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In the framework of the static strong-coupling approximation, a model with a nucleon source and 21- and g
meson fields is considered. Characteristically different isobar spectra result, depending on whether the ratio
of coupling constants of the nucleon to the g and 21- mesons is less than or greater than a certain critical
value. In the first case the spectrum of excited states is entirely uninQuenced by the g-meson fields, with the
result that the lowest lying excited state is the well-known (3,3) resonance. But if the coupling constants
are such that case II is realized, then the isobar spectrum is drastiaclly changed; in particular a T= 1/2,
J=3i2 resonance would be expected as the first excited state. The leading term in the strong-coupling ap-
proximation of the nuclear force (potential) resulting from the nucleons exchanging 2f- and g mesons is also
del ived.

I. INTRODUCTION

HE nucleon isobar states were first theoretically
predicted' in the static strong-coupling approxi-

mation for scalar Vukawa interactions quite a long time
ago. Subsequently, in the same scheme the pseudoscalar
x meson 6eMs were known to give an excited nucleon
(isobar) spectrum, ' with the energy levels

Er T(T+1); T——=J= ,', ss, -

where T stands for isospin and J for spin-quantum
numbers of the isobar. The first excited member of this
family was identified with the now well-known (3,3)
resonance which has J=T=-2.

Recently, SU(3) symmetry has had some success in
classifying the various mesons and baryons according
to the irreducible representations of the group. With
this in view, the question we would like to ask is what
baryon multiplets might be expected under the assump-
tion of an extreme (Yukawa-type) coupling between the
baryon octet and the meson octet. This has already
been studied for an octet of scalar mesons obeying the
exact internal symmetry. ' However, such a treatment
for the physically important pseudoscalar mesons seems
quite complicated, so we shall attempt here a simpler
problem, possibly indicative of what may happen in
a more complete theory. Accordingly, we shall restrict
ourselves to the zero-strangeness part of the realistic
problem, our model consisting of two baryons (neutron
and proton) and four mesons (7r triplet and r) singlet).
We would like to know, in particular, if any isobar
states may be expected besides those given by (1.1).

~ This work is supported by the U. S. Atomic Energy Com-
mission, C00—264-230.

f Part I of a thesis submitted to the Department of Physics, The
University of Chicago, in partial fulfillment of the requirements
for the Ph.D. degree.

' G. Wentzel, Helv. Phys. Acta 13, 269 (1940); 14, 633 (1941).
' W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942); S.

Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 109 (1946); A. Hour-
iet, Helv. Phys. Acta 18, 473 (1945); further references may be
found in G. Wentzel, Rev. Mod. Phys. 19, 1 (1947).

' G. Wentzel, EFINS Report 64-33 (unpublished); C. Dulle-
nond, Ann. Phys. (N. Y.) (to be published).

B

In Sec. II we give a brief description of the strong-
coupling method, which is applied to the speci6ed
problem and worked out in some detail in Secs. III,
IV, and V. Significantly, we find that, depending upon
the ratio of the coupling constants gtvtvr and ftvtr„,
there exist two distinct sets of solutions which must be
treated separately. In case I, which occurs when (f/g)'
is less than a certain critical value, the isobar spectrum
has the same structure as given in (1.1). We shall refer
to this case as the dominant x coupling. In case II
(dominant rt coupling), (f/g) is greater than the critical
value and additional excited states, not included in
(1.1), are found to occur. In particular, the lowest
lying excited state in this case has quantum numbers
J=—,', T= ~. In Sec. VI, we give a brief account of the
strong-coupling approximation for the static nuclear
forces between nucleons, exchanging both -„and g
mesons. These turn out to be closely related to the
results in the conventional "weak"-coupling perturba-
tion theory. In conclusion, we note the similarities and
contrasts between our model and the Chew-Low static
theory, or equivalently {ED ') dispersion-theoretic
calculations.

II. METHOD

Omitting the bare nucleon mass as a constant, we

may write the Hamiltonian for the problem as

H=Hp+H',

where Bo corresponds to the noninteracting meson
field energy:

Hp ——-', P dewar, '(x)+ll, (x) (tt.'—6)|tf,(x)
fs

+~p'(x)+ll, (x) (t .'—~)ll. (x)3 (2 1)

ll (x) and sr (x) are the usual canonically conjugate field
variables. The subscript p(= 1, 2, 3) denotes the isospin
index of the m meson variables and the index g refers
to the variables of the q meson fields. No particular
simplification results if the rest masses p, and p„are
chosen to be equal, so we shall impose no restriction on
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them. The coupling of the meson fields to the (static) choose them as'
nucleon source function is assumed to be of the Yukawa-
type; thus (2.6)

2p

where C is determined by the normalization condition
(2.3). C a '". Substituting (2.4) and (2.6) in (2.2)
we obtain

+f& d'* 'lt. (x)L&'h. (x)j, (2 2) H'= gC Q a,rpq, p+ fC Q o.,q, &.
'2P

(2 &)

where the spherically symmetric source function 8, (x)
Lwhich reduces to the Dirac delta function 8(x) when

u~0j represents a spatial extension of the bare
nucleon and is normalized. to unity:

d'x 5.(x) =1.

Here B is a 4X4 matrix in spin-isospin space. In the
strong-coupling theories, one first diagonalizes this
"large" interaction Hamiltonian, and then, with the
help of the unitary matrix employed to achieve this,
obtains in successive perturbative approximations the
contributions from IIO.

Towards this, we 6nd it convenient to define a new
set of variables in place of qi„ following Wentzel':

This "size" of the nucleon (or effectively the cutoff
parameter) is conventionally defined in the strong-
coupling theories by

3
/

g p=~ t' $', Spn
n=1

(2.8)

d'xd'x'5. (x) -b.(x')
fx—x'f

We shall be primarily interested in the limit a(&'p

ls„'. In Eq. (2.2), o, and r, are the usual 2X2 Pauli
matrices that operate on the spin and isospin spaces of
the nucleon. The coupling constants g, f have dimen-
sions of length and g) 0, f)0 may be taken without
any loss of generality.

After Wentzel, 4 we introduce a complete set of real
orthogonal functions E„(x) in terms of which we may
expand the Geld variables:

dsx E„(x)E,(x) =b„„gE„(x)E„(x')= 8 (x—x'),

where r„are the positive square roots of the eigenvalues
of the tensor T;;=P, q, ,q;„and s, are the correspond-
ing eigenvectors. s,„are similar eigenvectors of the
tensor T„=g;q, ,q;„which has the same set of eigen-
values r„'. Orthogonality and completeness of these
eigenvectors give

Sinsim ~nm ~ Si nsj n ~ij ~

Similarly

/ / / /
Spn Spm Unm

& ~ Spn Son vptr

P n

Thus, clearly the matrices s,„and s,„' denote rotation
in ordinary and isospin 3-dimensional spaces, respec-
tively; hence it is easy to construct unitary matrices,
I', P such that

4.(x)=2 E.(x)q",

0 (x) =Z E.(x)q "

z p (x) =P E, (x)p„,

7r„(x)=P E, (x)p, ".

(2.3)

(2 4)
V*(Q o,s, )I'=o.„and V'*(P r,s,„')V'=r„,

I' acting only on the 0 space and I" on the 7- space.
We further introduce in place of the variables q;&

The p and q obey canonical commutation rules: qi"= g/f 2 ue&in' un= fjg g qi "&in ~ (2.9)

(2.5) Now, with Eqs. (2.8) and (2.9) in (2.7), we obtain

All other pairs commute. This development serves the
same purpose as a partial-wave expansion. In the static
limit, the pseudoscalar-meson —nucleon interaction would
pick out the three p waves only, and correspondingly in
our expansion we shall need the explicit form for only
the first three of the orthogonal functions E„(x). We

4 G. Wentzel, Helv. Phys. Acta 16, 551 {1943),Sec. 3.

V*V'*H' V'P = gC Q (r„or+u„o „). (2.10).

Notation: Ke shall use the subscripts i, j, k when the indices
assume values from 1 to 3, and r, s, t when they take all values
from 1 to ~. The restriction of the summation over r to r) 3 will
be denoted by Z„'. Greek indices will be used to denote the isospin
subscripts only.

See Sec. 4 of Ref. 4. See also Sec. 4 and the Appendix of
W. Pauli and S. M. Dancoff {Ref. 2) where a somewhat similar
transformation is employed.
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This traceless 4)&4 matrix can be diagonalized in the
form

Z* Q (r„a„r.+. u„a„)Z

= —(yitrs+ysrs+ysa sr p); y„&~0, (2.11)

where y&', y2', and y3' are the roots of a certain cubic
equation (the "resolvent" associated with the quartic
equation resulting from the traceless 4&&4 ma, trix). The
algebraic steps involved are given in Sec. 11 of Ref. 4,
where a similar problem is solved. ' %e shall here need
only the coefFicients of the cubic equation, expressed in
terms of r„and I„.

P y
' =P (r '+I ')

n n

and the relevant isobar terms are contained in (S*E'S)pp.

The corrections caused by mixing between these states
and the higher eigenstates of H' (when g is finite, but
large) are very small and will be neglected.

III. POTENTIAL VALLEY AND THE TWO CASES

In terms of the field variables p and tt defined in
Eq. (2.4), the free Hamiltonian Hp takes the form

Hp= lK(Z p. '+» 4"I")

where

ytt ym E rn rm +P rtt std
n(m n(m n

(yiysys)'= (rirsrp)'; (y.~&o)

(2.12)
B„,= d'x E„(x)(p.'—D)E, (x),

B„,'= d'x E„(x)(p„'—6)E,(x).

(3.2)

Ii =SF', (2.14)

Writing S= I'I"Z, we have the required unitary matrix
that diagonalizes H'.

S*H'S= gC(yi—as+ysrs+yptrsrs). (2.13)

The four eigenvalues of H' are, in general, widely
separated because of the "large" factor g.' (Actually
g))a is a necessary condition for the strong-coupling
approximation to be valid. ) In the Schrodinger equation

( E+H)F= 0—,
substituting for the 4-component Schrodinger function

Later we will need their inverse matrices

B„,= d'x K„(x)(p.'—tti)
—'E, (x),

B,.'= d'x E,(x) (p '—6)—'E, (x),

2 BrsBst =~rt t 2 Brs'Bst'= tirt .
8 S

(3.3)

we obtain, since S commutes with P„y„,
S*( E+Hp+H')S—F'= ( E+S*KS+—A)F'=0, (2.15)

where

K=Hp gC g y—
B,,=S,,V. , I.=

3C2
and

d'x 5, (x) 5, (x), (3.4)
(~-'—~)

We may note that the submatrices B;; and B,,' (when
i, j= 1, 2, 3) are diagonal.

A= gCL(1 — )ap+yi(1 —rs)ys+ (1—o srs)ys]. 8,,'= ~„V„, I"„=
3C2

d'x8. (x) lt, (x). (3.$)
(~.'—~)

In the limit of infinitely strong coupling, A vanishes for
the lowest eigenvalue of H' (when o.s=rp 1) and is-—
+~ for the other three, so that the lowest eigenstate is

completely decoupled from the higher ones. The system
of low-lying excited states is then described by a one-

component Schrodinger equation:

E+ (S*KS)„)Z'=0 — (2.16)

In the case of the general vector meson interaction, the
coupling involving both the transverse and longitudinal mesons,
G. Wentzel (Ref. 4) has shown that a similar structure for H'
results (with 0. and r interchanged), and hence the diagonalization
procedure is quite similar.

We are, however, concerned only that the lowest eigenstate
should be nondegenerate, and infinitely separated from the other
three in the strong-coupling limit. This is satisfied if we require
at least two of the three y to be nonzero.

In the limit a((p ', p„', we have I' p'„a' (and
when a»p ', hatt„', we have V ~,—' and Ir„&„—s)

From Eq. (2.16), we see that the tt-dependent terms
of the free-meson energy Ho, together with the lowest
eigenvalue of H', —gC P y, plays the role of a po-
tential energy for the Schrodinger problem. This poten-
tial energy exhibits a valley in the g space, the rotational
(and vibrational) motions in which furnish the low-

lying excited states. The remainder of this section will
be devoted to locating this valley or, equivalently,
finding the minimum of E as a function of the q
variables. In the course of this we shall see that there
exist two domains for the ratio f/g, which have char-
acteristically different solutions.
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The pertinent terms to be minimized are replaced by the six algebraic equations:

&»=-2LZZ B q pq p+ZB 'q»q»j gCZy ( '6)
1 rL-( + )( + )( ))

ngn

with constraints implied by Eqs. (2.8) and (2.9) to-
gether with (2.12). Using Lagrange multipliers n;p and
P,, we write

r$i /F3

+P y„' »„—'+u„'+ P y„=O (3.17)
rm' n

d&» Z~'pd(q'p Z» ~' ~p )
$p

—Z P'd(q'" E(g—/f)u &-)=o (3 7)

Z y-y-+ -'
n &n'

Ant, 1—F
- (yl+y2) (y2+y3) (y2+yl)-

=0. (3.18)

Variation with respect to q„gives

P B„,q„p
—Q n, pb„=0,

and by varying with respect to r, we get

(3 8)

Equations (3.17) and (3.18), or equivalently (3.12) and
(3.15), have several solutions whose E'»"' we must now
compare to determine the over-all minimum.

Case I. All Nn are zero. This corresponds to the
situation where no p but only m mesons are bound. With
the help of (2.12) and (3.12), we obtain

y =r„=F for all n.

gC P yn P &ip~/n~pm
~rm zp

Thus, for case I,
(3 9)

u„"&=0, »„&o' =r. E.»&o&r 2gCr (3 19

From Eq. (3.8), with the help of the inverse matrix B,
we obtain

Case II. u1=u2=0, u»WO. Now (2.12) gives

Thus

q„p=Q n;pB;, ; q;p o/;pY-—,
$p

y1, 2 2 {L(»1+»2) +u2 $ ~L(»1»2) +u2:j } y2»2 ~

(3.10)
With (3.15) for m=3, we get

TT —1 ~0'ip & x ~ rnSinSpn ~ (3.11) $(» +» )2+u 2]1/2 —r~

Substituting for u, p in (3.9), we get

l9

r—P y„=»; r=gCY .

Similarly, (3.12) for 222=3 gives»2= I', and for»22= I, 2

it gives two linear homogeneous equation in r& and r.,
the determinant of which vanishes for F'=2F. Thus,
when F'/2F,

(3.12)

Similar variations with respect to q„& and Nn yield

r(&=r(&=0 r, o =r I, =F'
) 3 0 3 )

E (')11 2gC(I+r ) (3 20)

q."=Z O'B",

0'= (g/f) Y. ' 2 u-~'. ,

(3.13)
Notice that E,("'~~E,")",according as F'~~2F.

Case III. u»0, u2WO, u2 ——0. Then Eq. (3.18) for
m= 1, 2 requires»1 »2 », and if »&0——, th——en Eq. (3.17)
for»/2=1, 2 requires u1=&u2 ——u. With this, (2.12)
gives

2 y.=u-; r'=(f/g)'gCY'
8Q

(3.15) y 1{'$(»+»)2+2u2)1/2~((»» )2+2u2$1/2} y

From (3.18), follows

On combining (3.10), (3.12), (3.13), and (3.15), the
equilibrium value of E, is readily expressed as

P(»+» )2+2u2]'/2 =I"

and from (3.17), we get
K»/" =

2 P LI '»„'+ Y '(g/f) u„2gCy„). (3.1—6) r(r' —r)
r (fl)—

3

F2

2F —3F2F' —3F
It may be noted that (2.12) does not provide a, simple

exPression for P~ y„; yet its derivatives with resPect Further, in order that u be real, it is necessary that
to r and I can be computed after a few simple but
lengthy operations, so that (3.12) and (3.15) may be » &0/+»2 "&(r' or I")21'.
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Thus, the extremum III (with r&0) has the value

r(r' —r)—
(0)III 1gC ri+

(2r' —3r)

only when F'& 2I'. (3.21)

In the event that r=0, then

yz=y2=0 y3= (r3 +Nz +N2 )

Then, either r'= I'= y3 and E,& )'"'=——,'gcr; or
r'Wr, whence r3=0 and y3 ——(NI2+N22)=F'. Thus all
r„are zero. This situation will be taken up later as
Case V.

Case IV. All I WO. Consequently from (3.18) rz —r2-
=r3=r; and if r/0, with (3.17), we get NI2=N22
=N32=232. Then it follows from (2.12) that

y
I {L4r2+ 3232]l/2~ ~3N) y r

Further, from (3.18) and (3.17), we get

$4r(o) 2+323(o) 2]»2 r', r")=FI"/(3F —4F) .

Excluding this narrow transition region (note a((g), we
shall assume either Case I or Case II (unmixed).

The unitary S matrix appropriate for diagonalizing
H' in either case is now easily approximated. In Case I,
since in equilibrium q mesons are not bound, we are
content with diagonalizing the dominant pion part of
the H' alone and leave the remaining small nondiagonal
terms to be treated as perturbations. Thus with Sz
= I'F'Zz, ' Zz = (o.z+ir2)/V2,

Sz*a'Sz= gCZI*(p(r.~:.+N.~.)]ZI

gC (r,o—3+ r 2r 3+
. r3o,r,).

+gC{ZI*(PI o ~)ZI) (Case I) . (3.26)

Similarly in Case II, we require only terms with r3
and us to be diagonal; thus with Szz= FV',

SII*H'Szz =gC(r303T3+23303)

+gC{g(r„o r +I o )) (Case II). (3.27)
n=lThis extremum exists only (since I must be real) when

F'&2F. Then, using (3.16), we get

(o)zv 2gCF I
1+

F

3F'—4FI
1—gCP y,„=—gC P r„+—P I„' (Case I) (3.28)

n n 4mCase V. Finally, suppose all r =0. This corresponds
to the situation where only p nlesons are bound. One
has then yz ——y2 ——0, y3 ——LP~ I„,')'"=F'. Thus 1 (rz+r2)2 2312+u22-—gCQ y,„=—gC r,+I,+ —+

n 2 r'(3.23)E ("~=—~ger'. r+r'

The perturbation terms (within curly brackets) in
(3.26) and (3.27) give rise to second-order corrections

(3 22) 111 L
—gCQ y ]:

Comparing the five solutions above, we notice that
when r'&2r, we have E,(0"&E,"" and no other
solutions are valid; and when r'&2r, we have E,(')'z

QEq (Eq and Eq (Eq q
alld Case I ls

not valid. Thus, we get two general solutions, depend-
ing on whether

or
I"/2F=-'(f/g)27' F' I&1 (Case I) (3.24a)

I"/2F = —,
' (f/g)'Y„Y„'& 1 (Case II), (3.24b)

r/—1 &(a/g)'
2r

(3.25)

each providing the corresponding lowest potential
valley, the rotations and oscillations in which, as
already mentioned, give rise to the spectrum of low-

lying excited states. It is also seen that the transition
from Case I to Case II takes place within a very short
interval, as the ratio of coupling constants (f/g)'
changes through the critical value 2I" I',—'. Indeed, the
complications through mixing of states corresponding
to Cases I and II occur only if iE'2("—E,(')" i

is less
than the vibrational zero-point energy ( 1/a if /Ia((1),
implying

(Case II) . (3.28')

These additional terms give a contribution to the
"potential energy" at small deviations from the equi-
librium positions and give rise to a weak scattering of
the "free" mesons by the bound system. We shall not,
however, consider these effects in this paper.

IV. DOMINANT + COUPLING (F'&2F)

With the help of (2.1), (2.9), (3.1), and (3.28), the
Hamiltonian describing the strong-coupling effects in
Case I is given by

&= l I E{ZP.'+2 ~-V"~")—2gC 2 r-]
p S

1 r'
+- Z(p. ")'+Z 73-'V."V." —Z(V'")'—

2 ~ - 2I'„2r '
(4.1)

The new Hamiltonian E appears separated into Ir and
)) parts, and the strong interaction ( g) survives only
in the m part. Then, the binding of the + mesons occurs
as though no g mesons were present, and the results of
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Pauli and Banco' or Houriet' can be taken over without
any change. The main feature of this case, accordingly,
is a nucleon isobar spectrum, given by

E,,= r(r+I); z=z, r&Ir, I,

where
c=3v a/g' for up«1 (g»a),

a'p'/g' for ap»1 (g'»a'p') .
T, T3, and J, are all half-odd integers. Only isobar
states with equal spin (J) and isospin (T) occur.

Ke feel, at this point, it is necessary to emphasize
that the absence of strong binding of g mesons is not
to be construed as due to weak gg coupling. This domi-
nance of pion binding persists so long as the ratio of
the coupling constants (f/g)2 is below the critical
value (3.24), however large the magnitude of f' itself
may be. As the gE coupling is increased so that (f/g)'
exceeds the critical value, the transition from Case I to
Case II takes place almost abruptly, and immediately
the q mesons begin to be strongly bound. This re-
markable distinction, peculiar to the strong-coupling
theory, is associated with the wide separation between
the two potential valleys (because of the "large"
value of g).

Finally we observe that as this transition takes place,
it is simultaneously accompanied by an instability de-
veloping in the solution corresponding to Case I. The
term —(I/4I'„) (I"/21')p;(q, s)' in Eq. (4.1) (which can
be regarded as a "pair interaction"), in conjunction
with the free g-meson Hamiltonian, causes a shift in
the eigenfrequencies cvz= (p„'+0')'" of the tp„ field. The
continuous spectrum is unchanged, except for the lowest
eigenvalue &u02, which, as I"/21' is increased from 0 to 1,
detaches itself from the continuum, decreases from p„'
to zero, and becomes negative as I"/2I' is further in-

creased, confirming the fact that "equilibrium I" be-
comes unstable in Case II.

V. DOMINANT g COUPLING (1 '&2F)

These definitions are consistent with the orthogonality
conditions of s; and s,„', since

B8; B8; B8; Bt,';
P e,-=P e,-=P ——=0,
i Bg i Bg s Bg B@

fBe,) 1 /Be;)s2 e''=2
I

—
I
=Z. .

&Bg3 ' sin'8kB')
(5 2)

Be, Be, i Be, Be,
e;e;+——+ ——=8,,

B8 88 sin'8 Bits Bg

Similar relations hold for ep'.
The nine field variables q;, are then readily replaced:

B8i B8p B8i 1 B8p
q;, = re;e, '+ $i +t2——

Bg Bg' Bg sing' BP'

1 Be Bep' i Be; 1 Bep'
+h — +54 —

, , (5.3)
sin8 Bp Bg' sin8 BP sing' Bp'

qrp=qrp +gC P Bire,ep', r)3,

q, s=q, '"+fC Q B,,'e, .
(5 4)

The corresponding canonically conjugate p' variables
are then defined by'

pip=pip +P &ip, rapra +P 44ip, p ss

where we have denoted rs by r, and $i, p„ t4, and $4 are
linear functions of ri and r2 («r), dependent on f and
f'; we are not interested in their explicit form. New
variables for the remaining q„,(r&3) and q, s are intro-
duced by shifting their origin to their equilibrium
values, as given by (3.10), (3.13), and (3.20). Thus

From Eq. (3.20), we know that the potential valley
for this case is situated at

fy( ) p2( ) Ny( ) N2( ) 0 z3( ) p

p p

8 S

(5.5)

Convenient polar coordinates, in terms of which the
field variables q;, and q, ~ may be expressed, are defined where, in order to satisfy the canonical commutation

with the help of two unit vectors relations, we have

e;=S 3, ep'=S, 3

ei = sing cosP,
ei' = sin8' cosP',

em= sing sing,
em' ——sin8' sing',

e,=cosg, (5.1a)
e3'= COSH'.

igC g B—,„fp,,',e;e,'], r&3,
(5.6)

I sp s igC 2 +ss I Pap seJj'
The remaining components of s,„and s„' are given by

Be; exp(mid) Be;
sfi&is, 2

——exP (&i|P)—&i
BH sin8 B

(5.1b)
Bep' exp(mid') Bep'

s»'&is»' exp (&i|P')——
Be'

p;,' are expressible as linear functions of P4, pe, pp, pe,
p„, v, , v.s, ~4, and v-4, which are the canonical conjugates
of the field variables 8, g, 8', st', r, $i, b, g4, and $4

introduced in (5.1,5.2,5.3):

p . r =p. 0)+p. (2)+. . .
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where where we have defined

1 Be,' 1 Be,'
P, 0)— e, -P0,+ P~,

r 88' sin'8' 8$'

pip =pip +P 4p, rsprr +2 jiip, pss" (5 11)

Be; 1 Be;
+e,' —P0+ —Pi + ~ ~ ~,

88 sin'8 8$

Be; Be,' Be; 1 Be,'

P;p
"&=e,er'P„+— —„)+— 2r2

Be Be' Be sine B@'

Substituting (5.10) in (5.11),we derive

p,. (o)+Q j1,. j p, (o) —p,
'

jtip, jr P ~ip, rs~jr, rs+P pip, sj(jr, s

(5.12)

1 Be, Be,' 1 Be, 1 Be,'

sin8 8$ 88' sin88$ sin8' 8(t&'

Substituting for X and p, from Eq. (5.8), we obtain

A;, ;,=a, e„'e,'(8;j e,e—,)+Pe,ej (b„, e,'—e,'), (5.13)

and the dots stand for terms containing $ variables where

that are of no interest.
With the help of (5.2) and (5.7) the commutators in

(5.6) can be determined:
with

B,„
(e,ej(8„e,'e,—')

V
+e,'e '(8;j—e,e,)), r) 3; (5.8)

1
s= Q (8„)2=—— d2x8. (x) 8.(x),

3C2 (+ 2 j) )2

s'= 2(&'.')2
8,,'

j"., = (f/a) 2 —e.'(8',—e'e;) .
I

&= l (2' p."+E(p'")'+2 &-2 q"'q. .'
2'$ Prp

Thus substituting the new variables (5.3,5.4,5.5) in E,
LEq. (2.15)]we obtain

C's = 1/12m. (2 when ji a(&1,

a 'p ' when p a))1;
C22'= 1/12)ra when ji„(2(&1,

a 'IJ,„' when p„a))1.

+Z B„.'q„' q, '" RC(r+r')—

+P t"pip +P &ip, rsprs +g jiip, sps "])+Its
2P

where E,' is the perturbation term (3.28):

(r +r2)' 2i 2+N22

r' (ryr')

(5.9) Substituting (5.13) for 4 in (5.12) we can solve this
equation for p;, (0), with the result

p, p(') =p, p' — ep' P e.'p,.' e, Z e—,p, p'

1+(2 1+0

(2 P
+I + e;e,' Q e,e 'p, ,'. (5.14)

(1+(2 1+/

p„,'(0) — P y,. „,p,. (0) r)3
2p

and from (8J( ~/8p, '0)=0, we get

(5.10a)

We still have to perform another (but weaker) trans-
formation on the p variables (p'=p'"&+p"). This
would separate the p-dependent terms of E into those
containing only p;, ', involving the "bound" meson
variables, and the rest that denote the "free" mesons,
only weakly interacting with the bound system. As
usual, this is achieved by a variation of E with respect
to P„,'(r) 3) and P,'0, the resulting minima E~(0) con-
taining the required compound nucleon terms.

From (8K„/8p„') =0, we get

This, with (5.10), determines the location and the
value of E„minimum.

(0) 2 Q p. rp, (0)

2P

p;,"— p, ,'e, ' P e.'p;, '
2p 1 Q o'

pip e' Q ejpj p

1

t' ~
+I + Ip,„'e,e,' Z e;e, 'p, ,' . (5.15)

1+Pi

p, 'r&(0) = Q ji, ,p,. (o)

2P

(5.10b)
Now, with (5.7) for p;,', and using the orthogonality
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conditions (5.2), Eq. (5.15) becomes

1 )L' L"
~

4

E, ('& =
i + i+-,'p„'+-,' Q gr,', (5.16)

2r2&1+~ 1+Pi ( Er+—Hr)F'=0. (5.22)

as the Hamiltonian of the Schrodinger equation for the
rotational states.

where
L'= (1/sin8) pg sin8pg+ pg2/sin28,

L"= (1/s&n8')Pg s&n8'Pg +P@ '/s&n'8'.

Since p and p' are cyclical variables, F' has the form

F'=e'( +g" g' u&(8) 24(8').

Szi =S("S', (5.17)

where S(0& makes H'('& (the value of H' at equilibrium)
diagonal, and S' provides perturbative corrections con-
taining p„and r, which however, play no role in our
problem. Accordingly, using (3.20), we have

H~(0) gC Q o .r q (0)+fC Q o (7.2(0)

=gCt F P o.;r,e;e,'+ I"Q o,e;$. (5.18)
's p

Hence
S('&*H'"&S('&=gC(F(rgr2+r'og) .

This diagonalization is achieved by

S('&= YY'; Y*(p,e4)Y=, Y'*(Q r,e,')Y=r .

Y= (cosg/2 —io 2 sing/2) (cos8/2 —io 2 sin8/2)
(5.19)

Y' = (cosg'/2 —ir 2 sing'/2) (cos8'/2 —ir 2 sin8'/2) .

On performing this S(') transformation on the first
term of (5.16), we obtain the isobar terms

y
. —y+12y y/+I/2y/

Hz=
2F2 1+n 1+P

1 . pg —cos8pg+4
Y*L2Y= pg sin8pg+ — +4,

sin0 sin20
(5.20)

1 pgg cos8 pg~+4Y'*L"Y'= pg sin8'pg +— +4.
sin8' sin28

Substituting for n and p from (5.13), we g«
I

H = (g's+f' ') '
2C2

pg sin8pg
sing

pg cos8pg+ 4+- +4
sin'0

The rest of the terms of E are of no interest to us since
we do not wish to study here the "free"-meson scatter-
ing effects.

Finally, we have only to calculate S*IC„("S, the
crucial term in the Schrodinger equation (2.15). We
split the unitary matrix S» (Eq. 3.27) so that

The requirement that Ii =ST be periodic in the vari-
ables p and p', with S e"+4'+g'&", restricts m and gg to
half-odd integers. The eigenvalues of Hz are then

J(J+1) T(T+1)
~T,J

2C'(g2s+ f2z')
(5.23)

where J&&~m~, T~&~rgj, and J, T, m= J„and 22=T2
are all half-odd integers. In the limit of small a
(«24. ', «p„'),

J(J+1) T(T+1)
Ez,g= 6+a—

—g'+f'
(5.24)

Note that the condition (3.24b) implies in this limit
f2) 2g2

Thus, the isobar spectrum in Case II is quite diferent
from that of Case I.Whereas when I"(2I' only isobars
with equal spin and isospin could be realized, now when
I"&2K, isobars with T&J are possible as well. In
particular, the lowest excited state has quantum num-
bers T=-,', J=-,', and is followed by states with higher
T and J values. In further contrast, when ply coupling
is dominant we find that both the x and g fields partici. —

pate in forming the above bound states. Their strong
cooperation is most manifest in the larger denominator
(g'+ f') in (5.24), which demonstrates that both meson
types contribute to the moment of inertia" of rota-
tional states with spin J&~. Higher T values can be
achieved only by binding x mesons, and correspondingly
the "moment of inertia" ( g') is smaller.

N
H'=P H„'= g P dgx o;("&rg(")&Pg(x)(V,b. (x—x„))

VI. NUCLEAR FORCE

The strong-coupling approximation for nucleon-
nucleon interaction by exchange of scalar mesons was
given by Wentzel, ' and the result was found to be simi-
lar to that obtained in the conventional perturbation
theory. We will seek here the equivalent form when x
and g mesons are exchanged.

Consider E nucleons at rest, located x„(& =0, 1. ~,

X—1). The interaction Hamiltonian is then

+(g's) ' 1 pg~ —cos8 pe~+4
pg~ S1118pgi+ +4

sin8' sin'0'
(5.21)

+fP dgx o;("&&P„(x)(V,b, (x—x„)). (6.1)

Among the complete set of orthogonal functions, the
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6rst 3iV will now be dehned by $3ll+i, p ~ ~3v+j, 31l+i+j P
(0) M l2. . . (v)

i t9

K0„+,=— 8 (x—x„); v=0, , 1V—1, j=1,2, 3,
CBx;

the orthogonality between these functions being en-
sured by assuming

(0)s. (v)s '(v) (6 '/a)

~

x„—x„~ )&a or d'x l). (x—x„)b.(x—x„)=5„„. .g(0) M P~ . .a(v)
g3Il+i ~ ~ 3v+j, 3/l+ipj

vj

Thus, by (2.4)

&'=2 (gC 2 ~"")r.(")q0+',.+fC 2 ~*'" q).0+') (6 2)

with the result

N—1 3—gCZ Ey-'"'
v~ n=1

H is now a 4S-dimensional matrix, diagonalized by
S=+„S„,where S„diagonalizes the submatrix H„'.
We obtain the lowest eigenvalue of H' as

XQ u„&"s;„("&, (6.'/b)

where V and Y„are defined by (3.4) and (3.5). In the
a&p, terms above, we have approximated for njp(") and
P &"), using r„and u„, as though

~

x„—x„~ were
Substituting (6.4) in (6.'/) and using (6.5), we get,
analogously to (3.12) and (3.15):

E=&0 gC Q Q y —(")
8

(6.3) r (v)=1' p y (v)yy —ip g g
gr (~) „ vga ijp

We are again interested in the minimum of E„in par-
ticular its dependence on the nucleon distances

~

x„—x„~,
because this gives the leading term in the strong-cou-
pling approximation for the nucleon-nucleon interaction.

In order to find the equilibrium values of the q
variables, we have to perform a variational calculation
on E, with constraints

$3v+i, p= ~ rn Sin Spn(v) ~ (v) I (v)

Xg r„('&s;„&")s,„(v)s,„'("&s, '&» (6.8a)

XP u (')s '"'s;„'». (6.8b)

Further we may write

q0,+; ——(g/f) P u„"'s;„"'.

This yields

P B„q„, Pn, ,&")80„+;,———0,

8
gC P y„&"& —P n;, & "&s,„&"'s,„""&=0,

(6.4)
r (v) —r (0)+&)r (v) u (v) —u (0)+()u (v)

and consider br„("),bu„(") as small perturbations. As in
Sec. III, Eq. (6.8) has several solutions, and depending
on whether I"/21'&1 or )1, Case I or II will be
realized.

Case I. (I"&21'): In this domain r„(0)=I'=gCF,
u„&"=0 and neglecting terms (hu)'=u'

Q a,.'q, —p p, ()b,„„,,=o,
(6.5)

P y„(v) =P r„(v) P y„'"'=1, for every v.
Br '")

gc g y„(g/f) Z p; s;„'—=o,
BN (v) ~

from which we derive

8
It (0) = igC P r (v) —P y„(v)

vm arm n

Thus Eq. (6.6) becomes

Z, (o) = ——;ger@+-,' P V„„,
/lQ V

V„„=—g'C'P 8 , ;,0„+0++S;,("&S,,&»,
P

(6.9)

+u P y„&"&—2y„'"&

where S,,(v)=g„s,„(v)s,„'("), which are functions of
Euler angles Q„, C „, O'„. Here V„„represents the inter-
action between nucleon pairs ()iW v) or rather its domi-
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nant term in the static strong-coupling limit. Since Substituting for 8 and 8', we get

Bs„+; s„+, ——d'x Es„+;(x)(&a.
'—A) 'Es,+;(x)

where r=
~
x&» —x&„)

~

and x;= (x(» —x(„));, Eq. (6.9)
becomes (6.15b)

which is to be regarded as a matrix between spin-
isospin states of nucleons at x„and x„. General expres-
sions for these matrix elements have been derived by
Fierz. In particular, for the nucleon ground states
J(")= T'"'= 2, the results can be expressed by merely
writing S;p ~0 ' T'p thus

For the nucleon ground states J("'=T("'=—', we can
again write e;= 30.;, ep 37 p Thus,

g2

y (0) — (g(p). g(v)) (~(p) .i7) ((r(v) .q)
81 4~r

f2 e pyv

lv „„(f) = (o(& ) —q) (e(") q)
9 4~r

Q y
(v) y (v)+I (v) P y (v) Q y (v)

Br'" n BN("& n

Qy (v) — Py (v)

Br2("'

ri(v)+rs(v)
(6.12)

Qy ()—
1,2

N~ 2( )

(r+r )

Equation (6.8) then yields

r, ( '= r+gC P P Q B,„;,„;
v&p, sj p

Xe, (")e;&»e,'(")e, '&&), (6.13a)

I '")=r'+gC(f/g)'p p 8'3@+ 3„+e(")e,(», . (6.13b)

where we have set s,3("~=e,'"), s,a"")=e,'("'. Substitut-
ing (6.13) in (6.6), we obtain

y =y „(g)+y„„u)
(6.14)'"= —g'C' 2 E B»+)' ss+'ei'"'e""'e» '"'el""'

v

'bP P

(f) — fsCs g Bvs . s ,+. e(v,)ev ()
ij

' M. Fierz, Helv. Phys. Acta 17, 181 (1944); 18, 158 (1945),

Except for the numerical factor 9, this agrees with the
one-pion exchange interaction, as computed in the
conventional perturbation theory.

Case II. (r')2r): In this case rs(')(")=r=gCV,
Ns""" =r'= (f/g)'gCF„, the rest of the r and I vanish-
ing. Neglecting the terms quadratic in br and bg, we
have

VII. CONCLUDING REMARKS

The Chew-Low-Wick" static theory, considering only
zero- and one-pion intermediate states, successfully ex-
plained the genesis of the T=-,', J=~ resonance. It
further showed that no binding was possible in the other
channels (-,', -', ), (-', Psz), or (zs, -', ), essentially because the
dominant Born-approximatiori phase shifts of these
channels were negative. If isoscalar g mesons alone
were considered, then only the T=-,', J=~ channel
would be found to resonate in this formalism, for much
the same reasons.

Now, for a system with both x and g mesons interact-
ing with nucleons, we have a multichannel problem,
involving a 2)(2 matrix for the scattering amplitude.
Capps" has made an ÃD ' calculation assuming in E
a simple pole, the residue of which is given by the Born
amplitudes. D is then readily computed by appealing
to the unitarity requirement, and det~D~ =0 provides
the resonance condition. For the (sz, ss) channel, this
reduces to the Chew-Low condition (neglecting the
refinements due to crossing)

1 2C033+~g =0
~ (7 1)

and for the (-,'ss) state it takes the form

detD=1+o)tsy g' o)isy„f' 4(diss' y„g'f—'=0, (—7.2)

where y and y„are integals involving kinematical
factors and are only weakly energy-dependent. The
other channels (zr, rz) and (sz, zr) cannot resonate, again

"G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956);
G. C. Wick, Rev. Mod. Phys. 27, 339 (1955)."R. H. Capps, Nnovo Cimento 27, 1208 (1963); see also
A. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).

This result is again in formal agreement with a weak-
coupling theory involving single m and p exchange, with
renormalized coupling constants suitably defined.
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because of negative phase shifts in . the Born
approximation.

Clearly from Eq. (7.2), a large enough f'y„ is neces-
sary to offset the g p term if it is to cause a binding in
the (—,', ss) channel. Granting this, the relative position
of the two resonances is dependent on the ratio g'y /
f'y„In .particular cuts(russ, when

f'/g'&v-v. ' (7 3)

This is, indeed, at least outwardly similar to the rela-
tion I"&21' or (f'/g &2Y Y„') obtained in Sec. III
for the strong-coupling approximation.

Although in both theories, as intuitively expected, a
T=& resonance is enhanced only when the 7IIE inter-
action is dominant, there is considerable difference in
their detailed mechanism. A characteristic feature of
the strong-coupling theory is the abrupt emergence of
the 2'=-,' state as the coupling constant f is varied
through the critical value, and further manifest in the
structure of this theory is a curious interplay between
the bound x and q meson 6elds. Furthermore, the
strong-coupling theory predicts a T= » J=

~ state with
its energy value lying between those of the states (-,' ss)

and (ss,—ss), when the rid couPling is dominant (Case II).
This effect is entirely peculiar to the strong-coupling
model, and specifically a J= ~ resonance cannot be ob-
tained by the Chew-Low approach or in any theory
that uses the Born amplitude as the boundary value,
since these dominant Born terms have negative phase
shifts. Finally, the higher excited states that arise in
our scheme may be of some relevance when more
detailed investigation of high-energy resonances is
completed.

We may now attempt to correlate the conclusions
of our model with the present experimental situation.
We notice that the lowest lying nucleon isobar is

Xgs, s, s*(1238); thus we may associate the nucleon
interactions with Case I in our model, which in turn
implies (fg~„/gN~ )'& 2 (in the limit ay&&1). It is easy
to see that similar strong-coupling calculations can be
made with the " doublet (instead of nucleons) to gen-
erate S=—2 excited states. Here, however, since

]/2 3/2 at 1529 Mev happens to be the lowest excited
state, Case II is probably realized, which would indeed
mean (f=.=„„/g=.-. )'&2.

We could examine these inequalities in the light of
the octet version of the unitary symmetry for strong
interactions. The SU(3)-invariant interaction between
a baryon octet and a meson octet is of two distinct
types, D and Ii (related to d;;s and f,, k of Gell-Mann" ),
and the ratio of their mixing is given by a parameter
a."Precisely, o.=0 refers to pure D and +=1 to pure
Ii coupling. In terms of this mixing parameter, the ratios
of our coupling constants are easily expressed:

fgg„)i' 4rr —1-' f=. -.„' — 2rr+1

gxrv. & v3 g=. =. (2n —1)v3
(7.4)

For o. between 0.21 and 0.86 the above ratios are such
as to fall in the Case I domain for nucleon interaction
and in the region of Case II for interaction. This is
indeed the region within which the recent experimental
fit seems to fall' and is consistent with what we have
observed in the previous paragraph.

Indeed, it should be interesting to incorporate hyper-
charge into the scheme of internal symmetry while

diagonalizing the strong coupling interaction Hamil-
tonian, with E-meson eRects properly included. If such
a unified pseudoscalar strong-coupling calculation does
not drastically change the results of our restricted
model, then we have partially established that the
lowest lying set of baryon resonances belongs to the
SU(3) multiplet {10}and not to {10},{27},or {8},
since the combination E3,2* and ~/~ occurs only in the
{10}representation. "

'2 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
"Our parameter e corresponds to a„of J. J. de Swart, Rev.

Mod. Phys. 3S, 916 (1963), Sec. 17.
~4Por example, W. Willis eI, al. , Phys. Rev. Letters 13, 291

(1964). There are two solutions obtained as best fits, giving
n=0.37 Lagreeing with the solution of N. Cabibbo, Phys. Rev.
Letters 10, 531 (1963)] and n=0.63. Both of these values of u
satisfy our criterion.

"The {27}representation requires T=-'„-', members for both
E* and
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