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Dynamical Groups and Mass Formula
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The homogeneous Lorentz group and the 4+1 de Sitter group are interpreted as the dynamical groups
of a nonrelativistic and a relativistic "rotator, " respectively. In an irreducible representation of the latter
group we obtain for certain states the mass formula m'=mp+X'j(j+1). The contraction of the dynamical
groups [Euclidean group in three dimensions and Poincare group, respectively j destroys the energy or mass
spectrum and can be associated with the limit A ~ 0. The model of an elementary particle as a de Sitter
"rotator" is discussed.

I. THE CONCEPT GF DYNAMICAL GRGUPS

Y a dynamical group we mean a group (in general a
noncompact one) which gives the actual energy or

mass spectrum of a quantum-mechanical composite
system. The idea is to reduce a theory in Qat space with
an interaction (e.g. , Hamiltonian) to a group of motions
in curved space, i.e., to geometry, in a way similar to
that done in general relativity. The representation of
the dynamical group will give us the quantized states of
the system. That this idea also works in the domain of
quantum theory is shown explicitly in this paper in the
case of two simple examples describing the quantized
energy states of a rotator and the quantized mass states
of a relativistic "rotator. "The latter has a strong bearing
on the problem of the actual mass spectrum of strongly
interacting particles. Our aim is to give a group-
theoretical formulation of the so-called broken sym-
Inetries. The unitary symmetries used for the classifica-
tion of strongly interacting particles (SUs or SUs) are
approximate and clearly their experimental success must
be attributed to the existence of symmetry-breaking
terms. ' ' These terms are introduced in a phenomeno-
logical way and are treated as a perturbation in the mass
operator. The possibility that the symmetry breaking
can be explained within the framework of a larger
dynamical group containing the group of degeneracy has
been considered before. ' ' We explicitly show in this
paper how a mass spectrum may be obtained under the
assumption of a dynamical group. The attractive
feature of the model is thus its simplicity with no further
assumptions being necessary than the group. '

*On leave from the Institut fur theoretische Physik, Universitat
Marburg, Germany.' For symmetry-breaking terms in SU3 see M. Gell-Mann and
Y. Ne'eman, The Eightfold Wtty (W. A. Benjamin, Inc. , New York,
1964).' For symmetry-breaking terms in SU6 see F. Gursey and I..
Radicati, Phys. Rev. Letters 13, 173 (1964). M. M. B. Beg and
V. Singh, ibid. 13, 418 (1964).

'A. O. Barut, University of Colorado report, 1963 (unpub-
lished).

4A. O. Barut, Conference on Symmetry Principles at High
Energy (%.H. Freeman and Company, San Francisco, 1964).' A. O. Barut, Phys. Rev. 135, B839 (1964).

'The dynamical groups used here are among the groups of
motion of Riemannian spaces. For a classification of such groups
of motion see A. Rsczka (to be published). In the usual mass
formulas it is not clear whether one should use m', m, or 1/m',
etc. The present model definitely gives m' from the Casimir
operator.

B

In order to see how the dynamical group is introduced
we start from a mass formula for mesons of the form'4'

m'=m '+) 'L2J(1+1)—I(I+1)+Y'/4] (1 1)

where J, I, and I' represent the spin, isospin, and hyper-
charge of the particles and m is the measured mass. The
scale factor ) can be found from the empirical masses
to be

k—14X104(MeV)'. (1.1a)

For further reference we note that this factor can be re-
lated to a length lo by the relation'

)t = jt'/e'fs (1.1b)

with the value lo= 10 "cm.
Because m' is the value of the mass operator P„Pj",

Eq. (1.1) indicates clearly a coupling between P„P& and
the other operators J, I', V'. In the limit of exact de-
generacy P„PI" is an invariant and P„'s commute among
themselves. The assumptions about the existence of
symmetry-breaking terms really amounts to the non-
commuting P„'s and the fact that P„PI"is no longer an
invariant. (In SUs and SUs, P„P& is assumed to trans-
form as a tensor operator of the group. )

For quantized systems the energy E or nz' are not
invariants but take definite values as a function of
quantum numbers.

In general, however, the energy or mass spectrum
(m') is not simply linearly related to the quantum num-
bers as in Eq. (1.1), e.g. , H atom. But the simplicity of
Eq. (1.1) suggests that it can be derived from the
second-order Casimir operator of a group. In this paper
we shall concentrate on the first two terms of (1.1), i.e.,

P„P~+) sJ(J+1)=p' (1.2)

and shall interpret the left-hand side of (1.2) as terms
entering into the second-order Casimir operator of a
group, p' being related to the value of this Casimir
operator in an irreducible representation of the group.
The group containing P„PI"and J' (and more generally
Is, I"', .) must be semi-simple. This is because the in-
variant operator of an invariant subgroup of a group is
also an invariant operator of the group itself, ' and if,

' Similar mass formulas involving J(1+1)terms have now been
obtained from broken SU6 symmetry. See Ref. 2.

s A. Bohm, University of Marburg Report, 1964 (unpublished).
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TABLE I. Passage from a dynamical group to the kinematical
gl oup.

II. DYNAMICAL GROUP OF THE NON-
RELATIVISTIC ROTATOR

System

Composite quantum
system with mass spectrum

Mathematical representation

Irreducible representation of
the dynamical group

group
contraction

System without internal structure Representation of the kine-
matical symmetry group

for example, F„or J (or I) would generate an invariant
subgroup, they could not enter into the Eq. (1.2).
Thus, as far as the mass-spectrum problem is concerned,
P„'s do not form an invariant subgroup. This is not sur-
prising because in the problem of mass states of a
quantum-mechanical composite system we do not have
translational invariance. For example, there is no
translational invariance in the H-atom problem. There
is however, a translational invariance if we consider the
motion of an H atom as a whole.

The passage from a dynamical group giving the mass
spectrum of the system to what one may call the "kine-
matical group" of the system describing single mass
states will be done by the process of group contraction. '
The contracted kinematical groups are indeed classical
groups, and it is interesting that the contraction can be
associated in a natural way with the limit 6~0. We
obtain thus the situation shown in Table I.

In Sec. II we discuss 6rst a nonrelativistic model
which contains all the ingredients of the idea of a dy-
namical group and its contraction, but is mathematically
much simpler. From a realistic model of a particle we
shall require that the contraction contains the Poincare
group. Such a model is discussed in Sec. III together
with its implications for the structure of strongly in-
teracting particles.

[H+,Ha] = H+, [H—,H3] =H,
[Hp, H ]=2H3,

[Hp, F+]=[H,F ]=[H3,F3]=0,
[F„,F3]=H+, [F,F3]= H-

[F+.,F ]= —2H3, (2.2)

[H~,F3)= F~, [H—,F,]=F
[H+,F ]=—[H,F+]=2F3,

[F+,H3] = F~, [F—,H3]+F

where we have introduced the notations"

H+=Hg+iH2) H =Hg —iH2,

F+. Fg+iF2, F —=—Fg iF2, —
'0 Fg F2 F3

0 H3 —H2
0 Hg

0

(2 3)

The irreducible representations of these commutation
relations in Hilbert space can be written as follows":

We shall now interpret the homogeneous Lorentz
group Z as the dynamical group of a system. This model,
which is described by the irreducible representations of
L,, will be called, for reasons which will be seen later, a
rotator.

(1) The weil-known commutation relations of I.:

[M„„M.p] = g,.M—„v g„vM—,.+g„.M„v+g, vM„.

gpo= 1; g''= —1, z= 1, 2, 3; g„„=0, v&p, (2.1)

may be written in the following form:

H~f„"=[(k+v+1)(k v)]"'f+P, —
H f„"=[(k+v)(k—v+1)]'i'f, &",

H fk vfk

F+f."=[(k—v)(k —v —1)]'"CIf g" ' [(k v)(k+v+—1)]'"—AI fpP+[(k+v+1)(k+v+2)]"'CI ~gf,+~"+',

F f "=—[(4+v)(k+v —1)]'~'Cpf„g' ' [(k+v)(k —v—+1)]'I'AI f—„P [(k v+1)(k——v+—2)]'I'CI~gf„P+',

F3f,"=[(k—v)(k+v)]'"Cg f ' ' vAI f "—[(k+—v+1)(k —v+1)]'"CI+gf,"+',

where
A I, ——ikpc/k(k+1),
Cp=i/k[(k' k(P)(k' —c')/(4k' —1)]'" —(2.4)

v= —k, —k+1, , k; k=ko, kp+1, kp+2,

Here f„"are elements of the irreducible representation
(Hilbert) space K(k&,c) where (ko, c)—ko integral or

E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. B9,
510 (1953); 40, 119 (1954).

half-integral non-negative, c arbitrary complex number—characterize the irreducible representation. These
representations are unitary representations of L for
C=ia and (ko,a)QX where X is the following set:

X=((ko,a) ~ko ——-'„1,—',, , —~ (a(+m}
U f(ko, a) ~k, =0, 0&ia&1}. (2.4a)

M. A. Naimark, Linear Representations of the Lorene Group
(Pergamon Press, Inc. , New Vork, 1964) and references given
there.
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(The irreducible unitary representations belonging to
the first set of X are called representations of the main
series; those belonging to the second set are called rep-
resentations of the supplementary series. ")

The irreducible representation space of L is the direct
sum of irreducible representation space of the rotation
group

~(ko,o) = P O+Slt';.
j=ko

(2 5)

The invariant operators of L,

Q M M' Q e MopMpr (2.6)

Qf, ,'(kp, a) = cpu f,,'(kp, a)

Qf,'(kp, ~) = (1+~'—kp') f,,'(kp, a)—=n'f;, &(kp, a) . (2.7)

(2) To perform the contraction of L, with respect to
its rotation subgroup' we introduce the following trans-
formation of the Lie algebra

(2 g)

have in an irreducible representation 3C(kp 8) the fol-
lowing values:

Then the commutation relations (2.1) become

[P;,P,]= iX'cps Js
[1';,Js]=is, s'Js (2.9)
[J;,Js]=is,s'Js,

and the Casimir operator (2.6) can be written in the
form

gsQ —P Po ),sJs (2.6')

For X~ 0, Eq. (2.9) goes over to the commutation rela-
tions of the 3-dimensional Euclidean group E3, and the
P; and J; represent the momentum and angular-
momentum operators.

To obtain the representations of the contracted group
E3, we choose a sequence ' of irreducible unitary repre-
sentations of L in such a way that ) '0. ~ 6 as X~ 0,
whereby e2 can be chosen arbitrarily and character-
izes that representation of E3 to which the representa-
tion of L is contracted. Because of (2.7) this means
X'n'='A'(1+a' —kp') ~ e'. We restrict ourselves to the
case where ko remains constant during the contraction
process. Since ko is the smallest spin occurring in an
irreducible representation X(kp, u) of L, this means that
the irreducible representation spaces 5R, of the rotation
group contained in K(kp, a) are also contained in the
contracted representation. Then )Po.2 —+ &2 as ), —+0
meanS X282 ~ e2.

From (3.4) we obtain the contracted representation

Jsf' =jsf '; J+'f~'=[(i+is+1)(i is)]"'f.+t'—, J-f '=L(j+js)(j—js+1)]"'f -r' (2.10a)
I' f,'=» f.'=[(i ~ )(~+a )]'"Cf' ' Jaf' [(Z—+i +1)—(i i +1)]'"C—+ f ~' (2.10)

J'tfs'=3) (F++I" )fs'=3~ {[-(i js)(j js——1)]'"f—.+t' ' —L(j+js)(j+js—1)]'"fs -t' '}
——.& ([(j—js)(j+js+1)]'"fr+t'+ [(j+js)(j—js+ 1)]'"fr -t'}

+-,C+3([(j+js+1)(j+js+2)]'"f,,+&'+' —[(j—js+1)(j—js+2)]"'f,, t'+'} (2.10b)
C,I sfs' (~+ ~-)fs'= —([—(j—js)(j—js—1)]'"fs'+t'+'+ [(j+js)(j+js—1)]'"fr'.-t' '}

2i 2i
C~'—([(i—js)(j+js+1)]'"fr+r'—L(j+js) (j—js+1)]"'f -t'}
2i

C~+~
+ (L(j+js+1)(j+js+2)]"'f,,+t'+ +L(j—js+1)(j—js+2)]'"fs —r'+'},

2i

where
ko

j(j+1)
(2.11)

j(j+1)-
and"

~ -~2 k 2- 1/2

C;= lim XC,=e-
X2a' e2

~ 4j2
"For groups like E3, in which the translations form an invariant

subgroup, one usually has representations in which the transla-
tions are diagonal:

sinH cosy)
&'~pr, ps, ps e) P'~plpsps, &), &'=P»nH»ny

~

J3~0,0P h) $~00P $) cosH

The transformation from the basis (2.10) to this basis
~ P&,ps, ps, f)

Those irreducible representations of L for which o,2=0
(or some Axed value in the process of contraction) go
under the contraction into the representations of the
rotation group (2.10a), for in this case a;=c,=0 and

which lies outside the Hilbert space (Ref. 15), i.e.,

I P3PsPsf) =Z f '(hop) (ehoj sj ~
Prpsp'sk)

will be performed by the transition coeKcients given explicitly

(s,ps, ps, pi ~j js&p, e) = (2j+1)Ds,spr'(A, H,
—y)&tss&(e —

~ P ~),

where D;ssps' are the well-known rotation matrices fM. E. Rose
E'lemenlary Theory of Angular 3lomenlum (John Wriey Bz Sons.
Inc. , New York, 1961)].
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the momentum operators will be represented by the
zero operator.

From (2.10) we see that the representation space ob-
tained by contraction from K(kp, a) which we denote by
K(kp, e) is again a direct sum of irreducible representa-
tion spaces of the rotation group

and its invariant operators

Q= ——',L„,eL e

W= —zo~R ) zv = g6 ~'f'Lp~Lyp. (3 2)

The contraction of the de Sitter group with respect to
the homogeneous Lorentz group leads to the Poincare
group. We define

P„=XL5„, M„„=LI „p,v= 0,1,2,3. (3.3)
and each basis vector f,,'(kp, a) goes over into f,,'(kp, e)."

(3) According to our general concept formulated in
Sec. I we can now give the following physical interpreta-
tion. Our physical (model) system is described by the
representation X(kp, a) of the dynamical group L. By
contraction this goes into the representation X(kp, e)
of the Euclidean group or into the representation
K(kp, 0) of the rota. tion group. A system, which is de-
fined by the representation of the rotation group, is
called rotator; therefore the representation X(kp, a) of
the dynamical group L must give us the actual energy
levels of the rotator. As we have seen in Sec. (2), the P,
correspond to the momentum operators and it is natural
to interpret the expectation value p' of P,P' as the
momentum square and hence E!=p'/2p (p a constant
with dimension of mass) as the energy. The energy spec-
trum can then be calculated from the Casimir operator
(2.6') as follows:

2pE=P'=(f 'P P'f ')=X'n'+X'(f ' J'f ')
or

L~'= (1/2p) X'n'+ (l~'/2p) j(j+1), (2.12)

and for the special case +=0
E=(l'/2p) j(j+1). (2.12')

This is indeed the well-known energy spectrum of a
rotator with li= h/pp, where pp is a quantity with the
dimension of a length. The first part in (2.12), X'n'/2p
=const, represents some translational energy and is
without signi6cance because E is only dehned up to a
constant.

Because l~= k/pp the limiting process li ~ 0 from the
dynamical group to the kinematical symmetry group
can be taken to be the limit A, ~ 0.

III. DE SITTER MODEL OF A RELATIVISTIC
ciROTATOR

The (4+1) de Sitter group (1Mo') as dynamical
group furnishes us with a relativistic generalization of
the rotator model.

Then (3.1) reads

PP„,P„7= iX'M„.

LM"».7 =&( g-P—
+ g "P.)

)M„„Mo,7 = i(g—„oM„,+g„,M„o
g"M~—. g"M"—)

The invariant operators can be written as

l op =P Po+l oN' —l 'Ms

l~'8"= —l~'(MN) '—te„w&.

(3 1')

(3.4)

f;,'(ko, ~) =
Ij,jo,~,ko,'e,P), (3.3)

where a and ko are now variable and vary over a subset
X' of X )see (2.4a)7 and e and P characterize the irredu-
cible representation of EE~'. The irreducible representa-
tion space K(e,P) is then a continuous direct sum" of
Hilbert spaces K(kp, a) of which each is an irreducible
representation space of the Lorentz group L":

K(e,P) = 0+%(ko, tr)dp(ko, a) . (3 6)

For l~ ~ 0, (3.1') gives the commutation relations
of the Poincare group, P„gives the momentum opera-
tors, M=(Mss, Mpt, Mrs) the angular momentum, and
N —(M pi, Mps Mpo) the energy of the center of mass.

(2) The Hermitian representation of the commuta-
tion relations (3.1) of the (4+1) de Sitter group in the
Hilbert space—in which the maximal compact sub-
algebra (Ds) is diagonal —were given by Thomas" and
Newton. ' Newton gives four classes of irreducible
representations, of which class I and class II can be
contracted to physical (P„P"=mps) 0) representations
of the Poincare group. The Hilbert-space basis of
Thomas and Newton is not suitable for our purpose;
we need a basis of the irreducible representation space,
in which the subgroup L, with respect to which we con-
tract, is diagonal. Such a basis will be given by the
vectors defined in (2.4)

'3 L. H. Thomas, Ann. Math. 42, 113 (194l)."T.D. Newton, Ann. Math. 3, 730 (1950)."J.M. Gelfand and N. Ja Vilenkin, Obobshchennye FNzktsii
(Moscow, 1961) (translation in preparation in Academic Press
Inc., New York), Vol. 4. A. Ilohm, International Center for
Theoretical Physics Report No. lCTP-9, 1964 (unpublished).

'6 We note that the basis vectors (3.5) are eigenvectors of un-
bounded operators with continuous spectrum and no longer ele-
ments of the Hilbert space but its rigging (Ref. 15).

(1) The commutation relations for the de Sitter
group are

(L.e,L»7 = ii(g„~L»+geoL„~ —g„&Le, ge~L.,)— —
n,P,y, 5= 5,0, 1,2,3 (3.1)

g55= —1, goo= 1, g;;= —1, z= 1,2,3,
"The reason for this is that we have chosen the representation

conveniently in such a way that the subgroup with respect to
which the contraction is performed is diagonally represented.
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A complete set of commuting operators of NR~4 is
formed by

M2,m, =m»,
Ms Ns M. NL, , Z,s~=1/), sp ps g (3.7)

This set has the following eigenvalues on the basis
vectors (3.5):

M'[jisakpej3) = j(j+1)
I );

(M' —N') [)=(kps —a' —1)[), M N[)=kpa[) (3.8)

natural to interpret I'„PI" as the "mass operator" of the
composite particle. If the physical system is in the state
described by [ jjsakp, eP), the expectation value (=eigen-
value) of the mass operator is given according to
(3.4) by

m'=&Pe kp'ajsj[PsP"
I jjsakp'eP)

=X'o.'+'A'([ M' [)—X'([ N'[ ) (3 10)

and for those states for which

The eigenvalues of the second-order Casimiar operator
Q on the space 3C(e,P) is given by

n'= e'+a'+1 —k '

n =(Pe,k,aj,j[N [)=0
we obtain the mass formula

ms —) 2&2+ ) 2j(j+1 )

(3.11)

(3.12)

The contraction of the irreducible representation of
NR5' into representations of the Poincare group (P is
again performed via a sequence of representations
o. —+~ such that

lime 2&2 lime 2e2 ~ 2 (3 8')

a value, which characterizes the irreducible representa-
tion of (P. In the contraction process a and ko are kept
6xed and the contracted representation space contains
therefore the same subset X' of representations of L as
K(e,P). By the contraction process (3.8') X'P goes to
o(o+1)mp, (o.=0, —',, 1, ss, ) and the contractedrepre-
sentations are characterized, as is well known, by
X(mp, o). K(mp, o) is again a continuous direct sum of
representation spaces K(kp, a) of I'

3e(mp, o) =
X'

0+3('(kp, a) dp(kp, a) (3.9)

and each basis vector
[ j,js,a,kp, e,P) goes into

[ j,js,a,kp, mpo). "
(3) An "elementary particle" (EP) (without intrinsic

degrees of freedom as isospin and hypercharge) is
characterized by an irreducible representation of the
Poincare group as its (kinematical) symmetry group. A
composite physical system, which is described by repre-
sentation of the de Sitter group as dynamical group
goes therefore by contraction into an EP. Its mass spec-
trum is described by the de Sitter group as the dynamical
group in the following manner:

According to what we have said previously it appears
"This is a representation of the Poincarh group in which the

homogeneous Lorentz group is diagonal (compare Ref. 11).The
transformation of this basis to the well-known canonical basis
Ref. 19 [p;,so, m, s):

[ p, ,so, m, s)= Z [j,j oakomoa)(amo, koaj oj I p;, so,ms)
jj3ak0m, o

will be performed by the transition coefFicients

(omoaj oj [p;,so, m s)=SA(mo m) (koajoj [pfso—),
where (koajoj [P;so) are given by Joos I H. Joos, Fortschr. Physik
10, 3 (1962), Secs. 4.2 and 4.3 (see also Chou Kuang-Chao and
L. G. Zastavenko, Zh. Eksperim. i Teor. Fiz. 35, 1417 (1959)
LEnglish transl. : Soviet Phys. —JETP 35, 990 (1959)j and refer-
ences given there) g.

which is in agreement with the phenomenological mass
formula (1.1). So we see, using (1.1b), that the limiting
process X —+ 0 from the dynamical group to the kinemati-
cal symmetry group can be interpreted as the limit
A ~ 0. We have started from a representation of the de
Sitter group characterized by osre rr (or e) and osM P.
One could also have started from a reducible representa-
tion characterized by several P. This would be the case
if the de Sitter group is embedded into a larger dynami-
cal group, an irreducible representation of which then
contains many irreducible representations of the de
Sitter group.

(4) Some remarks are necessary with regard to the
(3.11) and (3.12):The expectation values of M' and N'
are the same before and after the contraction because

[ jysakp, mo) with j= s (3.14)

contribute to the rest states. If we could show that for
these states e2= 0, we would have proved that the mass
formula (3.12) is valid for states which correspond to
rest states after contraction, then we could call m2 the
"rest mass, ""what we actually want, as the phenomeno-
ogical formula (1.1) holds for rest masses.

But as long as we do not know more about the repre-
sentation of NR&' we can only make some plausibility
arguments with respect to this point. The equation

n'= j(j+1)+kp—a' —1=0 (3.15)

's Reference 16.
"H. Joos, Fortschr. Physik 10, 3 (1962).
20 Still the question, what this "rest mass" has to do with the

experimentally measured mass, remains unanswered.

j(j+1)=(Pekpajsj [M [jjsakpeP)
=(ompkpajp j[M'[ jjsakpmp&r) (3.13)

and similarly for N2.
From the properties of the transition coefFicients

(kpa jsj[P,ss)ts one can see, using (4.18), (4.21), (4.24),
(4.27), and (4.36) of Ref. 19, that for the rest states
[p=O, ss, m, s) there is a one-to-one correspondence
between j and s: j~ s, because (kpa jsj[P=0, ss, ms)

8„.as one should expect. Thus only the states
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is possible for (ks, a)eX (III.4) as is easily seen (and
I' —+ ~ could only be possible for j—~ ~ ). We suppose
that those (ks, a), for which (3.15) is fulfilled are also in
X'( X (III.2). The set X' of course depends on e and
P; X'(e,P), and we could hope that only those (k, ,a)
fulfilling (15) and corresponding to rest states are in the
set X'(eP).

(5) The (4+1) de Sitter group is the group of motion
in the de Sitter spherical world" with finite extension in
space-like and infinite extension in time-like directions.
Its curvature tensor is

Rsvxp= —~ (gsxgvp gppgvz)

and Einstein's law reads

GPX 3~ gv)l. )

(3.16)

(3.17)

where )~ is the parameter introduced in (3.3). The
radius of the de Sitter world is" R= 1/X, and if we use
for X the empirical value (1.1a) converting MeV into
cm ' we obtain for our de Sitter world a radius of
E.=10 '3 cm. ' Thus we can consider a, strongly inter-

"A. S. Eddington, The iVathemati cal Theory of Relativity
(Cambridge University Press, New York, 1963), 10th ed. , Chap. V

"A geometrical interpretation of the contraction process is
difficult, as it does not simply mean 8 —+ w but n/R ~ mo.

acting particle as a de Sitter "spherical" world of
10 " cm with finite space-like and infinite time-like
extension, "a picture which is not too far from our usual
image of a particle, which might indicate that our model
is not too far from reality. '4
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Proc. Cambridge Phil. Soc. 53, 290 (1957)g instead oi the (4+1),
the strongly interacting particle would have been infinite in space
but finite in time, in disagreement with our ideas of a particle,
but then we would also have obtained m'=X'n' —X'j(j+1) instead
of (3.12), which is in obvious disagreement with experimental
facts. It should be remarked that the use of the 3+2 deSitter
group in the large Lsee, e.g. , C. Fronsdal, Rev. Mod. Phys. 37, 221
(1965)j is a completely diBerent idea from the present one. There
a single mass point is embedded in a large curved universe and
has a discrete spectrum which in the limit 8 ~~ goes over into
the continuum states of the mass point in flat space; it is a change
of the kinematical group and has nothing to do with dynamics.

'4 For a discussion and interpretation of de Sitter rotator in
which the compact subgroup R4 is diagonalized see A. Q. Barut,
in Seminar on High Energy Physics and Elementary Particles,
Trieste, 1965 (unpublished).
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