMIT OF AN INFINITELY LARGE
SHIELDING RADIUS

5)——a)—A, l&L
=0, l&L, (1.12)

where p=!t ln(2kR) and' L= [bkRj, with k a constant
of the order of unity.

The scattering amplitude corresponding to the phase
shifts of Eq. (1.12) is then given by Eq. (1.11).We will

denote this scattering amplitude by fz, (8) We procee.d
in the conventional manner, taking note that A. is a
constant independent of /, so that we can write the
scattering amplitude, fz(8) as

exp( —2iA.) &

fz, (8)= Q (2l+1) (e"~'—1)P!(cos8)
2k

In the range where l kE, the interior solution Ii g does
not take on its asymptotic form at r=E so that the
phase shifts b~ are not given so simply, although they
may, of course, be obtained easily by standard methods.
Once the phase shifts have been found the scattering
amplitude is given by the familiar relation

f(8)= (2ik) ' P!(2l+1)[exp(2i8!)—1]P!(cos8) . (1.11)

At this point we note that the value of y ~ and the values
of the phase shifts 8~ in the intermediate region, / kE,
depend upon the details of the shielding. Nonetheless
any model consistent with our boundary conditions will

yield phase shifts such as are given by Kq. (1.8), with yg
going to zero as (g/kR) for large R In order to keep the
argument as simple as possible, therefore, we choose a
cutofF of such a form that the phase shifts are given by

In the limit as R and hence L becomes in6nite, more
terms are added to the sums of Eq. (1.13) and the phase
shift A increases without limit. Let us 6rst consider the
sum which appears in the second term in Eq. (1.13),

Sz&'& (x) = Q (21+1)P!(x), (2.1)

We may obtain some insight into the behavior of Eq.
(2.3) by noting that the Legendre polynomials can be
approximated uniformly on the interval a&8&a—e
where e is arbitrarily small by'

P, (cos8) =@2(sl sin8) —'!' cos[(f+-', )8—s/4]
+O(l "') . (2.4)

where x= cose. A rearrangement of the terms in the sum
permits us to use the recurrence relation for the
Legendre polynomials,

(1+1)P!+g(x)+/P!+g (x)—(21+1)xP!(x) =0, (2.2)

to sum Sr,&"(x). Straightforward algebraic manipula-
tions immediately yield the result

1
Sz&»(x) = {g [(1+1)P,(x)+LPGA r(x)

1—x &~

—(2l+1)xP!(x)]+(L+1)[Pz(x) —P z+r (x)])

L+1
[P,(x)—P~, (x)]. (2.3)

1—x

[exp(—2iA) —1] z Under this approximation Eq. (2.3) becomesP (21+1)P!(cos8) (1.13).
2ik 2(L+1) '" sin[(L+1)8—s/4]

Sl.!»(x) =
It may be noted that the shielding radius appears
implicitly in L and in A.

We digress here briefl. y to note that the shielding
implied by the phase shifts of Eq. (1.12) corresponds
classically to an impact parameter cutofF. In the clas-
sical case the potential energy is given by

m sine sin(-', 8)

~&8&w —e, e)0. (2.5)

To examine the behavior of Kq. (2.1) at small angles or
forx=cos8=1, we expand P!(x)aboutx=1, and obtain

V (r) = zz'e'/r, b&R
=0, e&E, (1.14)

(2.6)

' The brackets f l stand for the "greatest-integer function, "i.e.,
[x] is the largest integer less than or equal to s for any real x.

I Gabor Szego, Orthogoeal Po/ynomials (American Mathe-
matical Society, New York, 1959), p. 192.
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Thus, through terms of order 8' we obtain

l(l+1)
5 "&=P (2l+1) 1— (1—x)+

L (1—x) I-
= Q (2l+1)— Q (2l+1)l(l+1)+

L=0 l~

tion given in Eq. (2.10) has an essential singularity at
8=0 or x= 1, so we must establish rules for handling the
function Eq. (2.10) in this region.

Let us formally expand Eq. (2.10) in the usual way
giving

f.(8) =k ' Qi(21+1)aiPi(x)

L(L+2)= (L+1)' 1—— (1—x)+
a, = (k/2) f.(*)P,(x)dx. (2.11)

= (L+1)~[1—~~ (L+1)~82+ ]
Because of the singularity in f, (x), the limit as e tends

(2 &) to zero of the integral

From this equation we see that Sl,&" is strongly peaked
in the forward direction, rising to (L+1)' for angles
K&L ' and from Eq. (2.5) we see that the sum oscillates
rapidly at larger angles, the amplitude going as I.'f' and
the period as I. '. If we were to look at a diff'erential

cross section where S~&'& appears in interference with a
slowly varying term, the individual peaks could not be
resolved and the contributions from Sl, in such a term
would go as I. '". In the limit as I. tends to in6nity,
SL,(" becomes

f, (x)P, (x)dx

does not exist as a uniform limit. For the moment, how-
ever, we will formally de6ne

(2.12)(1—x) &'+'»Pi(x)dx

where 8=ye" 02'~'. Now we use the recurrence rela-
00 tion for the I.egendre polynomials, which is valid for

5 &'&(x) = P (21+1)Pi(x)=lim25(1 —e—x), (2.8)
l~ e—4

where the limit e —+ 0 is taken after any integrations.
The sum Sz"&(x) arises from the scattering of the

incident waves from the shielding charge. The exact
form depends on the shielding, but the basic properties
of Sz&"(x), peaking in the forward direction and
oscillating rapidly at larger angles, should be inde-
pendent of the details of the shielding.

Let us now consider the 6rst sum of Eq. (1.13),

i[Pi(x)—Pi i(x)]—(l 1)[Pi i(x)——Pi g(x))
+(1—x){[Pi'(x)—Pi i'(x))

+[Pi i'(x) —Pi g'(x))}=0. (2.13)

Multiplying Eq. (2.13) by —8(1—x) &'+'» and inte-
grating over x and using the definition Eq. (2.12), we
get

lanai
—(l—1)ha, ,—8 (1—x)-*~{[P,'(x) —P~, '(x)]

Szo&= (2ik) 'P (21+1)(e '"—1)Pi(cos8) (2.9)

and its limit as I tends to inhnity. For large l the phase
shiftso. ~ vary slowly with l'. The sum for L= ~ converges
only in the sense of a generalized function or distribu-
tion; that is, the inhnite sum is well de6ned only when
placed under an integral sign. ' The integration is done
term by term. Though it does not converge to a point
function when placed under an integral sign, the infinite
sum S„"'can be equivalent to the point function

—
i1 exp[—2iq ln sin(~8)+2i00]

2k sin'(-'8)

+[Pi i'(x) —Pi i'(x)]}dx=0, (2.14)

where hai—=ct—at 3, If we define II to be

(1—x) '"[Pi'(x)—Pi i'(x)]dx, (2.15)

and by integrating Eq. (2.15) by parts, we And

Ii={(1—x) '"[Pi(x)—Pi i(x)7} i'

(1—x)-i'+'»[P, (x)—P i, (x)]dx

= 2'—'&(—1) '+ (iq/B)hai. (2.16)

(i1/k) ~2 aa02 iq (1 x)
—(1+i»

With this result, Eq. (2.14) becomest,'2. io~

where oo ——argl" (1+ii') and x=cos8, subject to certain
other conditions which will be specified later. The func-

or
' See, for example, M. J. Lighthill, Fourier Analysis and

Generalized Functions (Cambridge University Press, Cambridge,
1958).

aat ——
t—1+1'

Aug g l &2.

lanai (l 1)dai i—ig(5a—i+5ai—i) =0,

(2.17)
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This homogeneous recursion relation defines the ha& to
within a constant. If one is known, say Daj = a~ —ap, tile
constant is 6xed. But Aa~ can easily be found without

any additional assumptions. We note that P&(x)—Po(x)
=—(1—x) so that

event we hand

2i 2j

2~re) 1 Cmsp 1
(2.24)

(1—x) &'+'»[P, (x)—Po(x) jdx

(1—x)—*'~dx

Substituting Eq. (2.24) into the expansion Eq. (2.11),
we Gnd

f (x) — (g/k)e iep2ig(1 x)
—a+i»

= (2ik) 'Q (2l+1) (e""—1)Pi(x)

This can be rewritten as

r (I+ iv)
Aaj =

1—i& r(1—i&)

(2.18)

(2.19)

+ik '(e2i& 1)—b(1—x), (2.25)

where the delta function is de6ned in the sense of Eq.
(2.8). We shall choose the sequence which defines y in
such a way that the term with the delta function van-
ishes. A sequence {n ) which achieves this end is defined

by
x =n =1—2 exp[ —(2ns —2Xo)/gj. (2.26)

The Aa & are now defined uniquely. We iterate Eq. (2.17)
and use Eq. (2.19) to get

1+in
~ . hag

2 —ln

(2.20)

or

(2.21)

Since the Da~ are known, the a~ are defined to within an
additive constant by

Pia l

a(—— +C=
2i

e" l—1 C'+-
2i 2i

' (2.22)

where oi= argr (i+1+i'). We have chosen to write the
constant on the right in a rather suggestive manner.

If we knew one of the a~, say ap, the constant and
hence all of the a& would be completely deaned. To this
end, let us examine the integral

%e could have written the variable of integration in
Eq. (2.12) as 8 instead of x= cos8. In this case a sequence
is dehned by

e = e.=2 exp[(oo —nx)/g]. (2.27)

We see then that the infinite sum Eq. (2.9) is equivalent
to the point function Eq. (2.10) in an integrand provided
that the limits of the integral are handled in the manner
of Eq. (2.26) or Eq. (2.27).

Ke now return to a consideration of the phase A in
Eq. (1.13). When we take the infinite limit we must do
so in a nonuniform way so that in this limit exp( —2')
is mathematically de6ned. In practice, however, the
factor exp( —2iA) is common to all terms in the scat-
tering amplitude except the shielding term and so is
undetectable except in a narrow cone in the forward
direction. This cone shrinks to zero in the limit as

~, i.e.,

fr,-f„=e '* -f (x)+(ik-)-'(e—'*'-—1)b(i—x). (2.28)

Thus, in an actual measurement the extra phase and the
forward delta function are undetectable.

III. THE OPTICAL THEOREM

8
(1—x)-~'+'»dx = ——(1—x)-'~A(n) = 8—

e"'&—1 1
{exp[——iq ln-,' (1——n)) —1) .

2i2i

The limit of A (n) as n tends to 1 does not exist as a
uniform limit. It is possible to choose a discrete sequence
{n ) such that in the limit as n tends to infinity, n„1
and such that as n tends to infinity, the limit of A (n„)
does exist. With such a sequence exp[ iq in'�(1——n )
+2iooj exp(2') which is of unit amplitude. In this

4m.k ' Imf(0) =or, (3.1)

where cr~ is the total cross section and includes both

4 J.T. Holdeman and R. M. Thaler, Phys. Rev. Letters 14, 81
(j.965).

Total reaction cross sections for cases where many exit
channels are open are often dificult to measure. Ke
here outline a method for determining reaction cross
sections from elastic scattering data. 4 The term "total

(2 23) reaction cross section" is taken to include all nonelastic
processes.

The optical theorem states
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elastic and inelastic processes. From the partial-wave
expansion of the scattering amplitude

f(8)=(2 k) 'Z (21+1)(o""—1)P ( os8), (3 2)

we obtain the partial-wave expansion of the optical
theorem, viz. ,

e""—1)
4sk—'Q((21+1) Im ~P, (1)

2i i

The quantity 0' contains both elastic and inelastic
terms. We now write

(3.10)

where O.„is the total reaction cross section and r,~' is the
residual elastic cross section. The quantity o.,~ is given
formally by

o'(8)d&= [o(8)—o&"(8)fdn, (3.11)

=4s.k 'Qg(21+1)
2j where o (8) is the experimentally measurable differential

elastic cross section with the nuclear potential present.
Note that we are using the convention that when ~ is
written with an argument as o(8) it is a differential
cross section. When written otherwise, it is an integrated
cross section. Using Kqs. (3.8)—(3.11), we find

+~k-' 2 (»+1)(1—
I
~*"I'), (3 3)

where the phase shifts bg are in general complex.
VVe have already considered the scattering of charged

particles from a shielded Coulomb potential. The
shielded Coulomb scattering amplitude fr, "(8) is given

by Eq. (1.13).Let us now consider the scattering from
a nuclear potential plus the shielded Coulomb potential
above. Later, when we take the limit as the shielding
radius becomes infinite, we shall take the limit in the
same way as in Sec. II. In the second case above it will

be convenient to introduce the residual amplitude f'(8)
defined by f'(8)=—f(8)—fr, (8). The amplitude f(8) is
given by Eq. (1.11) with b~—=o~—A+if~, where b~ is
dered to be the additional phase shift due to the
nuclear potential. The residual amplitude can be ex-

panded as

f'(8)=—o "f'(8)=(2ik) 'e "'P-((21+1)o'*' &

X [exp(2i$() 1jPg(co—s8) (3.4).

o,=4rk ' Imf'(0) — [o (8)—oL,-(8)]dQ

1=4~k-' mf'(0) — o„'(8)dn. (3.12)

We can write o.((8) in terms of the scattering ampli-
tudes as

o ~'(8) —=o(8)—ol,"(8)=
I
f~"(8)+f'(8) I'

( fr, -(8)—~'

=
I f'(8) I'+2 Re[f'(8)fc"*(8)j (3.13)

Since o.~'(8) appears in an integrand, if we take the
limit as E approaches inanity in the manner previously
indicated, we 6nd

This sum contains angular momenta only up to the
order of k times the nuclear radius. Since only a few
partial waves contribute to f'(8), the residual amplitude
is slowly varying at small angles and can be approxi-
mated. by

o.i'(» = If'(8) I'+2
I
f'(8) llf (8) I «s[~.(8)—4 (8)j

—4k ' Re[o'~ sin-A„f'(8)b(1 —x)], (3.14)

where a.(8) is the phase of the Coulomb amplitude and
4 (8) is the phase of the residual amplitude. We note that
A„appears only in the last term of Eq. (3.14). Because
of its form, this last term cannot be evaluated from data
at Gnite angles. It may be formally integrated to give—(Ss/k) Re[exp(iA„) sinA„f'(0)g. From Kq. (3.4) we
may easily obtain the result that

f'(8) =Q«&Pi(x) Q( a)+(-,')[P( a)l(1+1)j
Xsin'(-,'8)+ . (3.5)

Applying the optical theorem to the shielded Coulomb
amplitude, Eq. (1.13), we obtain

4 k-'Imf, "(0}=«~. (3.6)
4~ 8~

Applying the optical theorem to the entire shielded —Imf'(0)+ —Re[e'" sinAf'(0))= —Imf'(0), (3.15)
scattering amplitude, Eq. (3.2), we obtain

4sk ' Imf(0)=or. (3 &)

4xk ' Imf'(0)=o',

where 0' is delned by

(3 g)

(3.9)

and f'(0) is the residual amplitude evaluated at 8=0.

Taking the difference of Eq. (3.6) and Eq. (3.7), we find

where, of course, f'(0) is the residual amplitude for
A=O. Thus we see that the forward delta function and
the phase A„make no physical diEerence in any
measurable quantity. The phase A„may take on any
value and so for convenience we will take it to be zero
in the discussion that follows. With this choice the
phase of f'(8) corresponds to the choice of the Coulomb
phasea, (8)= —2g ln sin(s'8)+2o&.

Using the phase convention of the previous paragraph





J. T. HOLDEMAN AND R. M. THALER

section is the total cross section, as given by the optical
theorem, minus the total elastic cross section. However,
for the scattering of uncharged particles, the amplitude
f'(0) cannot, in general, be determined from the elastic-
scattering data. For charged-particle scattering, f'(0}
can be determined, and hence Eq. (3.19) can be used to
obtain the reaction cross section from the elastic-
scattering data.

The derivations presented have been for spinless
charged particles. These results, however, also apply to
particles with spin.

IV. DETERMINATION OF REACTION CROSS
SECTIONS FROM DATA

The results of Sec. III provide us with a way of de-
termining reaction cross sections provided the prescrip-
tions given there can be carried out. Ke have determined
the reaction cross section in two cases in which high-
precision small-angle data were available. The diHeren-
tial elastic scattering cross sections for protons scattered
from He4 and from H' at 40 MeV have been measured
by Srussel and williams'~ in the angular region
4'&8 cm(140'. Particular attention was given by
Brussel and williams to the angular region between 4
and 25'. This data has been analyzed to 6nd the residual
amplitude as a function of angle. The results are plotted
in Fig. 1 and Fig. 2 with extrapolations to 8=0. These
extrapolations were used in Eq. (3.16} to calculate the
reaction cross sections. The results are summed up in
Table I. The rather large uncertainties quoted ( 25%
and 10%, respectively) are the result of two large
quantities almost canceling. This cancellation is not

Tmzz I.Results of data analysis at 40 MeV. Lengths are given in
fermis and angles in degrees.

Tsm.E II. Comparison of present work with complex-phase-shift
analyses for p-a scattering at 40 MeV.

Author

Present work
GT
SY

If'(ol I

(F)

5.28
5.48
5.46

Im f'{0)
~(o) (F)

49.6' 4.07
53.2' 4.39
56' 4.52

(F') (F')

38.9
40.2

7.7&2
10.3
11.6
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H~(p, p)H'

If'(o) I

(F)

5.28
2.69

Imf'(0)
~(0) (F) (F')

49.6' 4.07 38.9
51.3' 2.11 17.8

(F')

7.7&2
10.8~1
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