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A general method is described for the measurement of the polarization and alignment of a particle of
arbitrary spin from the analysis of its three-body decays. This method provides a procedure for the deter-
mination of spin and parity of the decaying system which is independent of the dynamics of the decay
process. The procedure is closely related to the one currently used for two-body reactions except that the
normal to the decay plane replaces the center-of-mass momentum as an analyzer. The general formalism is
developed and illustrated by two examples: three-pion decays and baryon —two-pion decays.

I. INTRODUCTION

HK description of three interacting bodies is a
well seasoned and familiar problem, the angular-

momentum aspect of which has received a revived
interest among particle physicists during the past few
years. '' Because increasing numbers of particles (or
resonances) of high mass are being experimentally dis-
covered which have appreciable three-body decay
modes, it behooves us to examine the three-body prob-
lem from the standpoint of a decaying system. However,
we do not consider the dynamics of the decay process,
but merely make use of the consequences of rotational
and inversion invariance. The treatment presented here
is therefore completely general, exhibiting the kind of
angular and polarization distributions which are con-
sistent with a system of arbitrary spin decaying into
three particles with spin. Such distributions, when com-
pared with experiment, provide a possible determination
of the spin and parity of the decaying particle and
eventually a means to measure its polarization and
alignment, quantities of great interest for the under-
standing of its production mechanism. ' The method
applied to three-body decays is closely related to the
one currently used in the analysis of two-body decays
except that the normal to the decay plane replaces the
center-of-mass momentum as an analyzer of the polar-
ization. Formulas giving the angular and polarization
distributions in terms of the decaying particle density
matrix are in fact written in a very similar form for
both cases.

As is well known, the description of a three-body
system requires five variables. A convenient choice of
these variables consists of two energies and three angles.
The two energies are taken to be the center-of-mass
energy of two decay particles, whose domain of vari-
ation defines a Dalitz plot. The three angles can be
chosen as those which define completely the orientation

of the decay plane. In the treatment presented here we
consider only the orientation of the decay plane and
sum over all energy configurations, or, in some cases,
separately over different regions of the Dalitz plot. In
this sense, the distributions presented here are the
complement of the Dalitz-plot distribution, where all
angular configurations are averaged over, and where
the three-body system is studied in terms of its energy
distribution. 4

The analysis of the energy distribution in terms of a
Dalitz plot has the advantage of giving useful infor-
mation even if the decaying particle is neither polarized
nor aligned. Nevertheless, its practical interest is bound
to the dominance of a very small number of independent
amplitudes. In many cases the general analysis pre-
sented here, which does not rely on any dynamical
assumptions governing the decay process, can be used
to determine the spin and parity of a decaying state
via its three-body decay alone. When the system has, in
addition, a two-body decay mode, the combined analysis
of both two- and three-body modes can be applied in
unison in order to obtain improved and more accurate
knowledge of the system's quantum numbers. ' In all
cases it can be used in order to get information about
the production mechanisms by means of polarization
and alignment analysis.

The angular distribution of the normal to the decay
plane is readily obtained when three free relativistic
particle states of well-defined angular momentum J
and parity are constructed using the general projection
method of signer. ' The angular dependence of the
decay amplitude is given as a linear combination of
rotation-matrix elements corresponding to the (27+1)-
dimensional representation of the rotation group:
D ~ s(ot,P,y). The arguments are three Euler angles,
which can be chosen as the azimuthal and polar angles
of the normal to the decay plane and a third angle p,
referring to a rotation of the decay plane around the

~ Work supported by U. S. Atomic Energy Commission.
)On leave of absence from Service de Physique Theorique,

Saclay, Gif-sur- Yvette, France.' G. C. Wick, Ann. Phys. 18, 65 (1961).
~ R. Omnes, Phys. Rev. 134, 81358 (1964); D. Branson, P. V.

Landshotf, and J. C. Taylor, Phys. Rev. 132, 902 (1963).' See, for instance, J. D. Jackson, Rev. Mod. Phys. 37, 484
(1965); S. M. Herman and $. D. Drell, Phys. Rev. 133, B791
(1964),

4 For a detailed discussion on the energy distribution of three
pions see C. Zemach, Phys. Rev. 133, 81201 (1964).

~ For a recent compilation of resonance quantum numbers see,
for example, A. H. Rosenfeld et al. , Rev. Mod. Phys. 36, 977
(1964).' E.P. Wigner, Group Theory andits A pplications to the Quantum
Mechanics of Atomic Spectra (Edwards Brothers, Inc. , Ann Arbor,
Michigan, 1954), Chap. 12.
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normal. These angles then completely specify the
orientation of the decay plane. This is a straightforward
extension to three particles of a procedure already used
to construct two-particle states. ~ '

The extension to e-particle states has been worked
out by %'erie. Present interest in three-body decays
may, however, warrant the special treatment presented
here.

The general formalism is presented in Sec. II, and a
general expression for the angular distribution of the
normal to the decay plane is given. '" The simplifi-
cations due to parity conservation and possible identity
of two of the particles are also discussed. The formalism
is then applied in Sec. III to the problem of the decay
into three spin-zero particles and in Sec. IV to the
problem of the decay into two spin-zero and one spin- —',
particle. The distribution of the polarization of the
decay spin-~ particle is discussed in detail and we stress
the analogy between the formulas obtained and the
ones currently used for two-body decays into a spin-
zero and a spin-~ particle. In both Secs. III and IV we
also discuss decays into a pion and into a resonance
which eventually decays into two pions or a pion and a
hyperon, depending on its quantum numbers.

In addition to giving the general formulas, the
simplest cases are explicitly treated. In Sec. III angular
distributions are given for the decay of particles with
spin 1+ and 2+ into three pions. In Sec. IV angular
distribution of the normal to the decay plane, as well
as polarization distributions for the daughter hyperon,
is given for the decaying states having spin -', . and spin —,'.

The D functions required for explicit calculations
with spins less than or equal to three are given in an
Appendix.

II. GENERAL FORMALISM

Three-Particle States

A quantum state containing three free particles is com-
pletely defined by the momentum and polarization of
each particle. Such a state may be constructed as the
direct product of three one-particle states

~
q, ,X;), where

q; and X; stand, respectively, for the momentum and
helicity of the ith particle. To be precise, we could
define the state ~q;,X;) as in Ref. 7, namely

i q;,X;)=R„;//;oi Q',~'),
where ~Q;,X;) is an helicity state with eigenvalue X,

M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
8 J. Werle, Phys. Letters 4, 127 (1963); Nucl. Phys. 44, 579

(1963); 44, 5/9 (1963).' The separation of angular variables by means of the signer
projection method has been used in connection with the three-
particle scattering problem by Omnes (Ref. 2) and also by Bhatia
and Temkin (Ref. 10) in the study of the two-electron, 6xed-
nucleon problem. Even though the general procedure is perhaps
well known, the practical application to three-body decays as a
means for spin and parity determination appears to carry enough
interest for the specialized and detailed discussion given here.

' A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36, 1050 (1964).

FxG. 1. The angles of ro-
tation of the one-particle
helicity state.

and momentum Q; along the positive s axis (~Q, ~= ~q, ~). The symbol R„,. //, .0 stands for the rotation
operator, with Euler angles y,-, 0;, 0. The quantities
p, and 0; are, respectively, the azimuthal and polar
angles of q, with respect to a fixed coordinate system
x, y, s (Fig. I). The helicity, i.e., the component of the
total angular momentum of the particle along its
momentum, is obviously invariant under rotation.

A three-particle state is written as

~ q~,X~, q2, X2, q3,X3). (2)

The three momenta then form a triangle in a plane, the
normal of which is de6ned as a unit vector along q~ x q&.

The conservation of energy gives the further restriction

(q 2+~ 2)1/2+ (q 2+m 2)1/2+ (q 2+~ 2)1/2 —~ (4)

where mo is the mass of the decaying particle.
A more convenient description of this state is in

terms of a different set of quantum numbers which are
the energies co~, co2, and cv3 of the three particles restricted
by (4)—and three Euler angles n, P, p which specify the
orientation of the momentum triangle in space (Fig. 2).

The rotation angles are de6ned by starting from a
standard position where the triangle is in the x-y plane.
As a convention we take q~+ q2 along the x axis and the
normal q&xq2 along the s axis. These are our basic
states and we define more conveniently the three helicity
states by rotations around the s axis with angles y,
(0( q, (2s), taking Q, along the x axis. It follows that
the polarization of each particle is described as usual
with the conventional s and y axes, respectively, taken
along the momentum and along the normal to the decay
plane. The angles n and p are, respectively, chosen as
the azimuthal and polar angles of the normal to the
decay plane. The angle p refers to a rotation around the
normal and is illustrated in Pig. 2. All helicities remain
unchanged through these three successive rotations. %e
then write a three-particle state thus defined as

~
MgAy ', GD2kg ', G03X3', (X,p, 'r) .

It is convenient to describe the decay in the center-
of-mass system where

ql+q2+q8
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the normal to the decay plane, which can be used
together with the other observables J' and J, to specify
the state. '

The angular distribution of the normal to the decay
plane, obtained for a pure state of definite m and M
such as (7), is given by

Pro. 2. The decay-plane configuration. Triangle i represents the
decay plane in the standard position. Triangle 2 shows the plane
after rotation of angle y. Triangle 3 shows the decay plane i»ts
actual position with its normal indicated by n.

where dQ= sinpdpdn, and where

cf = (MiAt,
' cvslis,' M3A3,

' np'r ~Niki, costs' M3Xsj I'M).

In order to continue further we need the relationship
between a state of definite angular momentum such as
(7) and a state described in terms of Euler angles. To
achieve this we follow the procedure of signer' and
write

With the set of states (2) the density of final sta, tes
dpi' for the three-body decay is written as

~f Ql~ t12if $3~(ql+i12+t13)~(~1+oi2+~3 ri30)
GPp =-—

2'] 26022G) 3

or aBer integration over d'q3,

({Pls—Ni 603) gi —gs tr33 )
(6)

2gig 2

where q ~~ and Hqg are the azimuthal and polar angles of
q2 with respect to q~. Integration with respect to
cosei2, q», cos8~, and q» gives a density distribution in
the ~~, co2 plane. This is the Dalitz plot.

With the states (5), the density of states is obtained
by replacing dqtd cos8tdqts by dnd cosPdy in (6). The
Jacobian determinant is equal to 1."

In their center-of-mass system the three decay
particles are in a state of well-defined angular mo-
mentum and, if we consider only decays via strong or
electromagnetic interactions, also parity. The total
angular momentum is equal to the spin j of the decaying
particle. Such a state is written as

~(diXt,' Qislis', (dsli3,' jBZM),

where m is the eigenvalue of the component of angular-
momentum operator J along a Axed axis chosen as the
s axis; M is the eigenvalue of angular momentum along

"This result may be seen as follows. The integration indicated
by (6) is over all possible directions of two vectors whose relative
angle is fixed. But this integration may as well be considered as
ranging over all possible rotations of a rigid body. In this case we
may apply the well-known result that the diGerential element may
be written as dE=dndy sinpdp, where n, p, and 7 are the usual
Euler angles. For a detailed derivation see Ref. 4.

~oiiX&, o~shs, cvsli3, jmd')= D~3r'*(npp)

X
~
~oiXi, &ushs, iesX3, nPy)dn sinPdPdy, (9)

where the integration is performed over all rotations,
namely

0(n&2s. , 0&P&s-, 0(y&2m.

As is well known, these angles can be de6ned as in
Fig. 2 or, just as well, y may be considered as the angle
of the third rotation performed. around the normal to
the decay plane. As is easily checked using the group
property of the D functions, (9) transforms under
rotations as a state of total ap.gular momentum j with
s component ns and with component M along the normal
to the decay plane, a rotationally invariant quantity.
The energy and helicity of each particle are invariant
under rotations and their same eigenvalues appear on
both sides of (9). It should be remarked that we do not
obtain in this way the most convenient orthonormal set
of states for three free particles as in the two-body
problem. ~ Such states have been explicitly constructed
by Wick' by coupling two particles together and then
coupling the third one to the system constructed from
the first two. A quantum state with eigenvalues j, m,
and M will in general be described by a wave function
of co~ and co2 which multiplies the angular wave function
(10). The angular distribution of the normal which is
obtained by integration over the Dalitz plot (11) will

average over all configurations the final-state interaction
of two of the decay particles in a particular angular-
momentum state.

Using the angular-momentum eigensta, te (9) we have

(10)

A normalization coeKcient could appear in (10). It is,
however, independent of nz and M and therefore
irrelevant for our purposes.
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(
d~V

=PMM P, ~ P
) y, X2,X3

where

X DmM (&Pv)Dm'M' (&W')d r +MM' 1

SMM~ = d~ld~sRM(ielltl i te2X2 i ieslts)

XFM *(a&tutti u&sits, idslts).

The phenomenological decay amplitudes F~ which
have been introduced are functions of rotationally
invariant quantities only. They depend in general on
M but not on m.

Since the y dependence of a D function is simply a
factor e ' &, interference between different F~ ampli-
tudes vanishes in the normal angular distribution when
it is integrated over y.

If everything else but the direction of the normal to
the decay plane is summed over, a simple relation is
obtained for the angular distribution of the normal:

dN/dQ=+„, „P ~ QM D M'*(nPO)

XD„.M (~P0) ~RM ~,
where

d~etd~s
) RM(~oh'; ~sits ', ies~s)

~

Equation (11) relates the angular distribution of the
normal to the density matrix of the initial particle in
terms of the 2j+1 decay parameters RM.

This also shows that the maximum number of inde-
pendent decay amplitudes, as far as the orientation of
the decay plane is considered, is actually 2j+1 for
each set of final helicities. Conservation of parity in the
decay process further reduces this number, as will be
shown later. This number of independent decay ampli-
tudes is also equal to the maximum number of linearly
independent tensors that can be built with the particle
momenta —in terms of which the decay amplitudes can
also be written.

The Normal to the Decay Plane as an Analyzer

Many of the formulas which are presented now are
special cases of general relations for e-particle states
given by Aerie. ' Ke derive here those expressions
which are relevant for the special case of three-body
decays.

We now turn to the decay of a particle of spin j
whose state is not pure but rather a statistical mixture
of states described by a density matrix p . The
eigenvalues m and m run from —j to +j in integer
steps and refer to the s axis. The angular distribution
of the normal to the decay plane can be obtained for
each set of eigenvalues of the 6nal particle helicities.
On using (10), the angular distribution reads as

In order to use (11), one may calculate the required
D functions. Alternatively, use of the Clebsch-Gordan
series allows (11) to be written as

d.v/do, =g„~P„,PM P, c(jjul m'& —~)

I
4w

xc(jji~~, —~)(—1) --I
hZ+1

X Y ~ „'*(P,n) i
RM

i
', (12)

where we have introduced standard Clebsch-Gordan
coefficients. "

The angular distribution is thus given by a sum of
spherical harmonics with highest order 2j. This
generalizes the well-known theorem on the complexity
of the angular distribution in two-body reactions to the
case of three bodies in terms of the normal to the decay
plane.

It is convenient to group together terms with opposite
values of llII and to write (11) as

dlV/dQ= P ( P (Rep„„cos(m res')—n
M&0 mm'

—Imp ~ sin(nz —res')n)$RM+Z r'M+(P)

yR -Z„„M-(p))), (13)

where we have introduced the notations

Z- ™(P)=dM'(P)d M'(P)~d-M'(P)d- M'(P)-
and RM+=s (~RM~s+ ~R M~s); R+)0 and R may be
either positive or negative. The D functions have been
written" as

e
—im'ad, j (p)e iMy—

As follows from their definition and the relation

d .(P)=(-1) '-'d. .'( -P),
the Z functions satisfy the relation

Z iM+(P) —~( 1)m—m'Z, iM+(w P)

If we invert the direction of the normal (which, in

terms of the Euler angles, means the transformation
n —+ m. +n, P ~ vr —P), then the angular function which

goes with R is unchanged, while the function which

goes with RM changes sign, as is obvious from (13).
The normal direction is determined only up to a sign
when two particles are identical and when the sum-

mation over all available energies is performed according
to (11).In that case, all terms proportional to RM will

vanish identically. In order to keep the direction of the

"We follow the notations of M. E. Rose, Eleraentory Theory of
Angular Momentum (John Wiley & Sons, Inc. , New York, 1957)-
Ke refer the reader to this book for the various relations among
rotation-matrix elements used throughout this paper.
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normal well defined, it is necessary to sum inde- We can further group together terms with opposite
pendently on parts of the Dalitz plot, for instance values of both m and m' and write the angular distri-
separately for ~»or2 and ~&(~2. bution of the normal as

dV/dQ= P -', P Peas(m —m')n(Rep +(—1)
'

Rep )
M &P mm'

—sin(m —m')n(Imp —(—1)
'

Imp )]Z '~+(P)Rrrr+

+Leos(m —m')n(Rep„—(—1)"™Rep „)
—sin(m —m')n(Imp„„+ (—1) —"' Imp „)jZ „r'~ (p)Rs—r . (1—4)

Because of the Hermiticity of the density matrix and the definition of the Z functions, terms where m and gg' are
interchanged give the same contribution. As follows from their definition, Z ' (P)—=0 for integer j, and
Z„&'rrr+(p) =—0 for half-integer j.

Parity Conservation

If parity is conserved in the decay we have to replace (7) by an eigenstate of the parity operator with the proper
eigenvalue. We therefore consider the action of the parity operator P on an angular-momentum eigenstate (9).
We have

P
~

orrlr. &,orson&, orshs, jmM) = D rrr" (nP&)R s~P
~
or&Xr, ors7r. s,ors7rs, 0,0,0)dn sinPdPdy,

since the parity operator I' commutes with the rotation operator. We now use the fact that the parity operation
can be defined as the product of a reQection with respect to a plane and a rotation of angle x around a normal to
that plane. The plane chosen is the decay plane of the reference state

~
orrlr trorsksrooshsr0r0r0) )

i.e., the x-y plane (Fig. 2). We denote by I" the reflection operator with respect to that plane and write P= z+'~~I@'.

The action of 7 changes the sign of all helicities. In fact, the following relation holds":

F i orthr ', orshs, '
orsAs ', 0,0~0)=rirrlsrls( —1) iort —Xt,' ors —Xs', ops —Xsr' 0, 0, 0) r

where S and p stand for the spin and intrinsic parity of each particle. It follows that

P
~
orrXr, orsXs, or, lb.s, jmM) =rirrisris( —1)sr—~r+s~x~+s~ —~~

X D re' (nP&)E s e+' '~orr X&, o» —A&, or&
——lr. s, 0, 0, 0)dn sinPdpdy

In order to express the state after the parity operation in terms of the original states (9), we use E &~
z'~»——

Xe '&~*e '&~' and simply add —rr to the 6rst rotation angle, thus replacing D sr" (nP&) by (—1)~D sr& (n, P,
y —rr). In this manner one obtains"

P~or&X&, ~sos, orshs, jmM)=( —1) (—1) '—"'+ '—"+ '-"ri,ri,ri, ~or/ Xr ops Xs ops 'A3 jmM).

We write (—1)~ for e' ~. Applying (15) to a 3-pion
state we And the relation

Pl»»»'jmM)=( —1) + I~„&„&,; jmM). (16)

This yields an important result for 3-pion decays,
namely that if the parity of the decaying particle is
even (odd), only odd (even) values of M contribute.

For a one-baryon, two-pion state the appropriate
eigenstates of parity are

(1/~2(~orr, Xr, (os, ors., jmM)
a(—1) ~~&, —7 r; », ~s, jmM)). (17)

Either parity case will give the same angular distri-
bution, since states of diferent helicities are orthogonal.

"See Eq. (9'l of Ref. 7. All helicity states in this paper are
denned with the "conventional" 2: axis along the particle's mo-
mentum and the "conventional" y axis normal to the decay plane.

'4See also J. erie, Nucl. Phys. 49, 433 (1963). Our phase
conventions are different.

One of the Momenta as an Ana1yzer

The basic quantum states (5) which we have intro-
duced are labeled by Euler angles which refer to the
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direction of the normal. One could just as well consider
these three angles as defining the direction of one of the
three momenta, q& say, and a further rotation of q2
around q~. One can follow the same steps and obtain a
formula identical to (11) for the angular distribution
of one of the momenta. The functions R~ will, of course,
be different. Equation (14) is still valid and gives the
polarization of the decaying particle in terms of the
distribution of one of the momenta. If the analysis in
terms of the normal turns out to be a little easier to
work through, it is due to the simple form in which
parity conservation is expressed. For a three-pion
decay, we simply have to eliminate either even or odd
values of M. When the three Euler angles refer to one
momentum it is found that (16) has to be replaced by
the following relation:

~~~i~u~3, z~M)= (—1)'+~+'~~i~u~3, j~ —M). (15')

This approach is described in detail in Ref. 8. If the
parity of the decaying pa, rticle is (—1)', the decay

amplitudes R~ and R ~ are equal (opposite) if M is
odd (even) and there is no M=O amplitude. If the
parity is —(—1)&' the opposite assignment holds. For
each M value, both parity states give the same angular
distribution.

Identical Particles

The identity of two (or all three) particles will imply
further relations among the decay amplitudes. In the
examples considered in Secs. III and IV, for instance,
they will apply when two m mesons have the same charge
or are in an eigenstate of isotopic spin. If two identical
particles are produced, the decay state has to be sym-
metrical (antisymmetrical) with respect to the exchange
of the two particles according to their Hose-Einstein
(Fermi-Dirac) statistics. In order to construct states
with such a permutation property, we introduce a
permutation operator P» (exchange of particle 1 and 2
leaving 3 unchanged) and apply it on both sides of (9):

&»l~i~i ~2~2 M3~~ j~ M)= d~ »npdpdvD-~ (~pv)P12~(01X1 cv2A2 (d3ks, any)

=u dn sinPdPd'rD ~' (npy) ~&u2X2,
' uiXi, ar3X3, a p p ) (18)

with our phase conventions a= e' ("'+~~~».
Pote added ie proof. The factor a in (18) is missing

in an unpublished version of this work (Stanford Linear
Accelerator Center Report No. 73). We wish to thank
Professor J. Werle for calling this to our attention and
for informing us of his general work which was inad-
vertently overlooked in the references given there.

The set of angles n'P'y' which now appear in the ket
vector no longer refers to the normal to the decay
plane, since the direction of the normal is reversed when
the two particles are interchanged. The angles referring
to the normal are obtained through the transformation
a'=n+s, P'=m —P, y'=2m —y. The rotation defined

by the set of angles u+m. and m —P brings pi+ q2 to a
direction identical to the one obtained using a and P.
A rotation of angle 2m —y around the new normal then
gives the same configuration as the one obtained with
the set of angles n, P, and y. Since we integrate over all
rotation angles, we may replace the arguments of the
D function and write (18) as

g do. sinPdPdyD~~" (n n, s P, 2n.—y)——

X
~
a)2l~2, &aihi, ~3l~s, nfl) .

Transforming the D functions and using the definition
of our state (9), we rewrite (18) as

IR~(&i&2)l = l~-ia(»»)l . (20)

When integration over the whole Dalitz plot is per-
formed according to (11), we find that opposite values
of M give the same angular distribution for the normal
to the decay plane, and therefore E~ does not
contribute.

III. DECAY INTO THREE SPINLESS PARTICLES

We now consider in more detail the decay of a particle
of arbitrary integer spin j into three nonidentical
pseudoscalar particles. At first we do not take into
account any restrictions resulting from possible isotopic
spin configurations.

The 2j+1 a Priori independent decay amplitudes are
reduced by parity conservation according to (15) and
we obtain the maximum number of independent ampli-
tudes as shown in Table I. In the simplest cases we
have one amplitude for 0 and 1; two independent

Since the decay states are symmetrical or antisym-
metrical with respect to the exchange of the two par-
ticles, the amplitudes F~(&u&X,,~F2) will satisfy the
relation

gF~((aiXy, (o2Xp)= &F ~(a&F2)(oiXi), (19)

where the sign is + for symmetrical and —for anti-
symmetrical decay states. When the identical particles
are spin-zero mesons, the helicity indices are suppressed
and we have in both cases
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TAsLz I. The number of independent amplitudes describing
the angular distribution of the three-pion decay of a spin jparticle.
The columns refer to the angular momentum j and the rows to
the parity of the decaying particle.

j even 2 odd

Parity even
Parity odd

G6pv po'g]. "g2f'g 3

1+ Gi(pi+go), +G2(qi —go)„

(Gl(/1+$2) +62(gl $2)p) p gl g2 gp

Gl(gl /1+$2 g2)+G2(gl gl g2 $2)
+2Gogi&g, ".

(21)

The G's which are the coefficients of the independent
tensors are Lorentz-invariant quantities. They are
assumed to be analytic functions of s, f, and I, the
center-of-mass energies squared of the three particles

amplitudes for 1+ and 2+; three independent ampli-
tudes for 2 and 3, etc. This result may be obtained
by other approaches, but not in such a simple way. Ke
can, for example, exhibit sets of independent amplitudes
written in terms of Cartesian tensors which, for the
spin-1 and -2 cases, take the form

FiG. 3. p-m decay. The p momentum is taken along s', the rela-
tive momentum of the decay pions is taken along s".

taken two by two, i.e.,"
'=4'o+8)'~ N=(&+Co)'~ ~=(fi+Vo)'.

The functions ~R~~' defined above will in general be
linear combinations of products of two of the scalar
invariants G; with coefficients that are functions of s,
$, orl.

Taking account of the conservation of parity, we
next give the explicit expressions for the angular
distribution of the normal to the decay plane. For the
case of the decaying particle having spin and parity

we have only the 3E=O amplitude and Ro =0. The
quantity Ro+ is the common factor to the angular
distribution, which, following (14), takes the form

'1V/'"=~o+{(pii+p —i—i)Zii' (p)+poZoo' (p)+2[cosa(Repro —Rep ip) —sina(Impip+Imp ip)7Zip (p)
+2[cos2a(Rep )—sin2a(Impi —i)7Zi—i' (P)}~ (23)

Q'e readily get the Z functions from the table of d functions given in the Appendix and obtain

did/JQ=Ep {2cos Pppp+sin'P(pii+p i i) —2~2sinP cosP((Repio —Rep ip) cosa —(Impip+Imp ip) s1na)
—2sin'P(Repi icos2a —Impi isin2a)). (24)

This is a well-known result. The angular distribution determines six quantities (including the trace pii+ppo+p-i-i)
of the spin-1 density matrix (this specifies the tensorial polarization), but leaves undetermined the three other
terms (related to the vectorial polarization). The vectorial polarization is not determined because there is only
one decay amplitude. The observation of the y distribution would give nothing new.

~e now turn to the pseudovector (1+) case where there are two decay amplitudes corresponding to M= &1.
The angular distribution is then a function of two terms, one proportional to E~+ and one proportional to Eq .
It reads

de/dQ=Ri+{ (pii+ p—i—i)Z11"+(p)+pooZoo"+(p)+2[cosa(«pio —«p-io) —»na(Impio+Imp-lp)7Z10 (p)
+2[cos2a Repi i—sin2a Impi i7Zi i"+(P))+Xi {(pi,—p i i)Zii" (P)

+2[cosa(Repio+Rep io)—sma(Impio —Imp io)7Zio" (P)).
The Z functions are easily calculated, yielding the explicit expression

d"/d" ~1 {(pli+p—1—i)2(1+cosP)+popsinP
+v2 sinP cosP((Repip —Rep ip) cosa —(Impio+Imp-io) sina)+sin'P(cos2a Repi i—sin2a Impi i)

+Xi {(p»—p i i) cosP+V2 sinP[cosa(Repip+Rep ip) —sina(Impip —Imp ip)7). (25)

Provided the two decay amplitudes Eq+ are both different from zero, the density matrix can now be completely
determined. One needs only the ratio of their absolute values.

"gj'e use a metric such that a b = aobp —a'b.
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The angular distribution of the normal to the decay plane for a spin-2 particle is obtained in the same way.
The pertinent d' functions are given in the Appendix. For the 2+ case where there are two independent decay
amplitudes we obtain for the normal angular distribution

dX/dQ= R~+{ (p22+ p 2 2) (sin'P) l (1+cos'P)+ (p~~+p ~ ~)-,'(cos'P+cos'2P)

+poo» sin'2P —(cosa Re(p2~ —p 2 r) —sinaIm(p2~+p ~~)) sin2P cos'P
—(cos2a Re(p2o+ p-20) —sinn Im(p20 —p 2p)) 2 ($)'~' sin'2P

+(cos2a Rep~ ~
—sin2a Imp~ ~) (cos'P —cos'2P)

+(cosa Re(pro p—zo) sina1m(pro+p —xo))q(2)' sin4P

+(cos3a Re(p 2~
—

p2 ~)—sin3aIrn(p q~+p2 &)) sin2r'sinP
—(cos4a Rep2 2

—sin4a Imp, 2) sin'P}

+R~ {(p22—p ~ 2) sin'P cosP+(pn —p r r) cosP cos2P
—(cosa Re(p2~+p 2,)—sinn Im(p2~ —p ~r)) sinP(3 cos'P —1)
—(cos2a Re(p2o —

p 2o)
—sin2aIm(p2O+p 20))(2)'~'sin2P sinP

+(cosa Re(pro+ p ro) —sinn Im(p~o —p ro))(-,')'~' sin2P cosP
—(cos3a Re(p 2~+pq ~)—sin3a Im(p 2~

—p2 ~)) sinP sin'P}. (26)

For 2 we have three decay amplitudes corresponding respectively to M= &2 and 0 and thus the decay distribu-
tion will be a three-parameter expression. We use (14) and the d functions given in the Appendix and obtain

dX/d" ~2 {(p22+p —2—2) Ps sin P+cos Pg+ (pll+ p—1—1)g»n'P(1+cos'P)+ p008»n'P

+(cosa Re(p2~ —
p 2 ~)

—sinn Im(p2~+p-, ~))» sin2P(3+cos'P)

+(cos2a Re(p20+p 2O)
—sin2a Im(p20 —p 2o))(»+6) sin'P(1+cos'P)

+(cos2a Rep~ ~
—sin2a Imp~ ~) sin'P

+(cosa Re(p~o —p ~0) —sinn Im(p~o+p ~o))(»'g6) sin2P sin'P
—(cos3a Re(p ~~

—p2 ~)
—sin3a Im(p 2~+p2 ~))» sin2P sin'P

+(cos4a Rep2 2
—sin4a Imp2 2)» sin'P}

+R2 {(p2~—p ~ 2)-', cost'(1+cos'P)+(p~~ —
p ~ ~) sin'P cosP

+(cosa Re(p2~+p-, -,)—sinn Im(p2~ —p 2 ~))~ sinP(1+3 cos'P)

+(cos2a Re(p~o —
p 2o) sin2a Im(p20+p 2o))(l+6) sinP cosP

+(cosa Re(p~o+p ~o)
—sinn Im(pro —p—ro))(x+6) sin P

+(cos3a Re(p ~~+pq ~)
—sin3aIm(p 2&

—
pq ~))l sin'P}

+Rp{(p»+p 2 2)
—', sin P+(pn+p z z)» sin'2I'+poo(2+~ sin P—6 sin'P)}

—(cosa Re(p» —p 2 ~)
—sina Im(p2~+p 2 r))» sin2P sin'P

+(cos2a Re(p20+p 2p) sin2a Im(p2o —
p 20))(-',g6) sin'P(3 cos'P —1)

—(cos2a Rep~ ~
—sin2a Imp~ ~)6sin'P cos'P

—(cosa Re(p~o —
p ~o)

—sina 1m(pyo+p rp))(l+6) sin2P(3 cos'P —1)
—(cos3a Re(p ~~

—
p2 ~)

—sin3a Im(p 2~+p2 '))2 sin'P sin2P

+(cos4a Rep2 2
—sin4a Imp2 2)—,

' sin»p}. (27)

When two particles are identical, integrating over the Dalitz plot averages to zero those terms proportional tp p-
and the resulting expressions reduce to those given by Dennery and Krzywicki. ' lt is, however, possible tp average
separately over parts of the Dalitz plot (~,&a&2 and ~2)"~, say) and thereby allow for nonzero contributions from
terms proportional to E

Should resonances with higher spin be observed, explicit angular distributipns of the normal tp the decay plane
could be readily obtained from the Legendre polynomial of order j, P;(cosP) using the following relations":

d- -. (P) = ((~~~'+ 1)(i~~'))-"'{(-~i»nO)+~' cot~~ (~/'p) }~..y)
d o'(I') =~ (cos&) d ~ '(t') = (—1)"' "d- — '(P) = (—1)"' "d 'y).

'6 P. Dennery and A. Krzywicki, Phys. Rev. 136, 3839 (1964).
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Relations (24), (25), (26), and (27) are somewhat more
complicated than necessary since they correspond to
the most general density matrix. In many practical
cases the production mechanism is such that the density
matrix has many symmetries when referred to particular
axes and many of the terms written in (24-2/) will not
appear. On the other hand an observation of the
presence or absence of particular terms in (24-27)
would give information on the production process. ' In
this respect we recall the relations which express parity
conservation in a two-body production process, when
the initial beam and target are not polarized. If the s
axis to which the density matrix is referred is chosen
normal to the production plane, parity conservation in
the production process yields

p ~ =0 if m —m' is odd.

If the s axis is along the resonance momentum in the
center-of-mass system, parity conservation in the
production processs yields'~

j- -= (—1)"' "u---- (30)

This last choice of density matrix has the advantage of
being invariant under special Lorentz transforrnations
along the resonance momentum, i.e., when one passes
from the production c.m. system to the decay c.m.
system"

We now consider the implication of the identity of
the m mesons. If two of the m mesons are identical, i.e.,
have the same charge or are in a state of well-defined
isotopic spin, we have shown in the preceding section
that

the sign being + or —according as the states are sym-
metrical or antisymmetrical with respect to the ex-
change of the two particles. It follows that

R~+=k(~~~~'+ (~ s ~')
and

R~————,'(fFsj(' —[F M/')

are, respectively, symmetric and antisymmetric func-
tions of (cut —u&s) or of (s—u). An antisymmetric func-
tion does not contribute when the distribution is
integrated over the Dalitz plot (11).In order to observe

terms proportional to R~—', and determine all parts of
the decaying particle s density matrix, it is necessary
to de6ne the normal to the decay plane according to
the different energies of the two identical particles. As
mentioned above this corresponds to summing twice,
over the halves of the Dalitz plot with co~&~2 and
COj (eg.

In many cases the symmetric function will be
dominant, since the simplest symmetric function is 1,
while the simplest antisyrrunetric one is (s—ii)/M',
where M is a phenomenological parameter with the
dimension of a mass. In any simple model this mass
would be of the order of the inverse range of the
interaction. If the range is short, i.e., if vector mesons

play a dominant role," the average energy of each
particle could be less than the inverse range (depending,
of course, on how heavy the decay particle is) and the
antisymmetric term would then be quenched by the
centrifugal barrier eBect as opposed to the dominant

symmetric one.
Furthermore, when the decay amplitude is written

in terms of Cartesian tensors such as (21), as is usually
the case when dealing with a particular model, the
antisyrrunetric term vanishes when the different tensor
amplitudes have the same phase, i.e., are relatively real.
This can be seen as follows: If the spin is j, the decay
amplitude is written as a Cartesian tensor of order j.
It is constructed with the two linearly independent
vectors available, for instance q= qt —qs and p=qt+q»
where q& and q2 are the four-momenta of the two
identical pions. The decay amplitude is a linear com-
bination of monomial expression of the type

Gyp, ip;s ~ pi.qi.+i' ' 'qij

The density-matrix element constructed in tensor form

p g J Jy g J contributes to the angular distribution a
term

GsGl pil qijpjl qi jPil'"ij, jl"'jj &

kl

where the indices of the sets (i) and (j) running from
1 to 3 refer either to p or q components, depending on
the subscript k, l, We can apply the Hermitian
property of the density matrix to write the decay
distribution as

s 2 («[GiGi"')[(p' ' 'qjpir qij)+(pji qjj)(p;," q;j)] «~,r''' j,jl'''jj
kl

m[G&G& jl (Pil' ' 'qijpil' ' '5'j) (P~~' ' 'qi j)(pil' ' 'qij) j m&'1 ij jl ij)~""
Using the fact that the whole decay amplitude is sym-
metrical with respect to the exchange of the two

"We use the (q,0,0) representation of Ref. 7.
' This follows from the property that the generator of a Lorentz

transformation along a particular axis M;4 commutes with the
component of the angular momentum along that axis, i.e.,
[Mid, M;4]=0.

identical particles we have that if Gl, is symmetrical
(antisymmetrical), the associated tensor contains a
component of q an even (odd) number of times. In-
spection then shows that odd powers of components of

"See, for example, M. Gell-Mann, D. Sharp, and W. Wagner,
Phys. Rev. Letters 8, 71 (1962).
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the normal to the decay plane, i.e., terms of the form
22j=p;q;—q;p;, which correspond, to terms linear in

cosP or sinP in the angular distribution, are obtained
only in the terms proportional to Im(G&, G&*).

In order to determine fully the decaying particle's
density matrix, we see that it is necessary to have
amplitudes of different phases. This is necessarily the
case in three-pion decays when a two-pion resonance
(the p meson) can actually be produced.

To illustrate this point, we consider the decay of a
pseudovector particle A into a pz state with the sub-
sequent decay of the p into two pions (Fig. 3). To be
more specific we consider a 2+ ~ m.++2r++2r+ decay.
We introduce the unsymmetrized 2p~ decay amplitude
as

g& 2A '2p+g2 (6A q2) (6p q2)

a p~~ decay amplitude

g"(q
—

q2)

q~ and q2 are the momenta of the two identical pions,
and e~ and e„respectively, stand for the linear polari-
zation vectors of the A and p mesons. The 2 —+3m
decay amplitude can be expressed, after the proper
symmetrization, as

gl(q ql)+g2q2q2' (q ql)

(qyq, )'—m, 2

g2(q q2)+g2qiqr—' (q—q2)

(q+ q2)' —222,
'

This last expression is of the form

cA (Gz(s, t,u) (qr+q2)+G2(s, t,u) (q&
—q2)), (32)

where G2 (G2) is a symmetrical (antisymmetrical)
function with respect to the exchange of s and N. In
(32) the mass of the p is actually complex and we write
m, 2 as M,2+2iM, I', where M, and I', are the p mass
and width. In terms of the coupling constants g~ and

g2 one finds for the interference term the covariant
expression

Im fGr*G2}= (2M,I', (s—u)/ l (s 2N, ') (u t—n,2)
l
)—

x(g2'L(& q)' —(& p—2qr q2
—t')'$

+3g2'+2g2g2(E: P 2q2 q2 t '))—, —

where E=q+q, +q2 is the 2-meson momentum. The
term g& in Eq. (25) is proportional to the interference
term Im(G2G2*). The interference term will be non-
negligible on the p bands as compared with a symmetric

l G2+
l' term, except on that part of the p bands which

actually cross over within the Dalitz plot. The non-
crossover p bands contain the events useful for deter-
mining the vectorial polarization of the A particle.

Vector-Meson-Pion Decay

Since meson resonances appear to play a dominant
role in elementary-particle interactions, a three-meson

decay may often be considered as two successive two-
body decays, two of the mesons being the decay
products of a meson resonance produced together with
the third one. Decays of this type have been already
observed, ' and we now consider in some detail an
example of such a process (Fig. 3).

To illustrate the argument we consider a parity-
conserving decay where the intermediate two-meson
resonance is a vector meson and where the initial
decaying state has a definite angular momentum. In
order to construct a state of well-defined parity we use
the result of applying the parity operator to a two-body
helicity state given by Eq. (41) of Ref. 7, i.e.,

I'lynx)=»&2( 1)&'—s&—s'Ij 222, —x). (33)

Therefore a decay state of well-defined parity can be
expressed as

2 ~~(1/v2)(l j~»+~(—1)'l j~, —&)), (34)
XWO

where j is the spin of the parent decaying particle, m
its component on a fixed axis, X the helicity of the vector
meson, and e the relative parity of the vector meson
and parent decaying pa, rticle. The sum in (34) extends
over only two values of X, X= 1 (or —1) and 0.

It follows from (33) that for either choice of parity a
vector-meson helicity of ~1 is allowed, while the
helicity 0 state is allowed. only when e= (—1)'. If the
vector meson is a p (negative parity), the helicity state
X=o is allowed for the assignments 1+, 2—,3+, -, for
the parent decaying particle. Turning now to the two-
spinless-particle decay mode of the vector meson, we
see that states with X=&I and 0 give diGerent angular
distributions. When the angular distribution is referred
to the vector-meson line of flight as a polar axis and
averaged azimuthally, one Ands, respectively, for the
cases X=&1 and X=0 (in the vector-meson rest frame)
angular distributions of the form

sin20 or cos'0

This is true independently of the parent decaying
particle's state of polarization or alignment.

A cos'0„ term allows for the occurrence of events
with the three mesons along the same line in the parent
decaying particle's rest frame, and its occurrence would
show that the relative parity to the vector meson is
(—1)'. Taking into a,ccount the negative parity of the
p meson yields a parity (—1)'+' for the parent particle
decaying into an intermediate pz state."

To complete this discussion we give in (35) the
angular distribution obtained from (34). The method
for arriving at this expression follows the derivation of
Eq. (38) given below.

~ For a more detailed discussion of sequential decays see S. U.
Chung, University of California Radiation Laboratory Report
No. 11899 (unpublished); J. Button-Shafer, UCRL Report No.
11903 (unpublished); S. M. Berman and M. Jacob, Stanford
Linear Accelerator Center Report No. 43 (unpublished).



DISTRIBUTIONS IN THREE —BODY DECAYS 8 1033

The angular distribution of the vector meson in the parent-meson rest frame is then

I(8,y) xs Q (cos(m —m')y Refp '+( 1) 'p j—sin(es —m')q'ImLp ' (—1)~ ~'p .])
Xt [P,)'Z„.»+(8)+2(F,)sZ„„o+(8)g. (35)

IV. ISOBAR TWO- AND THREE-BODY DECAYS

We consider next the decay of a particle of arbitrary
half-integer spin j into a spin--, hyperon and. two m

mesons. Parity is assumed to be conserved in the decay
and hence the decay state corresponding to a pure spin
state J,=m is written, according to (17), as

+sr Psr(~ j,m, M2, )+e(—1)~~j, m, M, ——',)), (36)

where e stands for the parity of the decaying particle,
relative to the decay baryon. 3f takes all half-integer
values such that —j&M&j.

Since all M values may appear in the expression
obtained for the angular distribution of the normal to
the decay plane, this distribution will appear slightly
more complicated than the one obtained in the 3+ case.
Nevertheless, the u priori unknown parameters —the
2j+1 decay amplitudes and the density matrix elements
which describe the polarization and alignment of the
decaying particle —also predict the polarization state
of the daughter hyperon. Its density matrix can in turn
be fully determined from the knowledge of the decay
asymmetries.

Since this approach using the helicity formalism
generalizes the derivation of well-known relations for
two-body decays to three-body decays, we first briefly
introduce our method for the two-body case. Many of
these results are already known' but have not been
given in the same concise and simple form presented
here. Furthermore, in many practical cases two-body

and three-body decays occur with similar branching
ratios (Fi*—+As., Fr*~As.s, and Fs*—+Z+s, Fe*-+
A.s.s- ) and it may be useful to have the va, rious decay
distributions compiled together, since both cases refer
to the same set of density matrices.

Consider now the parity-conserving two-body decay
of a particle into a hyperon and a pseudoscalar meson.
From Eq. (33) we find that parity conservation implies
that the decay state corresponding to a pure spin state
(J,=m) takes the formr

—:)+(—1) 'lj —l&) (37)

There is only one amplitude associated with a parity-
conserving decay. It follows from (37) that the angular
distribution and the longitudinal polarization of the
decay hyperon depend on the angular momentum, and
on the polarization state of the decaying particle, but
not on the relative parity e. However, the transverse
polarization, which is an interference term between the
two helicity states, changes sign with e, which is a
well-known result. "We take the 2 axis and the hyperon
momentum (in the isobar rest frame) to define a decay
plane, and will consider the polarization vector of the
final hyperon in this plane (Fig. 4). Our phase conven-
tions for two-body decays are those of Ref. 7. The polari-.
zation is described with the conventional s and y axes,
respectively, taken along the 2' and z&&x' axes.

From (37) one readily finds the angular distribution
of the daughter hyperon

J(8,~)=l&l'X-', Z p (D q'(v, 8,0)D "(p,8,O)+D -q'(~8, O)D;"(v,8,O)),

=—', P (Rep cos(rl —m') p—Imp sin(m m') q)Z—~ 'r+(8),

=-', g {cos(m—m')y Re(p„.+(—1)" "'p „)
tnml

—sin(tn —m') p Im(p + (—1) 'p ))Z &r'+(8) . (38)

For the longitudinal polarization, i.e., the expectation value of the helicity, we have merely to replace Z+(8) by
Z (8) and thus we obtain

pr, )&I(8,y) = s IF ~' P (cos(rN res') y Re(—p —(—1)" 'p )
I

—sin(nt —m')qr Im(p +(—1) 'p ))Z &' (8). (39)

The longitudinal polarization given by (39) vanishes if the isobar is not polarized. Even for a polarized isobar
the longitudinal polarization of the hyperon is zero when averaged over the angular distribution, since Zt-(s —8)
= —Zt-(8).

"N. ayers and S. Fenster, Phys. Rev. Letters ll, 52 (1963)."R.Gatto and H. Stapp, Phys. Rev. 121, 1553 (1961).
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The transverse polarization, in the ss' plane, reads

p»&I(e, ~)=.(—1)~-:(IFI'/2) 2 p..{D.",'(p, e,o)D ~ *(~,8,0)+D.. ;~(„,8,0)D., '(„,8,0)},
mme

= e(—1)~'(lF l'/2) Q (Rep cos(m —m') p —Imp s&n(m —m') p)X, &'(8)

where
X„„'(8)=d„",&(8)d li(g)+d, j(g)d„j(g).

With the relation X '(P) = (—1) '+ X ~ &(8) we write

p XI(e,q)= (—1) '*(lFl'/4) p {cos(m—m')q Re(p„„+(—1)"+"' .)
mm'

—sin(m —m') y Im(p „.—(—1)m+~'p, )}X, i(g) (40)

Examination of Eq. (40) shows that the transverse
polarization also vanishes if the isobar is not polarized,
and furthermore, that if the azimuthal angle y is not
observed, only diagonal terms of the density matrix
contribute.

The simplicity of the method is related to the fact
that the ratio of the helicity amplitudes does not change
when transformed from the isobar rest system to the
rest frame of the hyperon.

For a speci6c illustration, we give the above decay
distributions obtained for the decay of a spin-~ and of a
spin-2 isobar. The Z+ and X functions are obtained
from the values of the d function given in the Appendix.
In order to give relatively simple expressions we average
over the p angle. The e6ect of any other density-matrix
elements whose contributions have been averaged out
can be obtained in a straightforward way if this
azimuthal average is not performed.

For j=-', we have the mell-known results

I(g) = I(e,~)d~=2~IF I'

where the angular bracket means average over all
directions. We use the Clebsch-Gordan series expansion
(12) together with the orthogonality property of the D
functions. We 6nd
(p (ie, (p)I(e, (p) cosg)

=l(lF I'/2) 2- (—1)" 'Re(p-- —p-—)
XC(jj1lm, —m)C(jj1p) —-', )

(Pr(e v)I(e, v)»ne)
=(lFl'/2)-', v2&( 1)i+*+ (—1) +l

xRe(p. —p .)C(qual lm, m)c—(zeal p ;)—
It follows that

(p.(e, ~)I(e,~) «.8) c(jjl l-, —;)
Ey = =—g(—1)i+)

(p (8,.)I(e,.) w2C(jjl l-; —;)
'

The ratio of the two Clebsch-Gordan coeKcients is
readily obtained and we And

Eg ——(—1)'-ll 1/(2j+1)).

P,XI(g) =2~lFl' ,'(py; —p y y) co-se,

p XI(g)=2m lF l ~e(p1,—p, 1) sing.

In the j=& case, it reads

(41) It should be stressed, however, that the two quantities
which appear in this ratio are both proportional to the
parent-particle polarization. This result can be gen-
eralized to higher moments of the type illustrated below
with the restriction that l be odd."For example, we can
calculate the ratios

I(g) =2~IF I'—:6{(p-+p, ;)(1y3 cos'e)
(P&( ip)I(g p)F (cosg))

R)——

(p.(e, ~)I(e,~)~ (8))
'+(p,* t+p;;)3 sin'8},

where21r
PiI(e) =—IFI'{(p;;—p ~;)(9 cos'e —5)

16
t 4~

(Pinl(g)
—e imrpP' na(g @—)l

(2l+ 1

+3(pt. g
—p g t) sin'8} cos8,

In a similar way we find for the average longitudinal
polarization

(pr, (g, y)I(8,q)F~(cosg)) =1/(2l+1)
x(IF I'/2) 2- (—1)" '«(p- —p==)At this point we may easily derive a useful result. xc( "ll — )c( "ll-' —-')

From (39) and (40) we get the ratio of the expectation X jj m, —~
values of (pr(e, qp)I(g, p) cosg) and (pr(e, y)I(e, q) sing), which vanishes for even l, and for the average transverse
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JlP

Fio. 4. Hyperon-pion decay.
The decay-hyperon momentum
is taken along s'. The vectors
py, pI., and p are the trans-
verse, longitudinal, and total
polarizations of the decay hy-
peron, respectively.

polarization

(Pp (8,q)I (8, q )6'i'(0)) = e((—1)&+l/L2l+1j)
X(l&l'/2) P (—1) +~ Re(p —p- — )

&&c(jj llew,
—m)c(jjll —,—).

It then follows that" R~ can be expressed as the ratio of
Clebsch-Gordan coeS.cients

. ,C(jj~ I l, —l) . ,(~(~+1))'"
Ri ——e(—1)~l = e(—1)'—'

C(jjII l, l) 2j+1

Similar relations can also be obtained in the same
simple way when the Legendre polynomials and
Legendre functions are replaced by D functions. (One
always obtains the ratio of two Clebsch-Gordan co-
efBcients, but off-diagonal density-matrix elements are
introduced. )

We now turn to the three-body decay into a spin--',

hyperon and two pseudoscalar mesons. The angular
distribution of the normal to the decay plane is given
by (13) and (14).This is a simple generalization of (38)
where the normal to the decay plane replaces the
momentum as an analyzer of the decaying-particle
polarization. However, for a three-body decay into two
spin-0 mesons and a spin--,' hyperon, there are in general
2j+1 independent amplitudes, instead of one as in
(38). The 2j+1 decay amplitudes F~ are, in general,

unknown functions of the invariant scalars s, t, and n.
However, the kind of angular functions which arise in
the normal angular distribution do not depend on the
explicit form of the Ii~ but only on the parameter M.
Just as in the case of 3m decays, if some of the decay
products are in a fixed isospin state, then there can be
some additional relations among the amplitudes Ii~.
For example, the two ~ mesons will be in a state of
well-defined isotopic spin for the decay I'i*(1660)~
A. 2n. (branching ratio 0.23), and for the decay
To"(1520) —+ A. 2~ (branching ratio 0.16) . The
decay amplitudes Ii~ with opposite values of 3f are
then related by (19) snd, just as in the case treated
above for the three-pion decay, the E~~

—amplitudes
will vanish when summed over all energy configurations.

As an illustration of the general formula (14), we
give the angular distribution of the normal obtained
when the parent particle has angular momentum —.In
order to make the resultant expression more compact
we define the 12 quantities

Cl =P1 -,*+p—,——,',
C2=P~ ~+P

C~(a) =cosn Re(p;. ,—p; ~)—sinn Im(p;;+p;, ),
C4(n) =cos2a Re(p; 1+p 1 1)—sin2n Im(p 1

—p; i),
C~(n) =cos3n Re (p~;—p;;)—sin3n Im(p~ +p, ,),
C6(cl) = cos(x Re(p*, ~—p ~ ~) —sinn Im(P1 x+p 1 ~),

C3'(n) =cosn Re(p,*;+p;;)—sinn Im(p; *,
—p . ,*),

C4'(n) =cos2n Re(p, 1
—p, 1)—sin2n Im(p, 1+p ),

C5'(n) =cos3n Re(p;;+p, ,*)—sin3a Im(P1 1.
—p; g),

C6 (tx) =cosA Re(p; ~+p 1 1)—sina Im(p;; —p;;) .
In terms of these quantities, the angular distribution of
the normal may be expressed as

dlV/dQ = (Ci 4i ((1+3cos'P)R*++3 sin~PRy+)+C2 ~~ (3 sin'PRg++ (1+3cos'P) R,+)
+ (v3/2) C3 (a) sin2P (R~+—R~+)+ (C3/2) C4 (n) sin'P (R1+—R~+)}
+(Ci'-', cosP((cos'P+3)R,*—+3 sin'PR~ —)+C2'f cosPLsin'PR~ +(3 cos'P —(5/3))R;—g

+ (V3/2)C3'(a) sinp((1+cos'p)R~ + (1—3 cos'p)R; )+ (v3/2)C4'(n) cosp sin'p(R; ——3R~
—

)
+4iC~'(o) sinP sin2P(R1 —3R~ )+~~C6'(n) sinP((9 cos'P —1)R~ +3 sin'PRO )}. (43)

Analysis of the three-body decay in terms of Eq. (43)
would provide 16 different functions of a and P which
can in principle fully determine the density matrix of
the decaying particle.

We now turn to the polarization of the daughter
hyperon. As follows from the way we decomposed the
parity operation, where the s and y axes were de6ned
to be along the hyperon momentum and along the

normal to the decay plane, respectively, the state

(1/v2)(l j,~,jf,l)+~(—1)~lj ~ ~, —k))

is an eigenstate of the spin component of the hyperon
normal to the decay plane, with eigenvalue e(—1)~ l.
As usual, this polarization is defined in the hyperon, rest
system.
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It follows from (36) that the expectation value of
the polarization of the hyperon, normal to the decay
plane, can be easily expressed in terms of the parent
particle's density matrix. The polarization is de6ned as
the expectation value of e 8, where A is a unit vector
along the normal to the decay plane. In terms of the
parent particle s density matrix p, the distribution
of transverse polarization along the normal can be

expressed as

p. (~.~/«)= 2(-1) -1IR I'Z p—

X (+ 'M (up0)D M (up0) } (44)

Just as for the angular distribution of the normal, we

regroup terms with opposite values of M and obtain

Pr(de/dQ) = e P (—1) *(Rsr+ Q [Rep ~ cos(m te—')u Im—p ~ sin(m —m')u]Z ~ " (P)
M)0 mml

+R&r Q [Rep cos(m m—') u+I mp ~ sin(nz —m')u]Z ~ "~+(P)}
mml

=e P (—1)~—i-', {P [Re(p „+(—1)"+"'p „„.) cos(m —m')u
M)0 mml

—Im(p —(—1) + 'p ) sin(m m') —u]Z ™(p)Rsr+

+[Re(p„.—(—1) + 'p „.) cos(m —tn')u

—Im(p +(—1) 'p ) sin(m —m')u]Z '~+(P)Rsr }. (45)

In order to illustrate this general relation, we consider the case where the parent particle has angular momentum
—,. Employing the Z+ functions already obtained for the normal angular distribution, we find

P~ (dX/«) = —e(sr Cr' cosP[(cos'P+3)Rt+ —3 sin'P R,+]+s4Cs' cosP[sin'P R~+—(3 cos'P —(5/3))R*,+]
+-',v3Cs'(u) sinp[(1+cos'p)R ++ (3 cos'p —1)R~+]+srv3C4'(u) cosp sin'p(R1++3R1+)
+4Cs'(u) sinP sin'P(R++3R1+)+~4Cs'(u) sinP[3 sin'P R;+ (9 cos'P ——1)R1+]
+C~—„' (1+3 cos'P) (R; —3 sin'P R; )+Cst~ [3 sin'P Ra (1+3cos—'P—)Ry ]

+-',v3Cs(u) sin2P(R1 +R~ )+-',V3C4(u) sin'P(Ry +R~ )}. (46)

Equations (43) and (46) can be used to determine the
spin and parity of the decaying isobar by 6tting to the
three-body data, or at least can be used to impose
further consistency requirements when the two-body
decay data are simultaneously analyzed in terms of
(38), (39), and (40).

For example (46) when applied to the Vr" (1660)
data should yield expressions of the same sign for the
A and Z, employing averages over both the Dalitz plot
and the azimuthal angle of the normal if the A and Z
particles have the same parity. This comparison could
be considered as an independent determination of the
ZA relative parity, and generalizes to three-body
decays —a result already known for two-body decays. "

If desired, the expectation value of the hyperon
polarization along any other direction is readily ob-
tained from (36). However, the polarization normal to
the decay plane is the only component of polarization
which does not vanish when an average is performed
over y.

Isobar-Pion Decay

Since a three-body decay of a high-mass isobar may
proceed through an intermediate isobar-pion decay, we

'"'Ph. Meyer, J. Prentki, and Y. Yamagouchi, Phys, Re@.
Letters 5, 442 (1960).

now consider, as in the case of the three-pion decay,
two successive parity-conserving two-body decays"
eventually producing a final three-body state of one
spin-~ baryon and two spinless mesons. We restrict the
arguments below to exclude any possible overlapping
isobar bands, thus eliminating any possible ambiguities
as to the kind of two-body decay. The decays

X*(1688)~N*(1238)+m

*(1810)-+ *(1530)+m

provide two such examples. ' In both cases, one of the
daughter particles is a decuplet member with angular
momentum —,'+. For the first step of this two-step
process, parity conservation implies two independent
decay amplitudes. Assuming that the intermediate
particles are a spin-32particle and a pseudoscalar
particle, we find that the intermediate decay state
corresponding to a pure spin state of the initial particle
can be expressed as

(1/W(~vs(li ~ l&+e(—1)
'
'li, ~ —a))

+~us(li ~,s&+e(—1) '*li, ~ —s&)} (47')

where j is the angular momentum of the parent isobar
and e is the relative parity of the parent and daughter
isobars. For the special case of the parent isobar having
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X, y, Z Y + + REST FRAME Y+ +~Y++ 77

x, y, z Y REsT FRAME Y+ ~Y +m

X y Z Y REST FRAME Y N +m'

FIG. 5. The two-stage decay Y~~ —+ I *+7f, I ~ ~ 7+x. The
coordinate system (u,y, s) is the rest frame associated with the
Y**.The P'* momentum is along s', and (x',y', s') is the rest frame
associated with the P*.The I' momentum is along s".ln addition,
the coordinate system (s",y",s") in the «' rest frame, used for the
analysis of the final hyperon polarization, is indicated on the
figure, where s'" is along the nucleon in the analyzing decay
Y ~S+x.Note that the direction of the y axis remains invariant
between any two successive frames of reference.

spin ~ there is only one decay amplitude, and Ii3~2 will
not appear in (47).

The density matrix p' of the daughter isobar can be
expressed in terms of the parent density matrix p as

p„„'=Il„F„*P e'& "'&&d „ (te) d „-r(e)p . (48)
mfnl

The density matrix p' is defined in terms of a co-
ordinate system derived from the initial coordinate
system in the parent-isobar rest frame by a rotation
through angles 8 and y, the polar and azimuthal angles
of the momentum of the daughter isobar in the parent-
isobar system (Fig. 5). Parity conservation as expressed
by equations of the form (47) then implies that for an

helicity amplitudes under I orentz transformation, the
density matrix p' is the same in either the rest frame of
the parent isobar or the rest frame of the daughter
isobar. We note also that Eqs. (48) and (49) are valid
for any spin of the daughter isobar.

If the daughter isobar subsequently has a two-body
decay, its density matrix given by (48) may now be used
directly in (38), (39), and (40) to express the resultant
angular distributions. In particular, for the case of the
daughter isobar having spin s, the density matrix (48)
can be substituted directly in (42). The results obtained
in the beginning of Sec. IV pertaining to two-body
decays can now be applied directly to the daughter-
isobar decay, notably the theorem on the ratio of
transverse to longitudinal polarization.

The succession of reference frames used in the
analysis of such a two-step process, followed by the
eventual isobar decay into F+sr, is shown on Fig. 5.

It is perhaps by this last example of the two-stage
decay that the simplicity of a method using helicity
states is clearly demonstrated. The more traditional
treatment would require recoupling coefficients to
describe the second stage of the decay in terms of the
parameters describing the first stage, a complication
avoided in this presentation.

APPENDIX

Ke list together the d functions which are useful for
the analysis of the decay of particles of spin less than
or equal to 3. Not all the d functions are given. The
missing ones are easily obtained using the simple
symmetry relations

unpolarized parent particle Several recurrent relations useful for the calculation
I I( 1)s—p of the d functions are given in the appendix of Ref. 7.

More relations are given in Refs. 12 and 24.
As follows from the transformation property of the The relevant d are now listed below.

Spits -', :

Spits J:

Spirs —,':

d««(P) =cossP d—««(P) =»nsP.

d11(P)= —', (1+cosp), d01(p) = (sinp)/v2,

d1 1(P)=-', (1—cosP), doo(P) =cosP.

d;. «(P) =-,'(1+cosP) cos-,'P,
d««(p) =~rv3(1 —cosp) cossp,

d; «(P) =-,' (3 cosP—1) cos-', P,

d«; (P) = —-'s&3 (1+cosP) sin-,'P,
d««(P)= —-', (1—cosP) sin —',P,
d««(P) =—-', (1+3 cosP) s1n-,'P.

dss(p) =-', (1+cosp)', d„(p) =—-', (1+cosp) sinp,

dso(P) = (g6/4) sin'P, ds, (P) =——', (1—cosP) sinP,

ds s(P) =e (1—cosP), d11(P)= 0 (1+cosP) (2 cosP—1),
dlo(P) (s) s1nP cosP | dl—1(P) s (1 cosP) (2 cosP+1) I

doo (P) = s (3 cos'P —1) .
A. R. Edmonds, Augufar 3Iomeutum su Quautum 3Iechauics (Princeton University Press, Princeton, New Jersey, 1957).
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SPin -', :

SPirt 3:

dl, (P) = ts (1+cosP)' cossr P,
d ~ (P) = (10't'/4) sin'P cos-', P,
d (P) = 5't'r (1—cosP)s cos-,'P,
d;;(8) =s(5 cosP—3) cos'-,'P,

d*, ; (P) = (1/&2) (1+5 cosP) sin'-,'P cos-,'P,
d; ,*(8)= -', (5 cos'P —2 cosP—1) cos-,'P,

d' $ (P) = (5) (1+cosP) sins P,
df—-, (P) = —(10"/4) sin'P sinrs P,

l(8) = —-'(1+cosP)' sin-'P,

d; f (P) = (I/W2) (—(5 cosp —1)) cos's p sin-,' p,
d;;(P) =——',(5 cosP+3) sin'-', P,
d-; —;(P)= ——',(5 cos'P+2 cosP —1) sin-', P.

dss(I9) = s (1+cosP)',
dst(8) = (15"'/8) sinsP(1+cosP),

ds t (8) = (15'"/8) sinsP (1—cosP),

ds p(8) = —', (1—cosP)s,

dsr (8) = —(5'"/4v2) sinP (3 cos'P+ 2 cosP—1),
ds t (tP) = (5"'/442) sinP (3 cos'P —2 cosP—1),

drt (P) = —', (1+cosP) (15 cos't3 —10 cosP —1),
dr t (P) = —', (1—cosP) (15 cos'P+ 10 cosP—1),

des (P) = —(6' '/8) sing (1+cosP)

dsp(8) = —(5'"/4) sin'P,

d3—s (P) = —(6"'/8) sing (1—cosP)'

dss (P) = s (1+cosP) (3 cosP —2),
dsp(8) = (15'"/242) cosP sin'P,

ds s(P) =4(1—cosP)'(3 cosP+2),

drp(p) = —(v3/4) sinp(5 cos'p —1),
dpp(P) = (5 cos'P —3 cosP)/2.

P HYSI CAL REVIEW VOLUME 139, NUM 8ER 4B 23 AUGUST 1965
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The E-quantum approximation is designed to Gnd approximate operator solutions of theories character-
ized by a specific Hamiltonian. The Heisenberg Geld operators of the theory are approximated by Gnite-
degree normal-ordered expansions in an irreducible set of in-Gelds. The c-number functions which are the
coeScients of these expansions are the unknown quantities in the approximation. The approximation
assumes that the dominant contributions to the vertex function, scattering function, and other low-order
functions come from functions of similar low order. The c-number functions correspond to the connected
graphs with a given number of external lines. Thus in graphical language the approximation assumes that,
the connected graphs with few external lines dominate. The E-quantum approximation is manifestly co-
variant, treats positive and negative frequencies in a symmetric way, allows a calculation of several diferent
physical processes simultaneously, allows incorporation of bound states, and requires extrapolation o6 the
mass shell in fewer variables than the usual Green's function approaches. After describing the X-quantum
approximation, it is shown to be compatible with renormalization theory in first order of the approximation
in the model with Zl ——gA'. It should be emphasized that all powers of the coupling constant occur in Grst
order of the S-quantum approximation in this model. A quadratic integral equation is obtained for the
vertex function, and it is shown that the vertex function satisfies the renormalization criteria that the
particles in the theory have a given observed mass, and that the vertex function has a given coupling constant
as the residue of a pole (m' —k'l ' in the unphysical region. It is also shown that the power-series-expansion
solution is finite term by term in all orders of the coupling constant.

1. INTRODUCTION

~~QUANTUM electrodynamics is the only quantum~ leid theory which provides a quantitative de-
scription of relativistic particle interactions. Even this

* Supported in part by the National Science Foundation under
Contract GP-3221.

f Alfred P. Sloan Foundation I ellow.
$ Present address: Department of Physics and Astronomy,

University of Maryland, College Park, Maryland.

theory has rather restricted scope, since it applies only
to purely electromagnetic interactions and is not valid
when effects due to strong and weak interactions enter,
for example, at high energies. After a number of un-
successful attempts to treat speci6c theories of strong
interactions without using perturbation theory, these
attempts largely have been abandoned, and interest has
shifted to approaches in which various general require-
rnents, such as relativistic invariance, spectrum, locality,


