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One of the outstanding problems of elementary-particle physics is the problem of combining Lorentz
invariance and internal symmetry in a nontrivial way. In this paper we attack this problem by making a
general investigation of the possibilities of ending a Lie algebra of Pnite order E such that the Lie algebras
of the Lorentz and internal symmetry groups appear in it as subalgebras. We carry out this investigation by
using some powerful standard results from the general theory of Lie algebras. The most relevant of these
is Levi's result that any Lie algebra E is the semidirect product of a semisimple algebra 6 and an invariant
solvable subalgebra S (called the radical). Using this result we show that if L, the algebra of the inhomo-
geneous Lorentz group, is a subalgebra of E, and M and P are the homogeneous and translation parts of L
respectively, then either (a) 31 lies completely in G and P lies completely in S, or (b) L has no intersection
with S.The relevance of this result is that it enables us to classify the ways in which L can be a subalgebra
of E in a very simple way. The classification is carried out by subdividing case (a) into the three cases:
(i) S=P, (ii) S Abelian but larger than, and containing P, and (iii) S solvable but not Abelian, and con-
taining P; and by regarding case (b) as case (iv) SQP =0. Each of these four cases is considered in detail.
It turns out that case (i) is essentially a direct sum of L and a semisimple Lie algebra; case (ii) is possible,
but has the disadvantage of introducing a translation group of more than four dimensions; and case (iii)
seems to be rather unphysical. Case (iv) is possible but is equivalent to imbedding L in a simple Lie algebra.
The over-all picture which emerges is that while there are a number of ways in which L can be imbedded in
an E, none of these (except the direct sum) seems to be particularly attractive from the physical point of
view. In particular, it seems that, while it may be possible to make SIT(6) theory fully relativistic, it is
probably not possible to do so within the context of a Lie algebra of Quite order. LThis does not contradict
the V(12) theory. j The question of explaining mass splitting within the context of a Lie algebra of 6nite
order is considered, and it is shown that this cannot be done. The various negative-type theorems obtained
by previous authors for special cases of E are rederived here within the general framework, most of them
being derived from much weaker assumptions.

1. INTRODUCTION

ECENTLY, a large number of papers have ap-
peared in which the problem of combining in-

ternal symmetry and Lorentz invariance has been dis-
cussed. Although this problem has always been of in-
terest, attention has been focused on it in recent months
for two reasons. The first concerns the mass splittings
which are found experimentally to occur within the
multiplets of particles and which are not explainable
(except as symmetry-breaking phenomena) within the
context of the internal symmetry groups. The hope is
that they might be explainable within the context of a
higher symmetry group E which would contain both
the Lorentz and the internal symmetry group as sub-

groups. For example, if one lets T+ denote the step-up
operator for the isospin group, and I'„ the 4-momentum
operator, then the commutator

LT,&„3

which is zero (and hence precludes mass splitting) for
the ordinary internal symmetry algebra, would not
necessarily be zero in K

The second reason for the recent interest in this
problem is the success which has been achieved with
the group SU(6).' In this group, an internal symmetry
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group SU(3) and a, space-time group, the nonrelativistic
spin group SU(2), have been combined. in a nontrivial
way. It is natural then to imagine that this theory could
be extended and the whole inhomogeneous Lorentz
group and an internal symmetry group be combined in a
large group E in a nontrivial way. Attempts to carry
out the relativistic extension of SU(6), have, however,
run into serious difficulties, though at present it seems
as if many of these difhculties can be overcome. ' In
addition to the attempts to make SU(6) relativistic,
some specific Lie groups containing the Lorentz group,
I. and internal symmetry have been proposed' ' Lmany
of these proposals were made, in fact, before the advent
of SU(6)]. However, none of the groups proposed. has
been entirely satisfactory. Furthermore, a number of
negative theorems have appeared, in which it is proved
that, under certain-conditions, the combination of
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internal symmetry and Lorentz invariance is neces-
sarily triviaP I (i.e., a direct product combination).
The prototype of such theorems is that due to McGlinn'.

McGliee's Theorem. Let L be the Lie algebra of the
inhomogeneous Lorentz group, 3f and I' the homogen-
eous and translation parts of L, respectively, and T
any semisimple internal symmetry algebra. If (a) E
is a Lie algebra whose basis consists of the basis of L
and the basis of T, and if (b)

$T,M]=0, (1.2)
r

i.e., the internal symmetry is Lorentz-invariant, then

i.e., the internal symmetry is translational-invariant.
Hence

E=LO+T, (1.4)

where Q+ denotes direct sum.
Most of the la.ter theorems have been concerned with

weakening condition (b) of McGlinn's theorem, and
perhaps the most refined result of this kind is that ob-
tained independently by Michel and Sudarshan. ' These
authors showed that if only one element of T (say the
charge operator) is Lorentz-invariant $i.e., satisfies
(1.2)], then McGlinn's result follows (up to a redefini-
tion). However, it is clear that it is assumption (a)
of McGlinn's theorem which is the really restrictive one
(just how restrictive will be seen in Sec. 7 of this article)
and hence McGlinn's result is by no means general.

It is clear from the above discussion that most of the
results which have been obtained so far, in connection
with combining the Lorentz algebra. L and an internal
symmetry algebra T into a larger symmetry Lie
algebra E, have been obtained for specific models or
under spcific conditions. For this reason, we think it
worthwhile to investigate in this paper the problem of
determining the most general way in which L can be
imbedded as a subalgebra in a larger Lie algebra E,
assuming only that E is of finite order. To carry out
this investigation, it is necessary to use some of the
more powerful standard results concerning the structure
of Lie algebras. These results are summarized brieAy
in the next section, the most important of them, for
our purpose, being Levi s radical-splitting theorem,
which states that every Lie algebra E of finite order is
the semidirect product of a semisimple Lie algebra 6
and an invariant solvable subalgebra S. We use this
result to show that if L is a subalgebra, of E, there are
only two possibilities: (a) I', the translation part of L
is completely contained. in S, the radical of E, or (b) J.

' W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964).' P. Coester, M. Hamermesh and 'W. D. McGlinn, Phys. Rev.
135, 8451 (1964); M. E. Mayer, H. J. Schnitzer, E. C. G. Sudar-
shan, R. Acharya, and M. Y. Han, ibid 156, 3888 (1964).; O. W.
Greenberg, ibid. 135, 31447 (1964}.' L. Michel, Phys. Rev. 157, 8405 (1965);E. C. G. Sudarshan,
J. Math. Phys. (to be published).

"M. V. Han, Phys. Rev. 138, 3689 (1965).

has no intersection whatsoever with S.The relevance of
this result is that it affords us a convenient method of
classifying the ways in which L can be imbedded in an
enveloping Lie algebra E. To carry out the classifica-
tion, it is convenient to subdivide case (a) into three
classes; i.e., (i) S=I'; (ii) S Abelian but larger than,
and containing, I'; (iii) S solvable but not Abelian, and
containing I', and to write class (b) as class (iv), where
(iv) SQE=O, where Q denotes intersection. In all
cases, 3EQS is zero, where M is the homogeneous part
of L.

We then discuss each of the four classes listed in
turn. The first class seems to be the most attractive
from the physical point of view, but it is shown that
(up to a redefinition) this case reduces to a direct sum
of I. and a semisimple algebra T. Case (ii) cannot be
reduced to a direct sum in this way, but has the dis-
advantage of introducing a tra.nslation algebra of more
than four dimensions. Case (iii) appears to be rather
unphysical, and no algebra of this kind has been pro-
posed so far. For case (iv), we find that (again up to a
redefinition) this case is equivalent to imbedding the
Lorentzian, algebra as a subalgebra in a simp/e Lie
algebra. This is not impossible, as is shown by an
example, but the fact that the simple algebras are
classified, means that we can examine the possibilities
for this case systematically. The over-all picture which
emerges is that while it is not impossible to imbed I
in a larger algebra E, the ways in which this may be
done are restricted and none of them (apart from the
direct sum) seems to be particularly attractive from
the physical point of view. It might be worth mentioning
at this point that the outlook for Lie algebras of infinite
order is not so bright either. "

Our results are, of course, obtained only modulo some
redefinitions. We take the view here that such rede6ni-
tions are trivial. However we discuss the alternative
point of view in Sec 8. It is assumed throughout, of
course, tha, t E is of 6nite order, and for Lie algebras of
infinite order the situation may be quite different.

We come now to one of the most important questions
which occurs in connection with combining Lorentz
and internal symmetry, namely, the question of mass
splitting. In this connection, we have already obtained
the result" that for a Lie algebra of finite order, no
mass splitting is possible. This result is discussed in
some deta, il in Sec. 6. Furthermore, as the result
appears to be in contradiction to the results of some
other papers in which mass splittings have been ob-
tained or proposed, two of these papers' ' are examined
in detail, and it is shown that there is, in fact, no
contradiction.

The relation between the present work and the work
in which the va.rious negative-type theorems have
been obtained is also discussed. It is shown that if one
makes McGlinn's first assumption, namely, that the

"T.F. Jordan, Phys. Rev. (to be published)."L.O'Raifeartaigh, Phys. Rev. Letters 14, 575 (1965).
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[M"I'-]=g-I'. g.-I'. —

[P„,P,]=0.

(1 6)

2. SOME STANDARD MATHEMATICAL
RESULTS

In this section we should like to introduce the stand-
ard result on Lie algebras which is the point of departure
for the considerations of the present paper: This is the
theorem of Levi. In order to introduce it, however, it
might be worthwhile to define first the concept of a
sohlable Lie algebra. This concept is introduced as
follows: Let E denote a Lie algebra and also any element
of it, and consider the totality of elements of E of
the form

Eo) = [EE] (2.1)

It is easy to see that the set of elements E&') form not
only a subalgebra of E, but an imurimt subalgebra.
This invariant subalgebra, which we shall denote by
E~'), is called the first derived algebra of E. In-general,
E('& is smaller than E. The extreme cases are E('~=0
and E&"=E. The first occurs if, and only if, E is

"L.Michel and B. Sakita, Ann. Inst. Henri Poincare (to be
published).

'4K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev.
Letters 14, 163 (1965).

enveloping Lie algebra E consists only of the elements
of L and of an internal semisimple algebra T, then
(modulo same redelnitions, and assuming the linear
independence of I. and T) McGlinn's direct-sum result
follows, without making uey assumptions concerning
the commutativity of M and T. In other words, as has
sometimes been suspected, McGlinn's assumption (a)
is already so restrictive as to preclude anything but a
direct sum (or some redefinitions thereof). A theorem
due to Michel and Sakita" is also rederived as a special
case of our general results. Finally a link between the
present work and the nonrelativistic SU(6) and
SU(6) Os theories'4 is found. However, no connection
with "relativistic" SU(6) is found. On the contrary,
our results would seem to indicate, that, while it may
be possible to make SU(6) theory fully relativistic, it is
probably not possible to do this within the context of a
Lie algebra of Gnite order, which contains the trmsla-
tiomul, as well as the homogeneous, part of L. This does
not contradict the results of Ref. 2.

Throughout the paper we confine ourselves to the
study of Lie algebras, rather than Lie groups (or other
topological groups). The algebra L of the inhornogeneous
Lorentz group (Poincare group) we define to be the
algebra consisting of the homogeneous part 3f with
commutation relations

[M„„,M, ),]=g,.M„), g„),M„. g—„.M„),+g—„)M„., (1.5)

p, u, 0., ) =1. 4, and the translation part I' with
generators P„satisfying the relations

Abelian. The second occurs for semisimple algebras
(as can easily be checked by inspection of the Cartan
canonical form), but it also occurs for a wider class of
algebras, e.g., it occurs for L, the Lie algebra of the
inhomogeneous Lorentz group. The algebra

PP) = [Eii) Eo)] (2.2)

which is the first-derived algebra of E(", is culled the
secor)d derived -algebra of E. By using the Jacobi identity
one can show that it is not only an invariant. subalgebra
of E('&, but also an invariant subalgebra of E. Continu-
ing in this way, we can define the kth derivative algebra
of E tobe

p(a) pE(a—~) p(a—&)q (2 3)

and this is an invariant subalgebra of E("), r =0,
(k —1).A Lie algebra, E is said to be sotvable if, for some
integer k,

p(a) (2.4)

Gi' ——exp (E)Gr exp (—E)
is a subalgebra, of G in (2.5).

(2.7)

In this section we shall use the standard results just
mentioned to establish the theorem stated below. This
theorem will enable us to rnak. e a classification of the

' N. Jacobson, I.ie 3/gebras (Interscience Publishers, Inc. ,
New York, 1962).

We are now in a position to introduce the standard
result mentioned above (see Ja,cobson, "" p. 91).

Levi's theorem. Every Lie algebra E can be written
in the form

(2 5)

where G is a semisimple subalgebra of E, 5 is an in-
variant solvable subalgebra of E, and B denotes
semidirect sum.

The semisimple subalgebra G is called the Levi
factor of E, and the invariant solvable subalgebra S is
called the radi col. From the semisimplicity of G
(Ref. 15, p. 24) it ca,n easily be shown that S conta, ins
every invariant solvable subalgebra of E.

An important question for our later consideration is
that of the uniqueness of G in (2.5). (The uniqueness of
S is guaranteed by its invariance. ) Clearly G is not
completely unique, since the inner automorphisms

E—& E'= exp(E)E exp( —E) (2.6)

induced by elements B which involve 5, do not, in
general, leave G invariant. Thus the question really is:
Is G unique up to such inner autolnorphisms? The
answer to this question is "yes." This is shown by the
Malcev-Harish-Chandra theorem( Ref. 15, p. 92) which
proves the following more general result: Let G~ be any
semisimple subalgebra of E. Then there exists an inner
automorphism A' such that
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possibilities for combining Lorentz invariance and
internal symmetry, and to discuss these possibilities in
a systematic way. "

Theorem. Let I.be the Lie algebra of the inhomogen-
eous Lorentz group, consisting of the homogeneous part
M and translation part P. Let E be any Lie algebra,
with radical 5 and Levi factor G. If I. is a subalgebra
of E, then either

or
(a) MCG; PCS,

I.ps=0.
Here C denotes "is a subalgebra of," and g denotes
intersection.

Proof. Since M is semisimple, it follows from the
Malcev —Harish-Chandra theorem that G can be de6ned
so that MCG. From the invariance of S and the Lorentz
relation

we have
[M,P]=P,

[M,SQP]=SQP.

(3.1)

(3.2)

Thus, with respect to M, PQS is an invariant sub-
space of the space P. But P is irreducible with respect
to 3I. Hence

P&5=0 or PqS=P.
From this the theorem follows.

The relevance of this theorem is that, as mentioned
above, it enables us to classify the ways in which I
may be a subalgebra of a larger algebra E. We make this
classification by subdividing the case (a) above into
the following three cases: (i) S=P; (ii) 5 Abelian but
larger than, and containing, P; (iii) S solvable but not
Abelian, and containing P. If we add to these case (b),
which may be written (iv) PQS=-O, we see that we

have, with this classification, four possible cases. These
will be discussed in Sec. 5. To facilitate that discussion,
some preliminary theorems are proved in the next
section.

of G. It is to handle these questions that the following
theorems are proved.

Theorem A. If U~ is a 1-dimensional invariant sub-
space of U with respect to any G( & of (4.2), i.e., if

[G",Ui]= Ui,

[G(a&,U,]=0.
Proof. From (4.3) we have

[[G(a) G(a)] Ui] —0

(4.3)

(44)

(4 3)

That is to say, any commutator in G' ) commutes with
Ui. But G'& is simple. Hence (Sec. 2) its first derived
algebra is equal to itself. Hence every element of G' '
can be expressed as a commutator. Hence (4.5) implies
(4.4). Q.E.D.

Theorem B. If D&b) is the set of matrices representing
the linear transformations induced on U by the elements
of G'b' in (4.2), then

[D(b) D(c)]—0

for all elements in G('~ and G(~&.

Proof. Since G is a, direct sum, we have

[G(b) G(c)]=0

Hence from the jacobi identity, we have

0= [[O'"G'&]U]
[G(c)[G(b)U]] [G(b)[G(c) U]]

—[G(c) D(b)/] [G(b) D(c) U]
—D(b)D(c) U' D(c)g)(b) U Q F D

(4.6)

(4.7)

(4.8)

Theorem C. For any G(') let D(') which is completely
reducible (Ref. 15, p. 79) be written as a direct sum of
irreducible representations D,('), q = 1 ~ m. If any D,"
occurs only once in the reduction, then the subspace U,
on which D, (') operates, is an invariant subspace of U
with respect to G.

Proof U, is obvious. ly invariant with respect to G".
But from theorem B, and Schur's Lemma (in the form

4. SOME PRELIMINARY THEOREMS SM=M'5 5=0, (4.9)

[G,U]= U. (4 1)

In this way, U forms a representation space for G. The
question arises as to the reducibility of U with respect
to G, and further, as to the reducibility of U with respect
to the simple algebras G'& in the direct sum expansion

G PG(a) (4.2)

In order to facilitate the discussion of the next sec-
tion, it is convenient to esta.blish here some theorems
which are of a rather technical nature. They arise in
the following way: Let E be any algebra with Levi
factor G and radical 5, and U any Abelian subalgebra.
of 5 (including 5 itself) which is invariant with re-
spect to G, i.e.,

G=GpO+G„ (4.10)

where O+ denotes direct sum, the complex extension
Gp of Gpis

for M and M inequivalent) U, is also invariant with
respect to D") and hence G' ) b4c. Hence, U, is
invariant with respect to all G".Q.E.D.

%e now specialize to the case where P is an invaria, nt
subalgebra, of the algebra 8 of Sec. 3. This includes in
the first place, the case (i) of the classification made
above (i.e., S=P), but includes also cases (ii) and (iii)
with the restriction that P be invariant. We now prove:

Theorem D. If P is an invariant subalgebra of E,
then the Levi factor G of E can be written in the form

"L.O'Raifeartaigh, Phys. Rev. Letters 14, 332 (1965). Gp=A 3 or 82 or A gO+A g, (4.11)
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(in the Cartan notation) (Ref. 15, p. 146) and G„
(r=remainder) is a semisimple algebra, satisfying the
relation

sentations of G(') in the 2-space P'~ and P—P~ are
not merely equivalent but equal, and then using theorem
8 and Schur's lemma [in the form (4.18)$ we have

[G„,P)=0.
Proof. From the invariance of P we have

(4.12)

6+1 )
~I bI

(4.22)

[G,P]=P.
Hence, for the G(~) of (4.2), we have

[G'),P$=P.

(4.13)

(4.14)

If, with respect to every G' ', P reduces to a set of four
1-dimensional spaces, then by theorem A, we have

for all a, whence
[G') Pj=0

[G,P$=0.

(4.15)

(4.16)

This is clearly incompatible with the fact that G contains
as a subalgebra the homogeneous Lorentz algebra M,
with respect to which P transforms irreducibly. Hence
there exists at least one G(', G") say, with respect to
which P contains an irreducible subspace P~ of more
than one dimension. There are now four possibilities
(i) Pq is 4 dimensional (Pq P). (ii) Pd is——3 dimensional,
and (iii) Pq is 2 dimensional, and G") (which is simple
and therefore fully reducible on P), induces an inequiva-
lent representation on the complementary 2-space
P—Pq. (iv) Pq is 2 dimensional, and G") induces an
equivalent representation on P Pq. Cases (ii)—and. (iii),
however, are ruled out by theorem C, since in these cases
Pq would be an invariant subspace of P with respect to
G, but since G contains M, there are no invariant sub-
spaces of P with respect to G, other than P and O.

In case (i), G' ) is a simple algebra with a 4 di-
mensional irreducible representation. Hence, from the
general classification of simple Lie algebras and their
6nite representations, we have for the complex ex-
tension G(1) of GO)

G")=3 3 or Bg(=C2) or 2 g. (4.17)

On the other hand, since D") is irreducible, we have
from Schur's lemma (in the form

where I is the unit 2 && 2 matrix. The matrices (4.22) can-
not be reducible for every a& i. , since any one which is
reducible is diagonal, and hence zero, by theorem A.
Hence if they are all reducible, P~ and P—P~ are in-
variant with respect to all G( ', hence with respect to
G, and hence with respect to M, which is impossible.
Hence there exists at least one a, a=2, say such that
D(2) is irreducible. But then, from theorem 8 and
Schur's lemma [in the form (4.18)j we have

(4.23)

whence from theorem A,

[G('),P)=0, aa1,2. (4.24)

G(1)—G(2) —g,
Hence, in case (iv), we may take

Go —Go) G(&) G = p @G(~)
anal, 2

(4.25)

(4.26)

Combining the two cases (i) and. (iv) we obtain the
required result.

S. GENERAL DISCUSSION

In Sec. 3, we made a classilcation of the ways in
in which the Lie algebra I. of the inhomogeneous
Lorentz group could be imbedded as a subalgebra of a
larger Lie algebra K In this section we should like to
discuss each of the four ways which we classified in turn.

Case (i): S=P

On the other hand, G(') and G(') are simple Lie algebras
with irreducible 2 dimensional representations. Hence,
from the general classi6cation mentioned above, we
have for their complex extensions G(" and G(2)

SM=3f5 —+ 5=AI,

where k is a number and I the unit ma, trix),

whence from theorem A,

[G'),P$ =0, nW 1.
Hence in case (i) we may take

(4.18)

(4.19)

(4.20)

(4.21)

In this case, the translation algebra P is an invariant
subalgebra of G (and is, in fact, the only Abelian in-
variant subalgebra of G). Hence this case would seem
to be the most attractive from the physical point of view.
However, we shall now show that this case can amount
to no more than a direct sum.

To show this, we note that this is a special case of the
case considered in theorem D of Sec. 4. Since G can
therefore be expanded as in (4.2), we can expand 3f
in the form

~=~oo+~e' (5.1)
where G(') is 33 or 82, since A1 is ruled out by the fact
that G must contain M.

In case (iv), the situation is a little more complicated.
By a change of basis in P we can arrange that the repre- [&o.Pj=0) (5 2)

Clearly the algebras 3fg p and 3fz„are homorphic to M.
But since, from (4.12)
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we see that the Lorentz transformations

[M,Pg =P, (5.3)

induced by M, are, in fact, induced by &go alone. Thus
Mgp must be isomorphic to iM . Since (Mgp, P) llas
therefore all the properties of L= (3I,P), and Mg„ is
trivial on account of (5.2), it is only a matter of re-
definition" to set

Mg„=0. (5.4)

E=LO+T (5.7)

where Q+ denotes direct sum. Thus case (i) amounts to
no more than a direct sum.

Case (ii): 8 Abelian, but Larger Than
and Containing P

In this case S is again a representation space for G.
However, the choice of simple algebras in the expansion
of G which do not commute completely with S will be
restricted only by the dimension of S, and this is
variable. S itself may, of course, consist of several
irreducible invariant substances S~, one of which will
contain P. The 1-dimensional subspaces commute with
everything (from theorem A of Sec 4) and are therefore
the generators of the gauge-transformations, such as
that corresponding to baryon number conservation.
The S~ of more than 1 dimension, and not containing P,
seem to have no particular physical significance. The
important question is whether the irreducible S, con-
taining P is larger than P. If not, then we can simply
omit the other S, and we are back at case (i). Thus, by
case (ii) we incan essentially the case where S is
Abelian, larger than P, and irreducible with respect to
G. This case has been proposed in Refs. 3 and 6. Its
chief disadvantage is that it introduces an invariant
translational algebra of more than four dimensions.
This is not easy to interpret physically. Furthermore,
we note that since all the elements of S commute with
those of P, they represent internal quantum numbers
which can be measured simultaneously with momentum
and energy, and the question is: What are these num-

"The redefinition problem is discussed separately in Sec. 8.

Thus (modulo such a redefinition) we can say that M is
contained in Gp of (4.10). If we how have an internal
symmetry algebra T, then since the vector spaces
P=S and M of Go are "already occupied" by the
Lorentz algebra L,T can consist only of two parts i.e.,
Tgo= remainder of Go when 3f is removed, and Tg„=G„.
But since

Gp A 3 or Bs or A iQ+A i, (5.5)

it is clear that Tgo is, from the physical point of view,
an embarrassment rather than a help, unless we choose

Tgp= 0: Gp=A iQ+A i'. Gp= M, (5.6)

and in this case we have just

bers physically? Moreover, unless the spectra of these
operators are limited in some artificial way (i.e., in
some way extraneous to the Lie algebra, as is done by
Barutis for example) they will be continuous. This is
hardly what we expect for an internal variable. Thus,
case (ii) cannot be ruled out, but it is also not particu-
larly attractive.

Case (iv): PCS=0
In this case we see that no element of the translation

algebra P lies completely in S. This does not mean that
P lies completely in the Levi- factor G, but only that if
we expand P in the form

P=Po+Ps (5.8)

then for each P, PG is nonzero. On the other hand, it
does mean that PG is isomorphic to P and transforms
under M (which is contained in G) in the same way as
P. Hence it is only a matter of redefinition" to take Po
rather than P as the translation algebra, in which case
we have,

LQG. (5.9)

Let us now expand G in a direct sum of semisimple
algebras

G=QSG& '. (5.10)

In an obvious notation, we then have

I =P@L(~i (5.11)

It is clear that each L&') is homomorphic to L and,
since L cannot be expressed as a direct sum of two
algebras, that at least one L& ', L&'~ say, is isomorphic
to L. By a further redefinition, we can take L&" and
not L to be a Lorentz algebra in which case we have
the result: Case (iv) is equivalent to imbedding the
Lorentz algebra L as a subalgebra in a simple Lie
algebra. (If we do not allow the redefinitions made

"A. O. Barut, University of Colorado Report (unpublished).

Case (iii): 8 Solvable but not Abelian,
and Containing P

This case is very similar to cases (i) and (ii). It
does not seem to have any particular advantage over
those cases. Moreover, solvable non-Abelian algebras
are not usually considered in physics, and, in fact, no
such algebra has been proposed in connection with
higher symmetry so far. One of the reasons for this is
the result due to Lie (Ref. 14, p. 50) that every finite
dimensional representation of such an algebra is
triangular, i.e., has a basis such that every matrix in
the representation has zero elements above the diagonal.
This means that, except for the trivial Abelian repre-
sentations, for 6nite-dimensional representations Hermi-
tian conjugation cannot be defined.
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above, we can make the weaker statement: ca,se (iv)
is equivalent to imbedding an algebra isomorphic to
the Lorentz algebra l. in a simple Lie algebra. )

At first sight it would appear to be impossible to
imbed L (or an. algebra isomorphic to I) in. this way,
as L is not even semisimple. However, we can easily
construct an example: Let M ~ be the generators of the
real orthogonal group in six dimensions. As a basis for M
choose M„, and M,o= iM, 4, r, s, = 1, 2, 3, and as a basis
for P, P„=M»+iM„s, @=1, 2, 3, 4. It is easy to verify
that the M and P so chosen satisfy the relations (1.2)
of the inhomogeneous Lorentz algebra. (Note that the
relation

[P„,P„$=0, (5.12)

depends critically on the i in M„,+iM„s). Less trivial
examples, containing internal symmetry, can also be
constructed. '
&@ On the other hand, although case (iv) is therefore
possible, the fact that the simple algebras are classified
(Ref. 15, p. 146) provides us with a systematic way of
determining the various simple algebras in which L
can be imbedded.

There is one feature of case (iv), however, which
should be mentioned, as it may have serious conse-
quences for the physical interpretation. This is the fact
that the generators P„are necessarily moerea/ linear
combinations of the generators of the compact form of
the simple algebra in which L is imbedded. This we
have already seen in the example given above, and
that it holds, in general, is shown in the Appendix.
This means that the parameters corresponding to the
P„have a noncompact range. This may lead to serious
diS.culties in defining multiplets, even in the absence
of mass splitting (see next section). No algebra belong-
ing to case (iv) has been proposed in the literature
cited.

This completes our general discussion of cases (i)—(iv).
It appears that none of the four cases is particularly
attractive, except for the direct product, though case
(iv) deserves some further investigation. This negative
conclusion is not, of course, in contradiction with the
"relativistic SU(6)" results of Ref. 2, since we are con-
sidering here (a) exact symmetry and (b) the its
homogenous Lorentz group.

"D. L. Pursey (private communication).

6. MULTIPLETS AND MASS SPLITTING

As mentioned in the Introduction, one of the reasons
for attempting to combine Lorentz invariance and
internal symmetry in a higher symmetry algebra is the
hope that the observed mass diGerences of the ele-
mentary particles might be explained within the context
of the higher symmetry. In this section we wish to dis-
cuss the possibility of explaining the mass differences
in this way.

One of the difhculties confronting any attempt to

explain the mass differences in this way is the difficulty
of defining what is meant by a mgttip/ei of particles.
I'or a direct sum algebra, LQ+ T, where T is semisimple
and compact, there is no dif5.culty. Each particle is
represented by the direct product of a vector in a finite
representation of T with a vector space which is a one-
particle representation space of L. I"or the more com-
plicated case when L and T are combined in a nontrivial
way, the situation is not so simple. However, it seems
reasonable to make, at any rate, the following three
assumptions:

(a) Two particles belonging to the same physics, l
multiplet should be represented by vectors belonging
to the same irreducible representation of the combined
algebra E.

(b) Each such vector should be an eigenvector of
the mass operator I'„I'I" corresponding to a discrete
eigenvalue.

(c) P„PI', which is an observable, should be self-
adjoint.

The a.ssumptions (a), (b), and (c) are not, of course,
sugciertt to define what is meant by a multiplet. How-
ever, what one can now show, is that these three assump-
tions are already enough to preclude mass-splitting
among the particles belonging to the same multiplet.
More specifically, one can establish the following
theorem:

Theorem: Let L be the Lie algebra of the inhomogen-
eous I orentz group, E any Lie algebra containing L,
H a Hilbert space on which any irreducible representa-
tion of the group generated by E operates. If, on H,
the mass operator

(6 1)

has a discrete eigenvalue m', and I" is self-adjoint on H,
then the eigenspace B belonging to the eigenvalue m'

of I', is closed, and is invariant with respect to the
elements representing E on H. Hence the elements
representing E can produce no mass-splitting. The proof
of this theorem has been given in Ref. 11.Here we shall
merely discuss its implications.

If we now make the assumption that H, which is
irreducible with respect to the group generated by E,
is irreducible with respect to the operators representing
E, or the local group of transformations generated by
these operators, then we see that the theorem implies
that

(6.2)

We see that what this theorem proves essentially is
that, on II', the mass operator has either a continuous
spectrum or a spectrum consisting of one point. But a
continuous spectrum cannot correspond to a multiplet.
Hence what the theorem shows, is that, under assump-
tions (a), (b), and (c), the only multiplets which are
possible are equal mass multiplets. This does not
imply that for any given algebra E, equal mass multi-
plets exist. It may well be that even the equal mass
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multiplets are not possible (except in the direct sum
case mentioned above). However, this is another ques-
tion and will not be discussed here.

Since, in fact, mass splittings do occur in nature, we
must now discuss the question as to which of the assump-
tions we make, in order to obtain the result that there
can be no mass splitting, is incorrect.

Of the assumptions (a), (b), and (c), (a) appears tobe
the strongest. (b) and (c) are, of course, only idealiza-
tions, since in practice, on account of the decays of the
particles, m' is a bump, rather than a discrete point,
in the mass spectrum, and I"contains a small non-self-

adjoint part corresponding to the line breadth. Perhaps
it is this idealization which is incorrect. It is much more
likely, however, that it is the underlying hypothesis,
namely, that one should imbed the inhomogeneous
Lorentz algebra in a larger Lie algebra, " and in par-
ticular in a Lie algebra of finite order, which is incom-
patible with mass splitting. This is the conclusion which
we prefer to draw.

linearly independent), S can contain only P. Thus we
are dealing with case (i) of our general classification.
But we have already seen in Sec. 5 that this case reduces
essentially to the direct sum of L and T. Hence we have
the result: The condition (7.1) with T semisimple, is
already enough to reduce E to

E=LO+ T. (7 4)

Thus from McGlinn's first assumption alone we obtain
the result obtained by him and by the authors of Refs.
8, 9, and 10. No assumptions concerning the commuta-
tivity of the elements of M and T are necessary. They
are replaced by the much weaker assumptions that L
and T be linearly independent and that certain redefini-
tions are legitimate.

We next consider the theorem of Michel and Sakita. "
In this theorem it is assumed that (a) P is an invariant
subalgebra" of an enveloping Lie algebra E, and (b)
E "preserves the Minkowski metric, " and from these
assumptions alone, the direct-sum relation

V. CONNECTION WITH OTHER RESULTS
G=MO+ T, (7.5)

In this section we should like to consider the con-
nection between the results obtained here, and those
obtained by other authors.

We begin by considering the special case where the
enveloping Lie algebra E (considered as a vector space)
consists only of the elements of L and the elements of
some semisimple internal symmetry algebra T, i.e.,

E=M+P+T. (7.1)

' This includes the assumption that we are dealing with a Lie
algebra in the 6rst place, or the assumption made above that H
is an irreducible representation of the algebra if it is an irreducible
representation of the group. It is possible that this is not true,
and that the situation is better described by the global properties
of a Lie group (or some other kind of group). I am grateful to
Professor G. F. Dell Antonio for pointing out this possibility.

This is the case considered by McGlinn and in Refs. 8,
9, and 10.In this case, M lies in the Levi factor G of 8,
while T, because it is semisimple, satisfies the relation

(7.2)

where 5 is the radical. Hence we can redefine T so that T
lies in G. From the general classification theorem of
Sec. 3, we have two possibilities for I',

SQP=O and PQS. (7 3)

In the 6rst case, we can redefine L so that it is a sub-
algebra of a simple algebra E. But then the simple
algebra E contains as subalgebras, L and the semisimple
algebra T, which we assume to be linearly independent
of L. This is obviously incompatible with (7.1) (the
"remainder" of a simple algebra when L is removed is
not semisimple). Hence the first case, SQP=O is
ruled out.

In the second case, M and T are both contained in G.
Hence from (7.1) (again assuming that L and T are

G= GOO+ T
where

60——A b or B2 or A iO+A i.

(7.6)

(7.7)

(In fact, theorem D of Sec. 4 was stated in just such a
way that the discussion for 5=I' could be generalized
immediately to the case P invariant. ) Assumption (b)
then rules out A b and 82, leaving (7.5).

Note that from theorem 8 of Sec. 4, we have, in
addition, the McGlinn type result

[T,Pj=0. (7.8)

This is not surprising because, in fact, theorems A and 3
of Sec. 4 are a generalization of McGlinn's theorem.

In view of the strong negative result concerning mass
splitting obtained in the last section, it might be well to
discuss some papers in which mass splitting has been
obtained or proposed. One of these is discussed in detail
in the next section, in connection with the redefinition
problem. Here we shall discuss another, due to Sarut. '
In the latter article the enveloping algebra E is taken
to be the algebra of the inhomogeneous six-dimensional
orthogonal group, with the commutation relations

$~ab&~cd j ~bc~ad ~adM bc ~ac~bd+~bd~ac y

t M b,P,j=5b,P —b„Pb, (7.9)
t P„Pb]=0.

~' lt should be pointed out that our considerations are limited to
Lie algebras, whereas Michel and Sakita discuss the more genera&
case of connected topological groups.

where G is the Levi factor of E and T is a semisimple
algebra, is deduced.

It is easy to see that this result follows also from
our general considerations. For if we make assumption
(a) above, then the general discussion of Sec. 5 for S=P
carries through unchanged, and we have
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I p&
=T'I && (7.11)

where T+, the "step-up" operator for isospin, is the
linear combina, tion

T+=M4g+i M64. (7.12)

Otherwise the statement that M45, %56, and 3f65 are to
be identified with the generators or isotopic spin has
not much content. But then, from the invariance of J'
we have

(P„P" m.')'I p&—= (P„P~ m2) T+
I

—~)
= [P„P&tiP„P",M4~+iM64] j I

rc& (7.13)
= )P„P&,2P4( P5+iP6)j I

—e& =0,
where m„ is the mass of the neutron, whence

5$+ mp2= 2 (7.14)

where m„ is the mass of the proton. Hence for the
nucleon system, there is, in spite of (7.10), no mass
splitting. Similarly for any isotopic multiplet. Ke see,
therefore, that in this example, which belongs to case
(ii) of our general classification, there is no contradic-
tion with our theorem.

Finally, although it is somewhat irreleva. nt to the
general purpose of this paper, we should like, for com-
pleteness, to mention an extension of a theorem due to
Han. "

Extended Ham theorerN: Let L be a subalgebra of any
Lie algebra E. If Eo is any element of E, and

aP = (e„,i,.M, ),P,)2/P', (7.15)

where &„„z,is the Levi-Civita symbol, then

implies
I ~oi~& 3=0

LEO,P']=nP',

(7.16)

(7.17)

where a is a constant, and conversely.
We shall not present the proof of this theorem here,

as it is rather similar to that given by Han, depending,
in particular, on the use of the Poincare-Birkho6-Witt
theorem (Ref. 15, p. 159). From a slight extension of

The M„„and P„, ii, i =1 .il (with appropriate i
factors) are identified with the generators of I., and

M45, M56, and M64 with those of the isospin algebra.
(Clearly Mq6 must be the "charge" operator since it is
the only one of the three which commutes with 3f„„
i.e., it is Lorentz-invariant). The "momentum-like"
invariant of this algebra is clearly not P„P& but

(7.10)

which suggests that P„P& might have difierent values
within an irreducible representation of E. However,
if we let

I p), In& represent a 1-proton and 1-neutron
state, respectively, and assume that they are eigenstates
belonging to discrete points in the spectrum of p„p&,
then, in some one Lorentz frame at any rate, we
should ha.ve

theorem A of Sec. 4, we also have the corollary: If Eo
is a whole semisimple subalgebra of E, rather than one
element, o.=0.

8. THE REDEjFINITION PROBLEM

The results which we obtained in Secs. 5 and 7 de-
pended, in certain cases, as we have seen, on making a
redefinition of the Lorentz algebra L, or of the internal
symmetry algebra T. (We must emphasize, however,
that the mass-splitting theorem of Sec. 6 is independent
of any such redefinition. ) In connection with the
redefinitions, there are two questions which arise:

(1) Are the results obtained "the best possible" or
couM one go further and obtain "redefinition-inde-
pendent" results' ?

(2) Are the redefinitions, which are trivial mathe-
matica. lly, also trivial physically?

The answer to the erst question is that the results
obtained are, in fact, the best possible which can be ob-
tained from general arguments concerning the structure
of E, as used in this paper. To illustrate this, we con-
sid.er the following example: In case (iv) of our cia,s-

sification, we showed that, modulo a redefinition, L
could be imbedded as a subalgebra of a simp/e algebra
K Suppose, however, we start from the situation where
L, with no redefinition, is a subalgebra of a simple
algebra E, which, in turn, is a subalgebra of a, direct-
sum algebra Z of E and E',

Z=EQ+E' (8.1)

where E' contains a subalgebra L' isomorphic to J.
Then, if we redefine the Lorentz algebra to be

Z.=LO+L', (8 2)

it is no longer true that the Lorentz a,lgebra is a sub-
algebra of a simple algebra. Similar results hold in cases
(i), (ii), and (iii). We see, therefore, that even if we
start with a clear cut result of the type we expect, the
situation can be changed by a redefinition. Hence we
cannot hope to obtain "redefinition-independent" re-
sults. Qf course, if we put in some specific assumptions
regarding the identification of L and the internal sym-
metry algebra T, then we may obtain clear-cut results.
For example, McGlinn's assumption (a) is of a, general
nature and therefore leads to conclusions which are
valid only up to a redefinition, but his assumption (b)
is specific, in the sense that the relation

I T,M)=0,
which he assumes, is not invariant under redefinitions,
and hence leads to results which are independent of
redefinitions.

The second question above is not so easy to answer,
as it is to a certain extent a matter of opinion. We take
the view in this paper that redefinitions are trivial,
physically as well as mathematically. To see, however,
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and define L, the "actual" Lorentz algebra to be

L=L'0+L. (8.5)

The criterion for distinguishing L, the "actual" Lorentz
algebra, is the identification of the mass squared opera-
tor vis as P„P& (and not P„PI', say). We then have,

rN'=P/~=P„P~+2P„P" +P'„P". (8.6)

One now takes a multiplet, or finite-dimensional repre-
sentation of T, and by regarding P„PI"as an "external"
mass-squared, common to all the particles of the mul-

tiplet, one obtains mass splittings from the term I'„'I"I"
in (8.6) (and line breadths from the term 2P„P'&) by
taking expectation values of these operators with
respect to the states of the multiplet.

The basic question, of course, is the validity of the
formula (8.6) for the physical mass. However, let us
accept this definition of m as legitimate. Even then, one
runs into a serious difficulty. This arises from the fact
that, if we use a unitary representation of T, as is nor-
mally done in physics, then in order to obtain a 6nite
representation R we must use the compact form of T.
But since L' is not compact, E. is a nonunitary repre-
sentation of L'. Hence the operators L' and, in particu-
lar, the operator I'„'I'"I" will not be Hermitian, " and,
in general, cannot be diagonalized. This diQiculty is
recognized by the authors of the above paper, and for
this reason they take the expectatioN values rather than
the eigeeealles of J'„'I'"I'. If one takes the eigenvalues
(calculated from the characteristic equation) one ob-
tains no mass-splitting. " This leaves the validity of
the procedure adopted here open to some doubt. This
example seems to indicate that even if one does not
allow redefinitions and uses the extra freedom allowed
in this way, the possibilities for doing anything which
is physically meaningful are still very much restricted.
Some further difficulties connected with this type of
model are discussed in Ref. 22.

It is perhaps interesting to note that if we wished to
retain the idea of Ref. 5 without running into the dif-
ficulties which come from the noncompactness of L,
we could set

(8.7)

where I is isomorphic to L, Q+ denotes direct sum, and
T is a compact semisimple algebra, which contains as

"For this reason the fact that one obtains mass splittings in this
model does not contradict the theorem of Sec. 6."R.Roskies, J. Math. Phys. (to be published).

just how bad things can become if we do not take this
view, we consider the very instructive proposal of
Ref. 5. In this paper the authors consider an algebra I.
isomorphic to L, and a semisimple internal algebra T,
which (at least for certain finite representations) con-
tains a subalgebra L' isomorphic to L. They then let E,
the containing Lie algebra, be the direct sum

&=TO+L,

a subalgebra an algebra T', not isomorphic to L,
but isomorphic to the largest compact semisimple
algebra contained in L. But this is just 03 or SU'2. Then
one could define the Lorentz algebra, in analogy to
(7.5) as

M„,=3/I„,+7'„',
M.o=~.p (8 8)

where r, s= 1. 3, p, =0, 1, 2, 3.This will not lead to any
mass-splitting, of course. Further, the splitting of 3f„„
into M„, and 3f„p is not Lorentz-invariant. Also if we
allow redefinitions, T„,' can be transformed away. How-
ever, if we choose not to allow redefinitions and are
interested only in the nonrelativistic limit, we can regard
the T„,' part of M„as an SU(2) subalgebra of T. If we
require 2' to contain also SU(3), then SU(6) is obviously
a suitable choice for T. In this way we obtain a link
between the general analysis given here and SU'(6)
theory. Equation (8.8) also suggests that one should
not expect it to be possible to make SU(6) theory
relativistic in the strict sense, and suggests further
that the SU(2) part of M should commute with every-
thing else in space-time, in particular with the "orbital
angular momentum" M„,. Finally, if we consider the
little group of E in (8.7) with respect to the invariant
subgroup generated by I', we see that it is precisely the
group SU(6)os considered by Mahanthappa and
Sudar shan. '4

APPENDIX

We wish to show that if L is a subalgebra of a simple
algebra G, then, P is not a subalgebra of the compact
form of G.

To show this we choose a Cartan basis (Ref. 15,
p.121)

EB'~Hi)=0, i j=1
PI;,E g =r;(n)E, etc.

'4 S. Coleiuan, Phys. Rev. 138, 31262 (1965}.
(A1)
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for G, such that the iH, , (E +E ), and i(L& E—)
belong to the compact form of G (Ref. 15, p. 149).
Clearly there is no loss in generality in choosing
Hq=iM~2 and II2——iM34=M3Q Since I. is contained
in 6 we can now write

where the d are numerical coeKcients. Hence

(b-+d-) (E-+E--)
"Z(a)

-1
+ (b—. d—.) Li(E.—E .)7. (A6)

P,+iPs Qa——ji,+Qb E, (A2) But if I' is a subalgebra of the compact form of
G, (b +d ) and 1/i(b —d ) are real, whence

where the a, and 6 are numerical coefficients. But
from (1.4) we have

da= ~a (A7)
In this case

(A3) 0 Lp,+;I iMrs, Pr+iPs7=Pr+iPs. Ps,Pr —iPs7=
"l.(a) -1;"1(P)=1

I
b IsHr+ p c,H,+pc E, (A8)

barbs ftEa)E r7—
Hence

ga&,+Qb E r1(a) =1

(A9)
H ++b E 7 + ( )b E (A4)

where the c, and c are numerical coefficients, whence
1)

b =0, r, (cr)=1.
Thus

Similiarly,

Pr+iPs= Q b E .
~y(a) =1

Pr zPs — Q d~E
&q(a) =1

(A5) Since this is impossible for

P1/0, 82@0, (A10)

(A5) we see that P cannot be a subalgebra of the compact
form of G.
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~+ Decay of &Li'
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An event unambiguously identified as the x+ decay of a Li' hyperfragment is reported. The event was
observed in a stack of L4 hypersensitized Ilford emulsions exposed to a 1.S-GeV/c E beam at CERN. The
charge of the hyperfragment was uniquely determined as three, by comparing its measured mean track width
with the curves (mean track width versus dip angle) established for 8= 1, 2, 3, 4, and 5 nuclides found in the
same emulsions. The branching ratio R of the z-+/s= decay modes for &Lir, on the basis of the present v+ decay
together with the available world data on s. decays, is estimated as R(gLi')~1%.

I. INTRODUCTION

LTHOUGH the ~+ emission in free A decay is
forbidden by the conservation laws, in the pres-

ence of a proton a A can generate sr+ by virtue of the
"stimulation process"

A+ p ~ n+n+7r++35 MeV. (1)

There are several mechanisms which could conceivably
contribute to this decay interaction; among them the

following have been considered by various authors' —':
(i) The A may undergo transition to a virtual Z+

'A. DeloB, J. Szymanski, and J. Wrzencionko, Bull. Acad.
Polon. Sci., Ser. Sci. Math. Astron. Phys. 7, 521 (1959).

' R. H. Dalitz and L. Liu, Phys. Rev. 116, 1312 (1959).
' S. Iwao, Nuovo Cimento 25, 890 (1962).
4 N. N. Biswas, Nuovo Cimento 28, 1527 (1963).
' F. von Hippel, Phys. Rev. 136, B455 (1964); R. H. Dalitz

and F. von Hippel, Nuovo Cimento 34, 799 (1964).

state in the presence of a proton inside a hypernucleus
and subsequently decay from this state with the emis-
sion of a m.+ meson; i.e.,

A+p (Z++n) ++n+n (2)

(ii) The A may decay through the rr -mesonic mode
and the ~ so produced may undergo charge exchange
with a proton of the hypernucleus; i.e.,

A+ p —+ (n+rr')+ p —+ n+n+rr+. (3)

(iii) The A may generate the decay interaction
A —+ n+(rr++z- ), by virtue of the four-fermion weak
interaction (Xp)(pn), and the rr produced may be
subsequently absorbed on a proton inside the hyper-
nucleus; i.e.,

A~n+(p+p) ~n+ (++ —),
&+p -+ n+n+s-+.


