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It is suggested that the Pade approximant be used as an approximation outside the radius of convergence
of the Born series for scattering from a short-range potential free from a strong singularity. Following Wein-
berg's analysis of the Born series, one approximates the potential by a finite number of separable potentials
in order to deal with a limited range of energy, and thus the associated E matrix can be evaluated without
further approximation. When a number N of separable potentials are constructed by using the lowest 2Ã
terms of the Born series, the result is identical to the (S,E) Pads approximant. If expanded formally into
a power series in the potential strength, this approximation reproduces the original Born series exactly up
to the 2Nth order; but without an expansion it takes a closed form for any finite potential strength, and
therefore it is well defined outside the radius of convergence of the Born series. When the Weinberg eigen-
values and eigenfunctions on the energy shell are closely approximated with a suitably chosen 1V, the diverg-
ence difBculty of the conventional Born series can be overcome by the use of the Pade approximant, because
the latter is correctly continued analytically outside the convergence radius of its Born series.

I. INTRODUCTION

S CATTERING theory is well founded for a local
potential which is short-range and free from a strong

singularity. ' The latter properties can be formulated in
terms of the existence of the erst and the second
moments of the potential

r"
I V(r) I

dr( ~, for n=1, 2.

Such properties guarantee the validity of the adiabatic
hypothesis for switching on a potential. They can be
formulated in momentum space in such a manner that
they are valid for nonlocal and/or energy-dependent
potentials. ' Individual terms of the Born series for such
a potential are well de6ned for any finite strength of the
potential, while the Born series may or may not con-
verge. However, the Born series is available as the
starting point of an analytical continuation even when
it diverges. ' Weinberg has investigated the properties
of the eigenfunctions of the kernel of the I.ippmann-
Schwinger equation. The eigenfunctions are extremely
useful for the discussion of the Born series. 4

In this paper we shall derive an approximation method
which is applicable even if the Born series diverges. Its
usefulness outside the convergence radius of the Born
series will be established by taking advantage of the
analysis of the Born series carried out by Weinberg.
The objective is to combine a number of the lowest
order terms of the Born series in such a way that the
convergence question of the Born series can be circum-

~ Supported by the National Science Foundation.' R. G. Newton, J.Math. Phys. 1,319 (1960);further references
are given in this review article.

P S. Tani, Bull. Am. Phys. Soc. 8, 301 (1963); report, 1964
(unpublished) which will be recapitulated in a forthcoming paper.

'A. Chen, S. Tani, and S. Borowitz, Phys. Rev. 137, B236
(1965), for the distorted wave approach and some of the related
earlier works.

4 S. Weinberg, Phys. Rev. 131, 440 (1963).

vented. It turns out that the use of Pade approximant
considered by Chisholm' enables us to achieve our
objective.

We shall restrict ourselves to the investigation of a
partial wave in single-channel scattering. We shall deal
with the standing-wave Green's function and take the
principal value in integrating over momentum; this is
because many relevant quantities become real in this
formulation. The R matrix will be dined by the itera-
tion of the kernel with the standing-wave Green's
function. The eth-order term of its Born series mill be
denoted by R„, which is defined by the recurrence
formula

(u I z.+t(z) I
u')

where the matrix element of a generalized potential is
denoted by (k I

V
I
k'). Within the radius of convergence,

the R matrix is defined by the sum of the Born series

and outside the radius of convergence an analytical
continuation defines the R matrix for a stronger po-
tential. We shall denote the momentum on the energy
shell by ko

8=k 2

The R matrix on the energy shell will be called the
E matrix, and we shall set

E'„(E)=(kpIE (E) Ikp)

The tangent of the phase shift 3(kp) is given by the

' J. S. R. Chisholm, J. Math. Phys. 4, 1506 (1963).
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well-known formula

—tanb(ko) = (~/2ko)K(E) . (1.6)

algebraic functions of X of the Eth order:

cVpl~l(E; X)=1+Q X"u '~'(E), (2.5)
In Sec. 2 we shall recapitulate the formulas concerning

the Pade approximant and also introduce the approxi-
mate values to the first E members of the set of Wein-
berg eigenvalues. In Sec. 3 we shall review the formalism
suggested by Weinberg's work and exhibit the ideas
underlying the Eth-rank approximation, in which we
shall approximate the first N members of the set of
Weinberg eigenfunctions by certain combinations of the
lowest E terms of the Born series, (1.3). In Sec. 4 the
details of the Eth-rank approximation is given. In
Sec. 5, it is proved, by using the Fredholm theory, that
the tVth-rank approximation is equal to the (E,1V) Pade
approximant introduced in Sec. 2. Some pathological
case in which an approximation of a certain rank cannot
be worked out, but which cannot be ruled out a prion,
is discussed in the Appendix.

N
Dpl~l(E X)=1+g h"b '~'(E) (2.6)

and the formal expansion of (2.4) into a power series of
X agrees with the right-hand side of (2.2) exactly up to
the 2%th order, or

4'(E; X)Dp'~'(E X)—1lt'pl~'(E; X)
= (terms of orders higher than 2tV in X) . (2.7)

Equation (2.7) means that the sum of the terms on the
left-hand side must vanish when their orders in ) do not
exceed 21V. By substitution of (2.1), (2.5), and (2.6) on
the left side of (2.7) and by collecting terms of the
(N+ttt) th order, we find

2. PADS APPROXIMANT
N

K~~ +Q b„l~lK~q „0, ——(2.8)

Baker, Gammel, and Wills' have proposed the use of
the Pade approximant~ in order to derive a meaningful
result from a diverging series. Chisholm' has investigated
the application of this method to the scattering problem.
We shall go much further in this paper and display the
power of this method in the scattering problem. In this
section we shall recapitulate some formulas which will
be useful later.

Since the potential is short-range and free from a
strong singularity, there are bounds to individual terms
in the Born series, which can be set in the form

i K„(E)
i
&cV"8" (2.1)

where both M and S' are independent of energy. 2 Let
us define a function 4 by

e(E X)=1yP X"K.(E),
n=l

(2.2)

which is associated with the Born series for the potential
XV. In view of (2.1), there is a nonvanishing radius of
convergence for the series on the right-hand side of (2.2)
such that, for

[~[&~„ (2.3)

the series converges absolutely and uniformly in both E
and X. The (1V,tV) Pade approximant to 4', to be denoted
0'&&~') is defined by

@pl~i(E X)=tVpt~l(E;'A)/Dpl"l(E;X), (24)

where both the numerator and the denominator are

6 G. A. Baker, Jr., and J. L. Gammel, J. Math. Anal. Appl. 2,
21 (1961);G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, ibA.
2, 405 (1961).' H. S. Wall, Analytic Theory of Continned Fractions (D. Vaii
Nostrand and Company Inc. , New York, 1948), Chap. XX.

for m= 1, 2, , tV. The set of equations (2.8) constitute
the X inhomogeneous linear equations for the X vari-
ables b„l~l (n=1, 2, ~, 1V) which can be solved if the
determinant

Ej,
pter] —det E

Eg)

does not vanish,

E2
Ea)

EQ+$)

gP'l +Q

~ ~ ~

)
' ' ') E-N+1

) E2N—1

(2.9)

(2.10)

We shall denote by 6 &~~ the determinant which is
derived from (2.9) by replacing its (tV—u+1)st column
by the Ã row matrix

+N+ j
E%+2

E.2N

(2.11)

(n) at&~=o,

and the case is abnormal; however, the rank of the
matrix associated with the set of Eqs. (2.8) is equal to
some number M which is smaller than E,

rank of (M =K + i)=&&X. (2.10')

8 Reference 7, pp. 379.

The solvability condition (2.10) will be analyzed in
detail in the Appendix. All cases are covered by one of
the three alternatives:

gP'I ~Q.

such a case will be called normal. '
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In this case we shall keep using the Mth-rank approxi-
mant; we shall state that the 5th rank is "reduced"
to the 35th rank.

a~N~=O,

and the case is abnormal. Moreover, the linear equa-
tions do not hold because the rank of the matrix
associated with the set of Eqs. (2.8) is equal to E. In
this case we shall skip the Eth rank. If the formula
(2.12) below is used in this case, at least one of the
b &N& diverges.

Accordingly, if some rank is skipped, when necessary,
the Pade approximant is well defined for the remaining
ranks. The solution of (2.8) is given by

Finally a comment will be made on the possibility of
reduction of a rank, (ii) (2.10).Either when some one of
s, tN' vanishes or when some p„~N& is equal to another
g, &N~, the determinant ~~N& vanishes, as is clear from
(2.15).Then the first 21V terms of the Born series can be
put in the form (2.14) with a smaller number of param-
eters; this is what happens when Ã is reduced to a
number smaller than that.

3. WEINBERG EIGENVALUE PROBLEM WITH
STANDING-WAVE GREEN'S FUNCTION

Weinberg has introduced an eigenfunction of the
kernel of the Lippmann-Schwinger equation'

fÃ] — g (N]/g[N] (2.12) [k —E—isa- dk'(k( V[k')lt (O' E)

for 0,=1, 2, , E. By collecting terms of the mth
order after substitution of (2.1), (2.5), and (2.6) on the
left-hand side of (2.7) we 6nd We shall deal with the standing-wave Green's function

and modify the above formula by setting
m—l

g [Nl —It + Q b [N]E'
n=l

(2.13) ff,(k; E)= [O'—E] 'a.„(k;E), (3 2)

for sts=1, 2, ~, JV. Equations (2.12) and (2.13) define
the Pade approximant uniquely when the first 2S terms
of the Born series of the E matrix are given.

In passing we note that we can set

and consider a source of such an eigenfunction denoted
by o;(k; E). The eigenvalue equation for the o„reads

dk'(k
i
V ik')[k"—E$ 'o;(O' E)= s]„(E)a„(k'E) . (3.3)

(E) P [4] [N](E)jm—is [NJ(E) (2 14)
v=1

for vs= 1, 2, , 2S, for there are 2S parameters in all
[1V parameters rt, [N] (v= 1, 2, ~, N) and E parameters
S„[N] (v= 1, 2, , lV) j, in order that the 2E quantities
E (ttt=1, 2, , 2Ã) may be represented in terms of
them. When (2.14) is substituted for each E which
appears in the determinant A[N], (2.9), it is given in the
form

N
Q[» =(—1)[it&)(Ns sN+4) g Sg[»—g(4]„[ J —rl„[N])s.

p)v

(2.15)

Similarly, we shall find

fÃ] —( 1)a P ~„[»X.. .
c(a)

Xs]) [N]—= (—1) P ["] (2.16)

where the summation over c(n) means to sum over all
combinations of n diGerent numbers Al, , ) chosen
out of 1 through E; thus I' 'N& stands for the sum of the
rr-linear functions of the X variables rt, [N] (v=1, 2,

, X). When the parameters rt„[» are used by taking
into account of (2.16), the Pade denominator (2.6)
takes the form

Ds[N](E ) )=g [1—)is]„[N](E)j.
p=l

As will be shown in another paper, ' a kernel with a
short range and mild potential is completely continuous, '
and therefore a potential can be approximated by a con-
verging sequence of separable potentials

(O~V[k)=1]m(O~V[ ]~k),

where

(3.4)

(k
~

V[»
~

k') = p N. [»(k).„[»(k'). (3.5)

Then the potential can be put in the "diagonal" form

(ki Vik')=P„a, (k;E)a (O';E), (3.6)

on normalizing the eigenfunctions by

dk[k' —Ej-'a„(k; E)o„'(k;E)=4]„(E)3„„. (3.7)

By substitution of (3.6) and (3.7) into (1.2), the
mth-order Born expansion of the R matrix is given by
the "diagonal" form

(k i E„(E)i
k') =g, [rt„(E)g

—'o, (k; E)o„t(k'; E) . (3.8)

When the Born series is summed, the E. matrix is

'F. Riesz and I]. Sz.-Nagy, Fttnatsoma/ Analysts (Frederick
Ungar Publishing Company, New York, 1955), Part II; F.
Coester, Phys. Rev. 133, 31516 (1964).
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That is to say, the operator geometric series of the kernel
is converted into the geometric series of the eigenvalues
in the "diagonal" representation. In the sense that the
right-hand side of (3.10) gives the result of a correct
analytical continuation; it stands for the sum even when
the absolute value of q„ is larger than unity and the
series on the left-hand side diverges. In the same sense
the right-hand side of (3.9) represents the correct R
matrix outside the radius of convergence of the Born
series. A reader can find some counterparts of the
formulas (3.6) through (3.9) in Weinberg's paper" if
Eq. (3.2) is remembered.

When the eigenfunctions take their value on the
energy shell the E matrix is given by

E(E)=P„[1—q„(E)] 's„(E), (3.11)

where we have set

s„(E)=o„(ko, E)o,t(ko, E) . (3.12)

The neth-order Born expansion of the IC matrix is
given by

E (E)=P, [g,(E)]"—'s„(E) . (3.13)

When the sum is extended over only the first Smembers
of the set of eigenfunctions, we can define the S com-
ponent approximation by

It is more convenient to allow the parameters to deviate
by a small amount and set

s„[x]= s,+o,[x]

g„f&1=g„+g„(&f

(3.15)

(3.16)

in such a way that the equality can be restored for the
first 2T orders

v 1

which has been referred to as (2.14) in the last section,
and certain approximations hold for higher orders:

= Z ['0 & ]~ s &~ (yyg+2Q) (3 18)

"Reference 4, Sec. VI.

given by

(k I R(E) I
k') =p„[1—7J„(E)] 'o „(k;E)0;t(k'; E) . (3.9)

As is obvious from (3.8), the power of rl„ is raised by one
when the order in the Born expansion is raised by one,
and consequently in each subspace spanned by an
individual eigenfunction the Born series is a geometric
series

It will be shown in another paper' that the approximate
parameters s'N& and gtN& converge to their respective
limits as the rank E tends to infinity

(3.19)

(3.20)

If the ranks are all normal in forming Pade approxi-
mants, as is the case with a potential of definite sign,
the approximate eigenvalues g„&~' derived from (2.14)
are all different from each other because of (2.15) and
(2.10). Since they converge to their respective limit as
the rank tends to inanity, (3.20), the Weinberg eigen-
values q, as well as their approximate values are not
degenerate. Then we can arrange them in such a way
that their absolute values form a decreasing sequence

(3.21)

The sequence (3.21) has no accumulation point other
than zero. That means that the number of eigenvalues
with absolute values larger than any finite number must
be finite. If this is not the case, we shall find a contra-
diction to the existence of bounds of the form (2.1) to
the eth-order Born expansion of the R matrix when e
becomes very large, and therefore the statement must
be true. If these properties of the spectrum are taken
into account, we can readily understand that only a
limited number of terms dominate in (3.8) and (3.13)
as the order m in the Born expansion becomes very
large. Thus, with a suitably large Ã in order that all the
major components may be covered, the S component
approximation as defined by (3.17) and (3.18) will be
very reliable. Ke shall show in the next section that
such an approach has additional attractive features.
Suppose we have carried out the iteration of the R
matrix up to the 2%th order using the recurrence
formula (1.2). We know then the E matrix up to the
21Vth order, and from Eqs. (2.9)—(2.16) we can derive
the X approximate eigenvaues q, ~Nt. By following the
prescriptions to be given in next section, we can derive
a reasonable approximation to the eigenfunctions
o-„(k:F) (v = 1, 2, , iV), and consequently we have an
approximate potential of the form (3.5). Since it is a
sum of separable potentials, the K matrix associated
with it can be derived without further approximation,
and also the I'redholm theory can be worked out
thoroughly; in fact, the numerator and the denominator
of the latter agree with the numerator and the denomi-

nator, respectively, of the rational function obtained
from the Pade approximant (2.4)—(2.6) by subtracting
unity from it. On taking the limit of the infinite rank,
a transparent analysis of the analytic properties of the
E matrix as well as the S matrix is feasible.
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4. THE %TH-RANK APPROXIMATION TO
A GIVEN POTENTIAL

To derive an approximate potential of the form (3.5),
we begin with the set of equations

As shown in (3.8) or (4.2), the "diagonal" representation
of the potential consists of separable potentials. Since
the separability of individual components is essential in
order to carry out our analysis to the end, we shall use
the f„(k,k'), (4.9), to construct a separable potential.
Besides (4.9), we shall define the adjoint f„"(k,k') by

(k l
R„

l
k') = Q [r] [~']7" 'f (k k')

v=1
(4 1)

f.t(k,k)= P B„„(k lZ„lk). (4.10)
for nz=1, 2, S, where the Ã parameters g 'N' are
derived from Eqs. (2.9)—(2.16). The form of the right-
hand side of (4.1) is made analogous to the right-hand
side of (3.8), with (3.17) kept in mind. In other words,
the function f,(k,k ) is introduced as an approximation
to 0„(k:E)o„t(k'. E) which appears on the right-hand
side of (3.8)

On the energy shell the function f„(kp, kp) becomes equal
to its adjoint f„t(kp,kp)

f„(kp,kp) = f„t(kp,kp) = g B„„K,(E). (4.11)
V=I

f,(k,k') =o,(k; E)o„t(k'; E).

We shall define the matrix A by

A, =[r] ["]7"—' (p v=1, 2, , S),

(4.2) We may set

a-, (k; E)o.,"(k', E) =f„(k,kp) f, (k', kp)/f„(kp, kp),
= [f,(k,kp) f,(kp, kp)

—'"7
X[f,t(k', kp) f t(ko ko) '"7 (4.12)

and denote its inverse by 8, namely,

N

BpX+ iv ~pv.
)] =1

(4.4)

[& [x]
& [rr]7—i (4.5)

Since the matrix A has a simple structure known as the
Vandermonde matrix, "it is possible to write down the
matrix element B„„explicitly in terms of the y„'N&. We
shall find, for v=E I„["'(k)=f„(k,kp),

p„[~](k)= f„'(k,kp)/f„(kp, kp) .

(4.13)

(4.14)

and use the right-hand side of the approximate equality
to construct the approximate Eth-rank potential; it is
so "normalized" that its value on the energy shell is
given by (4.11) and thus the value of our approximate
potential is equal to that of the original potential on the
energy shell because of (4.1) for m= 1.To compare with
(3.5), we shall set

and for p= 1,

[Ã] i] [N]7—l.
~ [N]

Our next task is to derive the E matrix from the
Ãth-rank potential

and generally for B„,N with n = 1, 2, , A —2,

B„g ~= (—1)+ "Bq y Q i]],iw]X ~ Xq], [&] (4.7)
c(n, p)

where the sum over the combinations c(n,p) means
to take all the combinations of n different numbers

~, A chosen out of the S—1 numbers 1 through E
from which a particular number p is dropped. Note that
the inverse 8 is well defined when the rank E is normal,
(2.10); this follows from the nondegeneracy of the r]„[~]
as shown by (2.15). Since (4.1) can be rewritten as

(klan„lk')= Q A„.f,(k,k'), (p=1, 2, , S), (4.8)
v=1

the function f„(k,k') will be obtained from

f (»k')= P B"(kl&~lk') (&=1» ' &) (49)

'I E.g., F. E.Hohn, Elemerltury 3Iatnx AEgebra (The Macmillan
Company, New York, 1958).

(k l

V[~] lk') = P u„["](k)e„["](k'),
p, =1

N
= g f„(k,kp) f„t(k',kp)/f„(kp, kp). (4.15)

On substituting (4.15) in the recurrence formula (1.2),
the eth-order term of the R matrix will be given by

(klan [N'lk')= P Q [~](k)[H"—'7 „p„[~](k') (4.16)
]M, V=1

where the matrix element JI„„is defined by

H„,= dk[k' —E7—'p„["](k)u,["](k). (4.17)

We remind ourselves here of the formula

dk(k, l~„lk) [k —E7- (kl ~, lkp)

= (kplR„y], lkp) =K„yi(E), (4.18)
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(4.24)

which is derived straightforwardly from the recurrence and the right-hand side of (4.19) can be transformed into
formula (1.2) and (1.5). After the substitution of (4.12)
and (4.13) and the use of (4.18) the right-hand side of

( [N])i
(4.17) will be transformed to X=1

N N

H„„= Q B„„B„],K„+],/P B„],K],. using (4.22) and (4.23). Referring to (4.3), we can set

The denominator on the right-hand side of (4.19) will be
evaluated first. From (4.5)—(4.7), it follows that

N N—2

2 BIK]IK]I BIK1K1+2 BK,N ]KN ]- —
)=1 )=1

H„„=Q B„],A],„r]„[~],
3=1

and in view of (4.4) we have the result

(4.25)

(4.26)

N—1

(4.20)

On using (3.17) on the right-hand side above, we shall
find, after some algebra,

N N-1
P B„]K],=B„~P s.{P L(—1)]](]]["])"—&-'

+=1 P=l

Therefore the matrix H is diagonal, which means that
the 1[rth-rank potential (4.15) is already in the "diagonal"
form and that the parameters g„tN~ introduced at the
end of Sec. 2 are actually Weinberg eigenvalues for the
1Vth-rank potential. Accordingly Eq. (4.16) will be
simplified as

(k~8 [ ]~k')= P(i] ")"-'u '(k)v "(k'). (4.27)

Taking the energy shell value of (4.27) and summing
the Born series, the approximate E matrix is given by

(4.21)
K[K] Q (1 g [x])—is [N] (4.28)

S. EQUIVALENCE OF THE NTH-RANK
APPROXIMATION TO THE (N, N)

PADS APPROXIM ANT;
FREDHGLM THEORYg B„K =B„s„'N' g'(r/„[ ]—yp[~])=s„[ ', (4.22)

X=1 PQp

where Eqs. (4.11), (4.14), and (4.22) have been taken
In forming the products in the last member with all

into account to write down the right-hand side.
possible P, some one of its values is equal to n unless
a= p, that means that only the term o.=p will be left
on the right side and thus we have

BKKKK+]I I

which appears in the numerator of (4.19), can be carried
out in the way similar to Eqs. (4.20)—(4.22) for the sum

N

B/4KKK '

Then we find

N

P B„„K„=s„[~](g„[~])", (4.23)

where we have used (4.5) in passing to the last member.
As can be seen by referring to (3.17), when Lq [~]j"s [N'

are substituted for all the s 'N] (n= 1, 2, , 1V) in the
~th-order term E„, the latter will be transformed into
the (]K+z) th-order term K„+&,.By noting this, the evalua-
tion of the sum

We shall show in this section that the approximate
K matrix (4.28) derived from the 1Vth-rank approxima-
tion (4.15) of the potential is equal to the (]V,1[T) Pade
approximant (2.4) in which we set X equal to unity. Let
us recall that, if the Fredholm theory is applied to the
derivation of the E matrix for the 5th-rank potential
(4.15), both the numerator and the denominator are
terminated by the Sth order in the potential strength;
that is, they are algebraic function of the Eth order of
the potential strength. Thus the I'redholm theory gives
the same kind of rational function of the potential
strength as the Pade approximant exhibited in Eqs.
(2.4)-(2.6), provided we subtract unity from the latter
because the right-hand side of (2.2) differs from the
Born series for the K matrix by unity.

Since the Fredholm theory is available in the ordinary
form for a partial-wave problem, we can evaluate
various terms of the Iredholm denominator by using
the relations given in last section. Starting with the
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formula for the Fredholm denominator

Dj [~]=1— dkLk' —Ej '(k
f
V[» fk)+(2!) ' dkdk'f k' Ej—'fk" Eg—'

X ((k f

V["'
f
k)(k'

f
V["]

f
k') —(k f

V["]
f
k')(k'

f

V["]
f k) }— .

, (5.1)

we shall Gnd a concise form by using Eqs. (4.15), (4.17), and (4.26); the right-hand side of (5.1) can be trans-
formed into

1—Q dkf O' —Ej 'v [»(k)u [»(k)+(2!) ' dkdk'f k' —E$-'Lk"—E7—'

)& P {u [»(k)v [»(j)u„[»(k')v„[N](k')—u [»(k)v„[»(k')u„[»(k')v„[»(k)}-
@,v=1

N N N
=1—2 n'»+(2!) '((2 ~.'»)' —2 (n.'»)'}—"

Therefore we established the formula

= 1—Q g„[»+Q r]„[»r]„[»—.. .
p)v

(5.2)

Dp [»=g (1—g„[») (5.3)

Similarly, starting with the formula for the Fredholm numerator

&~'"'=(ko[ V' 'Iko) — dkf k' —Ej '((ko[ V'"'lko)(kl V'"'Ik) —(ko[V'"'lk)(kf V' 'fk )}

+(2!) ' dkdk'Lk' —Ej 'Lk"—Eg '((kof V[ ] fk )(k f

V[» fk)(k'f V[» fk')

+2(ko[ p' fk)(k f

p' fk')(k'f p'[ ] fko) —(k,
f

V[» fko)(k[ V[»[k')(k'f V[» fk)

—2(ko f
V[» fk)(k f

V["' fko)(k'f V'"'[k')}—,(5.4)
we shall 6nd the result

N

+ [» —P z [»(1 P'& [»+. P«&„Pv]& [»
v=1 XW», p&v

by using Eqs. (4.11), (4.15), (4.17), (4.22), and (4.26).
Thus we can establish the result

denominator, when the X is set equal to unity, is eq«l
to Fredholm denominator (5.3)

(5.6)
Dp[&](E; X=1)=Dg["]. (5 9)

v=1

On combining (5.3) with (5.6), the result from the
Fredholm theory reads

When we subtract unity from the Pade approximant
def[ned by Eqs. (2.2)—(2.6) and set the X equal to unity,
it is a rational function of the potential strength whose
formal Born series agrees with that for the E&N&

EI [N] =)Vg[~]/Dj [~]= g (1—y„[»)—'s„[». (5.7)
v=1

+[X](E)—Q Q g [N](~ [Nj)m—1

m=1@,=l
(5.10)

Namely, the result from the Fredholm theory is exactly
the same as the results from the Eth-rank approxima-
tion (4.28), and thus we set

E&N& =Kg&N&.

On the other hand, according to (2.17), the Pade

at least up to the 2%th order. The same statement
applies of the result from the Fredholm theory because
of (5.8), and moreover, the denominators of the two
rational functions agree with each other as shown by
(5.9). Therefore, the numerators of the two rational
functions, for which E parameters are available each,
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must agree with each other. Thus we can set

.Vg'~'(E 7 =1) Dp—'"'(E& k=1)=Np&"'(E). (5.11)

Finally we have established the equality

X[E + Q K„(b(iN' —b„i~i], (5.12)

where the last member is derived from (2.4) by using
(2.5), (2.6), and (2.15). Our result has proved that the
rather involved derivation of the Tth-rank approximate
potential exhibited in last section can be circumvented
in practice by using the Pade approximant, which results
from the solution of the set of linear equations (2.8).
On the other hand, the Sth-rank approximation is based
on a close approximation to the set of the Weinberg
eigenfunctions and eigenvalues, and the accuracy of the
analytical continuation when the Born series diverges
can be readily estimated. Thus the fact that the Pade
approximant is equal to the result from the gth-rank
approximation is a warrant for the reliability of the
former method outside the radius of convergence of the
Born series.

symmetrization of the kernel" to nonlocal and energy-
dependent potentials does not appear obvious, although
similar results follow from both methods eventually.

Accordingly, we may state that with a suitably large
A' the terms of the lowest 2Ã orders of the Born series
can be rearranged in such a way that the most relevant
members of the set of Weinberg eigenfunctions and
eigenvalues are closely approximated. In practice the
same result follows by deriving the (N, N) Pade approxi-
mant. Such a result is presented in a closed form regard-
less of the potential strength, and is correctly continued
analytically outside the radius of convergence of the
Born series. Thus by the use of a Pade approximant of a
suitable rank we can circumvent the convergence
problem of the Born series. Recently, several similar
attempts have been made to rearrange the simple Born
series in such a way as to obtain a result applicable in a
wider range of potential strength by Wellner, "Brysk, "
and others. Perhaps, it is the unique advantage of the
Pade approximant that it is simple, is based on the use
of the Weinberg eigenfunctions, and keeps a close
relationship with the Fredholm theory.

A list of physical problems to which the method of
Pade approximant or of continued fraction was applied
is given in I ovelace and Masson's paper" on the com-
putation of a Regge pole. As for more recent works
which appeared after that reference, we note Fried and
Eberly's work" on the scattering of very low-frequency
photons and Baker's work" on the susceptibility of the
three-dimensional Heisenberg ferromagnet. As shown in
this paper, potential scattering is a problem in which
this method is highly successful.

6. CONCLUDING REMARKS

The convergence of the Eth-rank approximation to
the exact XC matrix as the rank increases without limit
will be proved in a separate paper. ' It follows from the
condition that the potential is free from a long-range tail
and a strong singularity. Under this condition the kernel
of the Lippmann-Schwinger equation and its iteration
have a bounded norm. It can be seen then that the
theory of Hilbert space' can be applied when the energy
is negative real (the bound-state problem), and that the
kernel is completely continuous for negative energies,
or the potential can be approximated by a converging
series of separable potentials. The sequence of separable
potentials obtained from the set of bound states can be
used for investigating the positive real energies. By
taking the limit as the number of separable potentials
increases without limit, we can establish the existence
of %'einberg eigenfunctions for positive real energies and
also the convergence of the Pade approximant in the
limit of infinite rank. Thus the validity of the method
proposed. by Coester" can be established explicitly. On
the other hand, the generalization of the method of the

"F.Coester, Phys. Rev. 133, B1516 (1964).

ACKNOWLEDGMENT

It is the greatest pleasure of the author to express his
most cordial gratitude to Professor Sidney Borowitz for
his helpful comments and to Professor Augustine Chen
for his assistance given kindly on many points of this
work.

APPENDIX: ABNORMAL RANK

In Sec. 2, the possibility of an abnormal case has been
mentioned: cf. (2.10)—(2.10 ) (ii)—(iii). Such an ab-
normality may persist through a number of ranks, but
we shall discuss the case where the preceding rank is
normal and then go over to a general case.

Suppose the Nth rank is abnormal, while the (N —1)st

"M. Scadron, S.Weinberg, and J.Wright, Phys. Rev. 135,8202
{1964); the same method has also been used by K. Meetz, J.
Math. Phys. 3, 690 (1962); J. Schwinger, Proc. Natl. Acad. Sci.
U. S. 47, 122 (1961);A. Grossman and T. T. Wu, J. Math. Phys.
2, 710 (1961l;H. Rollnik, Z. Physik 145, 639 (1956).

'~ M. Wellner, Phys. Rev. 132, 1848 (1963)."H. Brysk, Phys. Rev. 133,81625 (1964); related earlier works
are referred to in this paper."D.Lovelace and D. Masson, Nuovo Cimento 26, 472 (1962)

'7 Z. Fried and J. H. Kberly, Phys. Rev. 136, 8871 (1964).
'8 G. A.. Baker, Jr. , Phys. Rev. 136, A1376 (1964).
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rank is normal
&[N](K1, ' ' ',E2N—1)=0)

A[N '](E1, )K2N 3)80.
YVhen the (X—1)st-rank representation

Then, the abnormal case (A1) will be divided into two
(A1) subclasses depending on whether

(A2) (a) 61[N](E1, ,E2N) 0 (A7)

or

N—1
[N—1]= M f [N—l)Sm—1 tN—l]

)r3 m ~ ggy J Sv

N—1

(g [N—1])2N 2$ [N 1—]—
v=1

(A4)

which will be abbreviated as

E2N—1 E2N—1 (A5)

Hereafter a superscript signifies the type of the repre-
sentation. If the (X—1)st representations for the lowest
(2X—1) terms of the Born series are used, we shall find
that the h~ +'] is independent of E2N+1 and satisfies
the equation

(K1) ' ' ' )K2N)E2N+1)

L+1[N](K1 ' ' ' K2N)]2L+[N—1](K1 ' ' ' K2N 3)j—1

(when 5[N] =0) . (A6)

(1&m &2'—2), (A3)

is used for the lowest 2E—2 terms of the Born series in
A[N], (A1), it follows that the (21V—1)st-order term
K2N 1 can also be represented by the(1V —1)st-rank form

(b) 61[N](K1 K2N) WO. (AS)

The case (a): On using the (A' —1)st-rank representation
for E1 through E2N 1, (A3)—(A5), in (A7), we shall find
that the 2Sth-order term E2N can also be put in the
(1V—1)st-rank form

E =E (A9)

Thus in view of Eqs. (A5) and (A9), the 1Vth rank can
be reduced to the (1V—1)st rank.

The case (b): If (A8) holds, the (N+ I)st rank is normal

g[N+1]~0 (A10)

because of (A2) and (A6). On the other hand, when

(2.12) is formally used, it will be found that t)1[ ]

diverges. Hence we should skip the Ãth rank and go
over to the (xV+1)st rank.

Turning to a general case, we shall erst note that the
reduction may persist through a number of ranks con-
tinuously. Suppose all the M ranks beyond E, the
(1V+1)st through the (1V+M)thar, e reduced to E.
Then we shall consider the matrix of the dimension

(X+M+L)X (N+M+L+1),

El)
E2)

EN)

E-N+M)

E-N+M+L)

~ ~ ~

) )

Ea ~ ~ ~

) )

~ ~ ~

~ ~ ~

)

~ ~ ~

)

EN,

+2N—1)

+2N+M+L —1)

~ ~ ~

)

~ ~ ~

)

E- N+M+L)

+2N+2 M+2 L—1)

~~N+M+I+1

I2N+2M+2L

(A11)

(A14)

EN+1
EN+2

E2N+2M
&+2N+2M+1

(A15)K =K 'N', (1&222&2K+2M) . (A12)

There will be three subclasses, then:
(n) The cVth rank representation is not applicable

any more at the (2%+2M+1)st order:

where the N'th-rank representation cannot be applied to
the member at the bottom, while all the preceding N
columns are 6lled with members to which the Eth-rank
representation applies. Thus the determinant ~' +'M+"(A13)+2N+2M+1 +E2N+2M+1 ~

associated with the set of linear equations (2.8) of the In this case we shall set
(X+M+L)th rank, which is larger than the (N+M) th L =M+I
by L. Since the (1V+1)st rank through the (%+M)th
rank are reduced to the /th, the Qth-rank representa- in (A11). The (%+1)st column reads then

tion is applicable up to the (21V+2M)th order in the
Born series
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can be transformed into the form

E1,

EN)
g [N+2M+1] N+1)

E-N+23f )

+N+2M+1)

~ ~ ~

)

~ ~ ~

~ ~ ~

)
~ ~ ~

)

EN)

+2N—I)
+2N)

E2N+23f—1)

~~2N+2kI)

0, 0,

0, 0,
0, 0,

0, 81,

0

0
~1

~23E+1

(A16)

where we have set

If2X+2M+tn +2K+2M+m +~m y

(1&m& 2M+1) . (A17)
Thus we obtain

g[x+2M+1] ( 1)N+M. g 2M+lg[N]~0 (A18)

because of (A13), which means 82/0. On the other
hand, by taking o6' the last row and the last column
successively from a determinant of the form (A16), we
shall easily see that for the (X+M+1)st rank through
the (iV+2M)th rank the determinants vanish

d, [~+M+"]=0, (1&m&M—1). (A19)

Thus we shall see that the (iV+ 23II+1)st rank is normal,
while all the ranks in the middle, the (N+M+1)st
through the (%+2m) th, are abnormal. If we fictitiously
set

If.2N+2M m If2K+2M na —+2M-

(0&m&3II 1) (A20)

all the e (1&22&M) must vanish, because the Eth-rank
representation applies to those orders of the Born series.
If (2.12) is formally applied to these abnormal ranks,
the parameters b 'N& are ill defined. But on scrutinizing
the limit as the c tend to zero, we have to conclude that
all these abnormal ranks ought to be skipped, which
will be shown as follows. First, we shall find that for the
(X+M+1)st rank the bM[~+M+'j diverges, because
from (2.12) we shall find

[N+M+l] (g ~ /2 ) (A21)

and the right-hand side diverges on taking the limit as
both e1 and e2 tend to zero. Similarly, everyone of the
following sequence

2[&+M+2] bM P'+M+2] . . . Pl[&+2M] (A22)

will be found to diverge. In conclusion, in the case (n)
we ought to skip all the ranks, the (1V+M+1)st

through the (iV+2M) th, while the (cV+2M+ 1)st
rank is normal.

(P) The Eth rank representation applies to the
(21V+2M+1)st order of the Born series, but it does not
apply to the (21V+2M+2)nd order:

+2N+23E+1 E- 2N+2M+1

+2N+2M+2 ++2N+2M+2 ~

In this case we shall set

(A23)

(A24)

(A25)

Thus, we ought to skip all the ranks, the (X+M+1)st
through the (X+2M+1)st, while the (1V+2M+2)nd
rank will be normal.

(y) The /th-rank representation applies to both the
(21V+2M+1)st-order and the (2K+2M+2)nd-order
terms of the Born series

+2N+23f+1 E.2N+2M+1 (A27)

+2N+2~+2= +2N+2~+2t 1 (A28)

In, this case the (1V+M+1)st rank ought to be re-
duced to the Xth rank for the (M+ 1)st time. Then the
whole argument of the general case should be repeated
with (M+1) replacing M.

Thus, we have established the statement in the text:
"If some rank is skipped, when necessary, the Pade
approximant is well defined for the rest of ranks. " If
the original potential is of a 6nite rank, say, X, then the
ranks beyond S are all reduced to X.The recovery of a
normal rank after a number of the reduced ranks follows
the rule exhibited in (n) and (P) above.

in (A11), and the whole argument as applied to the
case (n) can be repeated exactly in the same manner
except that the matrix (A11) has a dimension larger
than in the case (n) by one. The set of diverging mem-
bers, (A21), (A22), will be replaced by

[NyMyl] g [N+Ml . . . $2Ã+2M+il (A26)


