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slightly on the radius chosen, but the variation in the
theoretical ratio with radii from 0.7 to 0.9 F is less than
0.5% The answers shown were obtained with an rms
radius of 0.8 F. The column labeled Gsr/G~ scattering
shows the ratio of magnetic to electric scattering pre-
dicted by the experimental fit to the Rosenbluth" cross
section. Figure 6 shows the data plotted graphically
as a function of momentum transfer. The dashed line is
the best polynomial Gt to the data passing through
one at q'=zero. The data show deviations from one
(the first Born prediction) at higher momentum
transfer and backward angles. It is probable that there
are more two-photon corrections than predicted by
Lewis's theory at the larger momentum transfers.

"M. Rosenbluth, Phys. Rev. 79, 615 (1950).
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A new separation of the angular momentum in the Faddeev equations is given. This separation makes
use of the relative angular momentum of two particles, which is combined with the angular momentum of
the third particle in the over-all center-of-mass system. With the assumption that the two-body amplitudes
factorize in the initial and final momenta, the Faddeev equations are reduced to a coupled set of integral
equations in one variable. This set is furthermore simplified in the case of identical particles to only one
integral equation. Thereby the statistics is correctly taken into account. The resulting equation is used to
investigate possible bound states of three pions with total angular momentum zero, isospin one, and odd
parity. The two-body amplitude which determines the kernel is approximated by the isospin-zero, s-wave
effective-range formula of Chew and Mandelstam. Use is also made of relativistic kinematics. The pion is
found as a bound state of three pions in this model. The outcome is, however, strongly dependent on a
physical cuto6 parameter in the two-body form factor. As a result a detailed investigation of the form
factor is desirable.

1. INTRODUCTION

~ 'HE Faddeev equations, ' ' and their validity, for
a system of nonrelativistic three particles inter-

acting through two-body potentials between each pair
of particles are now well known. These equations are
clearly applicable to quantum-mechanical three-particle
systems such as the problem of electron-hydrogen atom
scattering. They can also be applied to three-body
problems in low-energy nuclear physics in which the
two-body interactions can be described by some sort of
phenomenological potential. Thus in these problems the

*Work supported in part by the U. S. Atomic Energy Com-
mission.

f On leave from the University of Nijmegen, The Netherlands.
'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)

)English transl. : Soviet Phys. —IETP 12, 1014 (1961)j.
'L. D. Faddeev, Dokl. Akad. Nauk SSSR 158, 565 (1961)

LEnglish transl. : Soviet Phys. —Doklady 6, 384 (1961)g.'L. D. Faddeev, Dokl. Akad. Nauk SSSR 145, 301 (1962)
LEnglish transl. : Soviet Phys. —Doklady 7, 600 (1963)j.

Faddeev equations are expected to play an important
role. The accuracy of the results of such calculations
merely depends on how accurately the computations can
be carried out.

Our interest in the Faddeev equations is, however,
based on their possible application to particle physics.
Here, too, very little has been done with the three-
particle problems. In nearly all the problems, the three-
particle system has been regarded as being two par-
ticles, one of which is composed of two particles clumped
together. The Faddeev equations, although nonrela-
tivistic, are at least genuine three-particle equations.
Furthermore, a remarkable property of the Faddeev
equations is that they only require a knowledge of the
two-body amplitude (off the energy shell). This is
clearly an advantage because at least in the region of
resonances and where the effective-range formulas are
valid, the two-body amplitude is known fairly well,
whereas very little is known about a corresponding po-
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tential (and even its possible existence). A prescription
is needed~ however, to find the off-shell two-body
amplitude once the on-shell amplitude is known. As
pointed out by Lovelace, 4' in the neighborhood of a
resonance or a bound state the residue of the off-shell
two-body amplitude factorizes in the initial and final
momenta. The resulting functions of the momenta are
called the form factors. In the case of a bound state
these form factors are simply related to the bound-state
wave function. Such considerations arise naturally if one
consid'ers the two-body bound-state solution for a
separable potential. '

With this prescription of taking the two-body ampli-
tude off the energy shell we apply the Faddeev equations
to strongly interacting particles. We take as the simplest
example the problem of possible bound states and
resonances of three pions. The pions being spinless oBer
a relatively simpler problem. Furthermore, since we
want to look for three-particle bound states and reso-
nances, we only have to study the possible solutions of
the homogeneous equations. In particular, in the
present paper, we shall consider the homogeneous
Faddeev equations for a system of three pions in a state
of total angular momentum zero, isospin one, and odd
parity. Thus, following the notion of composite particles
often emphasized by Chew, ~ we want to know whether
the homogeneous FaddIeev equations have a solution at
an energy corresponding to that of the pion and with
the above quantum numbers. We would interpret a
positive result to mean that, within the framework of
the Faddeev equations and our approximations (to be
discussed later), the pion can be understood as a bound
state of three pions. Similarly, one can investigate
whether three pions can form a resonance state corre-
sponding to the co particle.

Our first task is thus to write the Faddeev equations
for a system of three pions in a given angular mo-
mentum, parity, and isospin state. A method of separa-
tion in angular momentum of the Faddeev equations has
been discussed by Omnes' (this separation was utilized

by one of us in a preliminary investigation of the co

problem' ). Omnes uses the variables described as the
energies of the three particles in the three-body center-
of-mass system, the total angular momentum and its
components in a body-fixed axis and on a space-fixed

4 C, Lovelace, in Strong Interactions and High Energy Physics,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964).

' C. Lovelace, Phys. Rev. 135, 81225 (1964).
' See, for example, Yoshio Yamagouchi, Phys. Rev. 95, 1628

(1954).' G. F. Chew, S .Vatrix The-ory of Strottg Irtteractiorts (W. A.
Benjamin, Inc. , New York, 1961).

R. Omnes, Phys. Rev. 134, B1358 (1964).
9 Akbar Ahmadzadeh, Lawrence Radiation Laboratory Report

UCRL-11749, 1964 (unpublished). Note that Eq. (11) of this
paper should read: f23 ———a23/2~ . Although this error makes the
eigenvalues considerably smaller, a preliminary study of the
integral equation given in the present paper showed that it is
possible to produce eigenvalues of the order of 1 by taking the
physical cutoff parameter p to be of the order of 5. We intend to
re-examine this problem within the framework of the present paper.

axis. We use instead the variables introduced by Dalitz"
in connection with the three-pion decay of the 7 meson.
Using this separation of angular momentum together
with the factorization of the off-shell two-body ampli-
tude, we obtain an integral equation in one variable so
that numerical computations can be carried out with
reasonable con6dence. R.ecently, a similar result has also
been obtained by Basdevant" using the Omnes vari-
ables. The separation of angular momentum by Omnes
and the one carried out here are merely two alternative
ways of which one or the other may be more practical in
a particular problem.

In the pion problem the two-body amplitude is con-
sidered to consist only of the isospin zero, s-wave state
described by the ABC phenomenon, and the effective-
range formula associated with it. The third pion is con-
sidered to combine with the ABC to form an over-all
isospin one, angular-momentum zero state. This model
(for every combination of the pions) is imbedcled into
the Faddeev equations, and conditions for a homo-
geneous solution are sought.

In the following section we describe the reduction in
the angular momentum. Subsequently, the pion problem
is considered in Sec. 3. Finally, in the last section we
give a discussion of the results.

2. REDUCTION OF THE FADDEEV EQUATIONS

I.et us consider the case of three nonidentical spinless
particles with masses w~, m2, m3. At the end of this
section we shall examine how the reduced equations can
be further simplified for identical particles.

In the nonrelativistic case the equations for the three-
particle scattering matrix T has been given by Faddeev. '
They can be written in a formal way as

T'(s) = Ti(s) —Ti(s)Gp(s){T'(s)+T'(s)),
T (s) = Ts(s) —T ( )sgsp(s) {T (s)+T"'(s)), (2.1)

'()= ()- ()Go(){ '()+ '())
with

T= T'+T'+T',
Gp(s) = 1/(IIp —s),
T, (s) = V,—V,Gp(s) T;(s) . .

(2.2)

T' (s) = V,—V,G p (s) T (s) . (2 3)

' R. H. Dalitz, Phys. Rev. 94, 1046 (1954).' Jean Louis Basdevant, Phys. Rev. 138,B892 (1965);Lawrence
Radiation Laboratory Report UCRL-11838, 1964 (unpublished) ~

We are grateful to Dr. Basdevant for communicating his re-
sults to us.

Here IIO denotes the total kinetic energy of the three
particles and U; is the potential between particles j and
k(Wi). From (2.2) we see that T; is the two particle
scattering matrix in the Hilbert space of the three
particle states. This should in principle be known off the
energy shell for solving the Faddeev equations.

The T'(s) are defined by the equation
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Pl= m3 2 m2 3

(2m2m, (m2+m2) )'"

Ql =
(2m, (m2+m2) (m, +m, +m, ) )' '

xLmi(k2+k2) —(m2+m2)kig.

(2.4)

Owing to the conservation of the total momentum we
may assume without any loss of generality that we are
in the center-of-mass system of the three particles. The
Eqs. (2.1) have been further reduced by Omnes' by
using as variables the Eulerian angles and the absolute
values of the momenta k, (i=1, 2, 3). We shall here
carry out the reduction with a diGerent set of variables.

Following Lovelace, ' ' instead of characterizing a
three particle state by the momenta k, (2=1, 2, 3), we
can use certain combinations of them, namely

J is diagonal. These states are simply given by

~
pqmlL&,

l Li
C

~ ~
Plmi, qLmL); (2.7)

~2 ~L M mi mL~

in which C ~
l LI

~

are the well-known Clebsch-
M ml mjj

Gordan coeKcients. For convenience we shall denote the
discrete quantum numbers JM/L simply by 0..

We are now in a position to write out the Faddeev
equations in this representation. Let us consider the
first equation in (2.1).The other two can be treated in a
similar way. With the notation

q'-'(pqn) = '&pqn I
T'I ~)

(where n =ki", k,", k2"), it can be written as

The corresponding normalized state we shall denote by
~pi,'qi)i. The extra subscript 1 is needed to stress the
fact that we use the combination (2.4). Furthermore, we
shall also need the corresponding partial-wave states,
which are denoted by ~Pilmi, qiLmL)i. These wave
functions are normalized as

i&Plmi2 qLmL(P'l'm p, q L'mL )2

=(pq) '&(p p)~(q q—')~ &—
In addj. tion to the set pl, ql, we shall also use the other
sets p2, q2 and p3, q3, which are defined by cyclic
permuta, tion of the subscripts in Eq. (2.4). The corre-
sponding normalized states are denoted, respectively, by
~I22, q2)2 and ~y2, q2&2. Needless to say, these repre-
sentations describe the same state of the three particles.
Hence

(2 5)

The relations between two sets of variables is simply a
linear one. For example,

P2=
mls 2

1/2

Pl
ml m3 'm2 m3

(
m (m+m, +m, ) )'"
ml m3 m2 m3

( m2(mi+m2+m2)
q2= —

I
Pl

k(mi+m2) (m,+m, )

mlm2 1/2

gl.
ml m3 m2 m3

Since the total angular momentum J is a conserved
quantity, in writing out the Faddeev equations ex-
plicitly it is more appropriate to use the states in which

q'-'(pqn) =+.'(pqn) 2& —dp'dq'&'(pqnl p'q'n')
/=2 Aj

where

,
2(i

2

q „'(p;q,n,), (2.8)
p,2+q, 2—S

E,(pqn ~ p,q,n, ) = i(pqn
~
Ti

~ p,q,n;), ,

C„(pqn) =,&pqn~ T, ~~&.

We first proceed to compute E2. With the 'aid of (2.5)
and (2.7) we obtain

ml, mL
ml, mL

L')
xcl I i&wan Tilliiqi)iI'-2'*(0. , v.)M' mi. m, i

X FmL (llq&'Pq) Fml~ (I y2&V @2)FtnL~ (tI22~'P22) 2

&pl Ti(~) Ini&= 2 (2l+1)p~(«sII», )l~'(P, Pi; ~). (2.10)
L=O

Here 8», denotes the angle between p and pi. (A similar
decomposition can be made for T2 and T2.) With the aid
of (2.9) together with (2.10), we obtain for E'2, after
integration over the angles 8» q» 8~, and p, the

where do,=d cos8„dq „dcos8,dy„d cos8„,d p„,d cos8„dy „.
Moreover, pl and ql are defined through the relation
(2.6) as functions of p2 and q2. According to (2.2) the
matrix element i&Iiq

~
Ti

~
piqi)i is given by

i&I ql Til piqi&i=&(q —qi)&pl Ti(~—q') ll 2& (2 9)

where Ti is the two-particle scattering matrix in the
Hilbert space of the two-particle states. It is now useful
to make the decomposition
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expression

g mt, mL
mf, ', mL,

'

t L J' t' L'
d cosa»d p»d coso„dy„C C 5(q qy) 3i (p) pyqs q)

mg m1„3f' mg. ml.

(801)0 91)Y~I (8QI&0 Ql) Y~l' (8B2l PP2) Y r ' (892) 0 Q2) ' ( ' )

We have, furthermore, made use of the relations

8(»—0 )= (2/q)8(q' —
q ')8(«s8, —«s8„)8(9,—~ „),

4m
~ (cos8- ) =——2 Y-'(8., ~.)Y-'*(8. , ~. )

2)+ 1

After some calculation (see Appendix) the expression (2.11) can be simplified to

32~'"(21+1)'" t L J P L' J
(—1)'+' ' '4m&~~

g m. m, ( mr, -mr, . 0 mr, -m, .I
mL

X d cos8„„,8(q' qP)f&'(P—, P&, s q')Y, '*—(8„,„„0)Y 1,~*(8„~„0)Yr, ~'(8„„„0), (2.12)

in which the angles 8. should all be expressed with the aid of (2.6) as functions of p2, q2 and 8„».Here the symbols
in large parentheses are the Wigner 3-j symbols (see, for example, Ref. 12). It should be noted from (2.12) that J
and 3f are conserved, which was to be expected.

In the same way one finds for E3 ..

32~'"(21+1)"' t L J (t' L'
( 1) 8J J'8MM' .,.)

mL

X d cos8,,»8(q2 —qp) t, '(p, p, ; s—q') Y„,~"(8»»,0)Y,~*(8,»»0) Y., '(8,»»0) . (2.13)

Here p~, q~, and 8 . are related to p~, q, and8„„, through
arelationbetweenp~, q~andy3, q, analogous to Eq. (2.6).

The inhomogeneous part of (2.8) can be calculated in
a straightforward way. We shall not write this out
explicitly, since in the applications considered in this
paper, we shall only be concerned with the solutions of
the homogeneous part of (2.1).

The Faddeev equations, which according to (2.8)
have been reduced to a coupled set of integral equations
with only two continuous variables, can be further
simplified to a set with only one variable, if we make an
approximation for the two-body partial-wave ampli-
tudes. It was pointed out by Lovelace that when the
partial-wave amplitudes are dominated by a bound
state or resonance the two-body scattering matrix oR
the energy shell factorizes out in a good approximation
in the following way'

«'(P P' ~) =a~'(P)g~'(P')~~'(~) (2 14)

Assuming the validity of (2.14), the p dependence in the

"A. R. Edmonds, Angular Momentum in Quotum Mechanics
(Princeton University Press, New Jersey, 1957).

Faddeev equations can then easily be separated out.
From (2.8) one sees, namely, in view of (2.12) and
(2.13), that the solution is simply given in the form

+-'(Pq ) =g '(P)+-'(q ).
With this, Eq. (2.8) reduces to

4.'(qn) = C „'(qn)

IC

'4=2 cx j

where

~-'= ~.'(Pqn)

i'll'(P),

dqg, (qn! q,n;)4. '(q,n,), (2.15)

p,'q,' g i,.'(p, ) (2.16)
dp;E, (pqn I p,q,n,)

P"+q" ~ a~'(P)

The generalization to the case that a certain partial
wave contains more than one resonance is quite obvious.

Finally, we shall examine how the equations are
simplified when the three particles are identical. In this
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case, the matrix elements of two different T' can be
related to each other. For example, we have according
to (2.3)

(k,k,k,
I

T'
I k, 'ks'ks') =(k,k,ks

I
T'I ks'ks'ks'). (2.17)

With the aid of these relations the matrix elements of
T' and T' in (2.1) can be replaced by the corresponding
ones of T'. Furthermore, we also have to take the
proper statistics into account. It is readily verified using
(2.17) that the requirement that the particles should
satisfy the Bose or Fermi statistics is equivalent to the
condition

where

&(q~» I
q'n'I»')

= (Ii (IsIs)IssII* I (IsIs)IsAII.)
XX'ss(qnlq'n') (with Iss =—Iss') (2 22)

Here X is defined by (2.20). We have used an additional
superscript I» to emphasize that the two-body scat-
tering matrix also depends on I23. Furthermore, we have
for convenience only written explicitly the dependence
on Iss. The matrix elements ( I

~ ) are directly re-
lated to the 6-j symbols (printed in curly brackets)
according to

'(w I
T'll+) = ~*(—pal T'I ~+) (2 18) (Il (I2Is)I»IIS

I
(IsI1)IslI2IIZ)

dq'Z (qn I
q'n') 4.,'(q' ')n, (2.19)

where

K(qnl q'n') = P E,(qnl q'n').
%=2

(2.20)

Here
I e~) stands respectively for a totally symmetric or

antisymmetric wave function with respect to inter-
change of any two particles. The condition (2.18)
simply amounts to the requirement that the matrix
elements of T' in (2.18) have only to be symmetric or
antisymmetric with respect to interchange in the initial
state of the two particles j and k(Qi) From. (2.15) we
see that (2.18) can be satisfied by imposing on the
kernel of the integral equation the condition that 1

should be even or odd, respectively. Using this, one
finds that the Faddeev equations are reduced to only one
integral equation in one variable which is given by

I2 I3 I23'

Ij I Iag

The condition for satisfying the statistics should also be
modified slightly. Instead of (2.16) we now have

~(pqI~I*~IsIs*I~s*l T'I ~+)
=as(—PsIIsI, ~IsIs,IsIs, I

T'I ss~). (2.23)

In some practical problems the Eq. (2.21) assumes a
simpler form. For example, one could try to find a
solution of the homogeneous Faddeev equations for a
system of three pions in a state with the characteristics
of the + particle. In this problem the two-body scat-
tering matrix can be taken to be dominated by the p
resonance, i.e., /=1, I23=1. Moreover, since J=1, we
have I.=O, 1, 2 of which only I.= 1 is allowed due to the
odd parity of the three-particle state. With these the
homogeneous part of Kq. (2.21) becomes

Up to now we confined ourselves to the case that
the particles did not have any internal degrees of
freedom. Since we are concerned in this paper with
pions, a word should be said about the influence of
the isotopic spin. The generalization to this case is
obvious. The three-particle states are now represented
by (k~ksksI~Is, IsIs,Isis. l, where I;, I;, designate the
isotopic spin of the jth particle and its third component.
In writing out the Faddeev equations it is now useful to
take for the representation in which for example particle
one plays a special role, &(p&I&(IsIs)IssII, I. The nota-
tion is clear. In these wave functions I2 and I3 are
coupled together to form I23 which is in turn coupled to
I~ to form the total isotopic spin I. Since we are dealing
with strong interactions, the isotopic spin dependence
can be separated out easily. One finds

XE (qnI»l q'n'Iss')+„~'(q'n'Iss'), (2.21)

where

%(q) = dqsK(q; qs, s)4'(qs), (2.24)

E(q;qs, s)=—
g p

dps d cos0„„,8(q' —q&')

ps qs
Xtg(PsI Pyi s q )

ps +qs —s

Xcos|I»»l»ntI. »sll»». »sl (2 25)

3. THE PION PROBLEM

In this section we look for a possible solution of the
homogeneous Faddeev equations for a system of three
pions in a state of zero total angular momentum, odd
parity, and isospin one. The two-body amplitude which
determines the kernel of the Faddeev equation is as-

It should be noted that the condition (2.23) is auto-
matically satisfied since /= 1 and I23= 1.
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sumed to be dominated by the s-wave amplitude with
even parity and isospin zero. As an approximation for
this we use the Chew-Mandelstam effective-range
formula ~3

According to (2.21) and (2.22) the homogeneous
Faddeev equation in this case can be written in the form

constant near p=0 (threshold behavior for s wave) and
go to zero for large p. Finally, we mod, ify the free
resolvent [the factor 1/(PpP+/tpP —s) in Eq. (3.2)] to

(P P+ 1)z/P+ (P P+ 1)z/P+ (P 2+ 1)z/2
(3 7)

e(q) = dq, K(q; qp., s)+(qp), (3 1)

where the kernel K is given by

8~
E(/i; /t, ; s) = ——

3/ p

dPp d cosgvppp5(/l —
/ly )

PPgp
X fp(pp, pl,'~—q') . (3.2)

Pp +Imp s

This is readily found by inserting (2.16) together with

(2.12) and (2.13) in (2.21) and taking J=M=l=L=l'
=I.'= 0. Furthermore, we note that the condition (2.23)
is also satisfied for this case in view of /=0, I~~=0.

Although the Faddeev equations are by nature non-

relativistic, we can at least make use of relativistic
kinematics. In Eq. (3.2) the parameter s represents the
total kinetic energy of three particles in the over-all
center-of-mass system. Instead of s we shall use the
parameter s which is to include the rest energy of the
three pions. Furthermore, in the nonrelativistic case
v=s —q' represents the square of the relative mo-

mentum of the two particles. Instead of this relation, for
its relativistic analog, we proceed as follows. The in-

variant energy in the two-body center-of-mass system
(taking r/p, =1) is given by E»——(4p'+4)"'. The mo-

mentum of the third particle in the over-all center-of-
mass system is given according to Eq. (2.4) by k&

= —2q/v3. Thus the total energy in the three-particle
center-of-mass system is given by

s —(p 2+ 1)1/2+ (p 2+4P2+4)1/2
—(&Ihip+1)1/2+ (4g2+4pp+4)1/2 (3 3)

From (3.3) in identifying v= p' one finds

where kz, kp, and kp are given in terzns of p, and qp in the
previous section.

Ke have already mentioned that the two-body ampli-
tude is approximated by the s-wave, isospin zero m-m

effective-range formula. This formula was first written
down by Chew and Mandelstam" from the E/D
formalism and was later used by Booth and Abashian to
fit the ABC phenomenon. '~ It has also been utilized by
Scotti and Wong in the nucleon-nucleon problem. "
Following Chew and Mandelstam we write

Ap(v) =A/(v)/D(v),

where we take 1V(v) = az and

(3.8)

D(v) =1—/zz (v+ 1) " v'

p v'+1

X (2 ln[vz/'+ (v+1)'"]—ppr) v) 0

2ar 2cr —v
=1— +

pr v+1

v+ 1 1/P

&tan —' —;—1(v &0

2~r 2ur

pr v+1

X d v'. (3.9)('—)('+1)
Integrating thais equation D(v) is given by

v =-'L(&—
(p V'+ 1)'")'—ps' —41. (3 4) XlnL( —v)"'+ (—v —1)"']; v( —1 (3.10)

This is now taken to be the relativistic analog of s—q' in
the argument of the two-body scattering matrix in

Eq. (3.2). On the energy shell, the two-body sca.ttering
matrix is related to the invariant amplitude by

tp(pp ) pz, v) = —(1/2pr')A p(v) with pj' ——pp= v . (3.5)

The off-shell scattering matrix is then taken to be given

by
E.(p. ; p; )=—Lg(p)g(p)/2 ']~ (), (36)

with g(0) = 1. We expect the form factor to behave as a

"G. F. Chew and Stanley Mandelstam, Phys. Rev. 119, 476
(1960).

g(p) =»f P&p-
=0 if p)p, (3.11)

"Norman E. Booth and Alexander Abashian, Phys. Rev. 132,
2314 (1963)."A. Scotti and D. V. Wong, Phys. Rev. Letters 10, 142 (1963);
also Phys. Rev. 158, 3145 (1965).

and D( 1)=1. Equations (3.4—) through (3.10) are
utilized in Eq. (3.1) which now determines the kernel.
We have thus defined our use of the relativistic kine-
matics as well as a prescription of using the effective-
range formula off the energy shell. As for the form
factors g(pz) and g(pp), we shall use them as
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which means that we use a cuto6 in the integrations
over p&. This cutoff obviously has a physical significance.
We shall call p the cutoff parameter.

We are now in a position to discuss the solution of
Eq. (3.1).The kernel in this equation is now a function
of the parameters ar and p as well as s. We now write
Eq. (3.1) as

4'(q) = dq'K(q, q', s,p„,ap)+ (q'), (3.12)

where we have defined ap=ar/(1 —2ar(m). The quan-
tity ao is the conventional scattering length. The kernel
is approximated by a finite EXP matrix by choosing
finite mesh sizes in the integration. The number of steps
Ã in the integration was taken to be 30. Varying this
number to E=60 did not change the result. The
problem amounts now to solve the resulting eigenvalue
equation by appropriate variations of the parameters
s, p, ap, such that there is an eigenvalue one obtained.
It turns out that this eigenvalue was the largest one in
the region of the parameters we were considering.

Since we are interested in the question whether it is
possible to find a three-particle bound sta, te with the
same mass of the pion, we have taken s= 1 varying only

p arid ap. The result is shown in Fig. 1. It wa. s also
found that for a given p, ap this was the only bound
state. The position of the bound state, however, turned
out to be very sensitive to these parameters.

The scattering length ao is determined by Booth and
Abashian from the ABC experiment to be given by
(2&1). (Scotti and Wong" recently found from the
nucleon-nucleon problem the value ap ——2.7.) Taking the
value u0=2, we find according to Fig. 1 that the cutoff
parameter of the form factor should be p =5.3.

4. DISCUSSION

In Sec. 2 we have made a new separation in angular
momentum of the Faddeev equations. With this separa-
tion and the assumption that the two-body amplitude
oR the energy shell factorizes into terms containing the
initial and final momenta we have been able to redUce
the Faddeev equations to an integral equation in only
one variable. Moreover, in the separation the sta, tistics
for identical particles can easily be taken into account.
The method of separation adopted here differs from that
of Omnes' in the choice of variables, and, depending on
the particular problem under consideratioli, one or the
other separation may be more convenient. The reduc-
tion to an integral equation in one variable is not, how-
ever, an exclusive feature of the separation used here.
As shown by Basdevant, "once the two-body amplitude
is a,ssumed to factorize in terms consisting of the initial
and final momenta, the Omnes separa, tion of a,ngular
momentum also gives rise to integral equations in one
va, ria,ble. This simplification is of considerable practical

I

ao

Fzo. 1. The dependence of the cutoG parameter p on the scat-
tering length uo for a=1.

importance and under this condition the numerical solu-
tion can be carried out with reliable accuracy.

In the previous section we have considered a model in
which the pion is a bound state of a system of three
pions in the Faddeev equations. We have thus utilized a
notion often discussed by Chew, namely, that the
strongly interacting particles are composite of one
another. We have, however, neglected all other channels
to which the pion is coupled. This approximation is
quite analogous to that in the current bootstrap prob-
lems in which only the contribution of the nearby
singularities are taken into account. Here it is the free
resolvent as well as the two-body scattering matrix
which suppress the effect of the more massive particles.
The pion is, for example, also strongly coupled to the
EX system. It would in fact be interesting to consider as
a model for this the m.A"X system in which the two body
amplitudes i', wg, and EX are approximated by ap-
propriate bound states and resonances. A situation in
which the eigenvalues of the Faddeev kernel corre-
sponding to such a 7'Emodel are considerab'ly smaller
than unity would be in support of our three-pion model.
One would, of course, like to have a way of combining
all these effects. Such a problem is, however, not a
simple one in practice. Furthermore, in our three-pion
model we have, for example, neglected the p contribu-
tion to the two-body amplitude since the x-p system is
considerably more massive than the z-ABC system.

The Faddeev equations, although basically non-
relativistic, are here assumed to be applicable to strong
interactions. We believe that such an approach is
justified because these equations have at least a correct
nonrelativistic foundation and offer a good starting
point. Furthermore, although these equations are de-
rived in potential theory, once the two-body amplitudes
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are given no further knowledge of the potentials is
required. In our model for the pion we have at least
made use of relativistic kinematics in order to make the
treatment more reasonable.

A drawback in this sort of calculation is our lack of
detailed information about the form factors. For sim-
plicity, we have taken here the form factor to be a
constant up to a certain value p and zero after that.
The fact that our results strongly depend on the cutoQ
parameter p makes a study of form factors highly
desirable. It should be stressed that this cut-off parame-
ter is not merely a mathematical artiice, but that it can
in principle be determined from the two-body inter-
actions. Ke would like to make the passing remark that
instead of Eq. (3.11) one can introduce a form factor of
the type"

g(P) =
(1+p2/Pz)l/2

In so doing, for ao= 2 we obtain P=3.5.
Kith the approximations mentioned above we may

conclude that the pion can be understood as a bound
state of three pions in the I addeev equations. We intend
to make a detailed study of the ~ particle along the same
lines.
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ables we may as well use 0., 0», q», and 8„».So we find

4~"'(2l+1)"'
E2—

si,', nL
Sl, tlL

X d cos9„„,6(q' qzz—) t&'(p; pl, s—q')

X& '*(8,0)F (8„„„0)V ~ '(8„„,0), (II)
with J / I. i J' f,

' I.' i
~el, eL, nz&

M ml uzi M' ml. mz i

X dzo +n~m~ (~)

x+ z, z, (~)+o l (&)+ z, z, (&),

where we have denoted the angles 0., e„„q„,by co and
dko=d coso»dndq». The computation of the expression
3 can now readily be carried out. With the aid of the
relation

jl j2
&- -"(~)&-'-"(~)= Z (2j+1)

mmmm

j& j2
X n„„j*((u),

m] m2 m

A can be reduced to an expression in which there are
only two rotation matrices involved. Using subsequently
the orthogonality relations for the rotation matrices

APPENDIX

In this appendix we shall indicate how to reduce
(2.11) to (2.12). All the equalities we thereby shall use
can be found in Ref. 12. One relation we need is

ml

~,~'(zz, e», y„,) are the well-known rotation
matrices and 0»„, is the angle between p2 and p~. The
relation (I) corresponds to a rotation from a coordinate
system with the s axis parallel to p2 and the x axis in the
plane through p& and p~ to the space-Axed coordinate
system. The same rotation is now being used for the four
I' "s in (2.11).Moreover, in (2.11)we have to integrate
over the angles 0», y», 0„, y„. Instead of these vari-

See, for example, M. Bander, Phys. Rev. 138, B322 (1965).

and for the 3-j symbols

jl j2 jz) jl j2 j3

+&1 ~2 1zzz 'm2 m3i zlzz m2 I,
I

we 6nd for A as a result

Inserting this in formula (II) gives at once the ex-
pression (2.12).


