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The experimental results of phonon-drag thermoelectric power of m-InSb are analyzed to obtain informa-
tion about electron-phonon and phonon-phonon interactions. We 6nd that for temperatures greater than
6'K, the piezoelectric mode of electron scattering is negligible as compared to the deformation potential
type of scattering. A value of 8.25 eV is found for the deformation-potential constant. The relaxation time
of long-wavelength acoustical phonons is given by r, (T) =4.4X10'/qT' for temperatures r(40'K. The
data also indicate that inelasticity of electron-phonon collisions as well as collision broadening of the electron
energy levels are the dominant cutoff" mechanisms involved in the quantum theory of magnetoresistance;
the first dominates in relatively low 6elds, while the latter takes over for fields greater than 60 kG.

I. INTRODUCTION
' 'N a previous paper, ' we presented the results of our
~ . measurements on the thermoelectric power Q of
w-type InSb in high magnetic 6elds up to 100 kG
covering a temperature range from 7 to 80 K. We de-
termined the phonon-drag component Qv, which is the
contribution to the thermoelectric power because of a
nonequilibrium phonon distribution that exists in the
presence of a temperature gradient. This was done, as
usual s by subtracting from the measured values of Q
the calculated value of the electronic component Q, . It
was concluded in that paper, in agreement with pre-
vious works, ' 4 that as long as the magnetic field is in
the classical region, i.e., Ihco&&koT, the phonon-drag
component Qv is very small, the maximum value of
about 50 ttV/deg being obtained near 20'K. Here, eo is
the cyclotron frequency of electrons and koT is of the
order of energy of a typical conduction electron in a
distribution approximated by classical statistics and
having temperature T. The reason for this, it was
pointed out, is that the scattering on ionized impurities
dominates the momentum-dissipation mechanisms for
electrons in InSb below liquid-nitrogen temperatures;
a small effective mass of the electron and a rela-
tively weaker interaction with acoustic phonons bring
this about. In higher magnetic 6elds, in the quantum
region (kto&koT), however, the phonon-drag thermo-
electric power Q„ increases very rapidly with the mag-
netic 6eld, much more rapidly than the electronic com-
ponent Q„and makes the dominant contribution to the
total thermoelectric power Q at low temperatures. The
extreme sensitivity of the measured value of Q at about
20'K to the size of the cross section of the specimen
confirms this view because only the phonon-drag com-
ponent, and not the electronic component, is expected
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to depend upon the size of the specimen at these tem-
peratures. In the quantum region, the electron scatter-
ing on acoustic phonons obviously starts making an im-
portant contribution to the momentum-dissipation
mechanisms for electrons. A phonon-drag component
of 10 000 ttV/deg is obtained at 10'K and in a field
of 100 kG. This estimate is based on the calculation of
the electronic component Q., as presented in Ref. 1,
which we may point out differs very much from the pre-
viously published calculations. s If Q, is calculated
based on the theory of Ref. 5, then Q„ is vastly reduced
although it still makes an important contribution to Q.
The realization of a large Q„makes available'7 another
method to study electron-phonon and phonon-phonon
scattering. The phonons referred to here are the long-
wavelength acoustic phonons. In this communication,
we analyze the measurements of Ref. 1 to this effect.

The relaxation mechanisms of long-wavelength
acoustic phonons in the longitudinal branch are not very
well understood. If dispersion of frequency versus wave-
vector spectrum of the lattice vibrations is taken into
account, the scattering events for a long-wavelength
phonon in which both the energy- and momentum-
conservation laws are satis6ed are very few in an elas-
tically isotropic solid. The resultant mean free path is
so long that the calculated thermal conductivity due to
these modes becomes infinite. Herring' was the 6rst to
point out that the consideration of elastic anisotropy
removes the divergence in thermal conductivity in
crystals of certain symmetry groups. He predicted the
frequency and the temperature dependence for the
mean free path of these phonons. Up till now the most
detailed information which can be compared with the
theory has come from the phonon-drag thermomagnetic
experiments ' and the size dependence of thermal con-
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(1961) (English transl. :Soviet Phys. —Solid State 3, 2665 (1962)g.
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ductivity' in e-type Ge. However, in the e-type Ge,
because of the anisotropic energy surfaces both the
transverse as well as the longitudinal branches of the
phonon spectrum contribute to phonon drag and the
information about phonon relaxation time obtained
from the experiments relates to a certain average be-
havior of both these branches. This leaves some element
of uncertainty in a detailed comparison with theory
because the mean free paths for the two branches are
expected to be quite different in magnitude as well as
in their dependence on frequency and temperature.
Some information has also been obtained from the at-
tenuation of laboratory-generated microwave pho-
nons. " " These measurements, despite the technical
problems, have already thrown much light on phonon-
phonon scattering. However, the laboratory-generated
phonons have much lower frequencies, 10"cycles/sec.
The analysis of high-magnetic-field phonon drag Q„
yields information about phonons of frequency up to
10" cyc]es/sec. Since in InSb the electron-energy
surfaces are isotropic, it may be expected that only the
longitudinal phonons contribute to phonon drag so that
there is no mixing of transverse phonons as in the case
of e-type Ge.

A second motivation for these experiments is to learn
about the mechanisms of electron scattering on acoustic
phonons in InSb. Usually this information can be ob-
tained from the analysis of electron mobility data. But
in the case of InSb, this is difficult. As Ehrenreich" has
shown, above 200'K electrons are scattered mostly by
optical phonons via the polar interaction. Perhaps this

type of scattering is important as far down as liquid-

nitrogen temperatures. '7" As the temperature is re-
duced further, even in the purest available samples, the
scattering on ionized impurities takes over directly
from scattering on optical phonons. The existing in-

formation about the electron scattering on acoustic
phonons is neither very extensive nor very precise. The
InSb crystals grow in the cubic zincblende structure
which lacks a center of symmetry and, therefore, may
be piezoelectric. The strain produced by acoustic
phonons in the crystal gives rise to a piezoelectric po-
larization charge from which the electrons are scattered.
Thus, the piezoelectric mode of scattering will be in
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addition to the usual deformation-potential-type scat-
tering. The relative amount of electron coupling to
either of these mechanisms is not known. Several
workers" ' have interpreted their experiments to mean
that the piezoelectric coupling is much stronger than
the deformation-potential-type coupling, while others
have taken just the opposite view. "There is no direct
experimental measurement of either the deformation-
potential constant qD or the piezoelectric-elastic con-
stant e~4. Ehrenreich" has estimated the value of gD
from the measured value" of the variation of the energy
gap with pressure. He assumed that this variation is
entirely due to changes in the energy of the conduction-
band minima, the valence-band maxima being sta-
tionary with respect to strains produced by pressure.
He found a value of 7.2 eV for g~. Recently, Haga and
Kimura23 have analyzed the experiments on free-carrier
infrared absorption'4 and Gnd a value of 30 eV for gD.
The phonon-drag experiments can give a more direct
measurement of qD. Indeed we Gnd a value of q~ closer
to Khrenreich's" estimate and also that the piezoelectric
type of coupling is negligible for T&6'K,.

The analysis presented in this paper is based on
Herring's theory of phonon drag. ' "In Sec. II we cal-
culate the phonon drag Q„ in the quantum region. The
procedure is to calculate the energy Aux due to the non-
equilibrium distribution of phonons that exists in the
presence of an electric Geld under isothermal conditions.
The steady-state phonon distribution is obtained using
a transport equation for phonons in which the electron-
phonon collisions make up the driving term and the
phonon-phonon collisions or phonon collisions on the
boundaries of the specimen are the relaxation mecha-
nisms. The driving term is calculated after Titeica,"
using the quantized energy levels and wave functions
of an electron in the presence of crossed electric and
magnetic fields. It is assumed that all electrons are in
the lowest Landau level and the scattering is calculated
in the Grst Born approximation. It turns out, in this
approximation, that the presence of electron scattering
on ionized impurities does not aRect the electron-
phonon scattering rate and hence Q„.

In Sec. IIA we neglect all band-structure effects and
discuss the case of an electron gas interacting with
phonon and impurities but otherwise free. The inter-
band interactions modify the electron-phonon scattering
rate. The band eRects make a sizeable correction in the
case of e-InSb whose conduction band is known to be
very nonparabolic. "These corrections are considered

» R. J. Sladel, Phys. Rev. 120, 1589 (1960).
se G. D. Peskett and B. V. Rollin, Proc. Phys. Soc. (London)
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in Sec. IIB using Yafet's" results for the energy levels
of band electrons in the presence of a magnetic field.
The electron-phonon scattering rate is reduced because
of the modifications of the wave functions by an ad-
mixture having the symmetry of the valence-band
wave functions. Simple algebraic expressions are used
for the relaxation time of phonons describing the
phonon-phonon collisions. The Peltier coeS.cient m is
calculated from the electric current and the energy Qux

carried by phonons; the thermoelectric power is ob-
tained using the Kelvin relation.

The final formulas are listed in Sec. IIC, where we

neglect the inQuence of electron-phonon collisions on the
phonon-relaxation time, i.e., we consider the case of an
ideal "dilute" semiconductor with no saturation effect. '
The 6rst-order correction due to a finite electron
density, which has been called the saturation effect, is
discussed in Sec. IID.

The contribution of the purely electron-diffusion
term to the thermoelectric power is brieQy reviewed in
Sec. III. For the purpose of the analysis presented in
this paper, we have essentially used the calculation of

Q, presented in Ref. 1, but have modified the formulas
to take into account the spin splitting of the Landau
levels as well as the effects due to the nonparabolic
band. We believe that an analysis based on the above
theory, though elementary, is quite adequate to obtain
useful information from the experiments. A few details
of the experiment are given in Sec. IV to supplement
the information given in Ref. 1. In Sec. V we compare
the results of experiment and the theory. The bearing
of the results on the relative magnitudes of the piezo-
electric versus deformation-potential scattering is dis-

cussed in Sec. VA. The frequency and the temperature
dependence of the phonon relaxation time is discussed
in Sec. VI. The conclusions of the analysis are summar-
ized in Sec. VII.

II. THEORY OF PHONON-DRAG
THERMOELECTRIC POWER

In a preferentially heated solid, phonons drift along
the gradient of temperature. This phonon current, by
reason of its interaction with electrons, exerts a force on
the latter which adds to the force due to the gradient
in the electrochemical potential. The additional force
on the electrons results in an enhancement of the ther-
moelectric power This additional component of the
thermoelectric power has been called the phonon-drag
component, as distinct from the electronic component
which is due to the electrochemical potential alone. In
the case of a solid in which the electron density is sufFi-

ciently large so that the electron-phonon collisions make
a significant contribution to the momentum-dissipation
processes for phonons, a rigorous theory of phonon
drag is very complicated; we must solve the two coupled
transport equations for electrons and phonons or in the

28 Y. Yafet, Phys. Rev. 115, 1172 (1959).

quantum theories solve for the total density matrix of
the electron-phonon system. Such is the case for metals.
Fortunately we have a much simpler situation: The
electron density in a nondegenerate semiconductor is so
small that the electron-phonon collisions do not add a
significant amount to the lattice thermal resistance, and
therefore the relaxation mechanisms for phonons do
not depend upon the electron distribution. Moreover,
in this case, the electron-phonon collisions conserve
crystal momentum so that it is a simple matter to cal-
culate the transfer of momentum from one system to
the other. The latter case of a "dilute semiconductor"
has been discussed by many authors. '"' "'5 "'

There are two alternative approaches. The first is to
calculate the phonon distribution in the presence of a
temperature gradient, neglecting the electron-phonon
collisions. The phonon distribution thus obtained is
then used to calculate the momentum transferred to
the electrons in the electron-phonon collision and thus
calculate the thermoelectric power. This has been called
the Q approach by Herring. ' The second alternative is
to calculate the electron distribution in the presence of
an electric field assuming the temperature gradient to
be zero and the phonons in their equilibrium distribu-
tion. The momentum transfer due to electron-phonon
collisions (with the calculated electron distribution)
then constitutes a driving term for the phonon distribu-
tion which relaxes by processes other than electron-
phonon collisions. From the solution of the phonon
transport equation, one obtains the energy Qux carried
by phonons and hence the phonon-drag component of
the Peltier coeKcient m.„.This has been called the x
approach by Herring. '

Either of these methods should give the same end
result, although we notice that in the Q approach we
have to solve the electron-transport problem in the
presence of an electric field as well as a temperature
gradient while in the x approach the temperature
gradient is always zero. The incorporation of a spatially
varying temperature in the quantum transport theories
in the presence of a magnetic field involves some subtle
points. " tA'e shall avoid these difhculties by using the
alternative method of x approach. The calculation is
based on Herring's theory. ' "The first part of the cal-
culation, that of obtaining the momentum transfer due
to the electron-phonon collisions, is done in the quantum
theories of transverse magnetoresistance. ""The re-

"P. G. Kletnens, Proc. Roy. Soc. (London) A208, 108 (1951);
Australian J. Phys. 7, 520 (1954); Proc. Phvs. Soc. (London)
A68, 1113 (1955).

"V. L. Gurevich and Yu. A. Fisson, Fiz. Tverd. Tela 4, 530
(1962) LEnglish transl. : Soviet Phys. —Solid State 4, 385 (1962)j."J.M. Luttinger, Phys. Rev. 135, A1505 (1964)."E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).

» R. Kuho and H. Hasegawa, J. Phys. Soc. Japan 14, 56 (1959).
34 V. L. Gurevich and Yu. Firsov, Zh. Eksperim. i Teor. Fiz.

40, 198 (1961) LEnglish transl. : Soviet Phys. —JETP 13, 137
(1961)].

3' P. N. Argyres, Phys. Rev. 117, 315 (1960).



S. M. P VRI

maining part of the calculation proceeds as in the zero-
6eld case. %e assume that the magnetic field does not
affect the phonon-relaxation processes. This is a
reasonable assumption, and the measurements of the
lattice thermal conductivity in the presence of a mag-
netic field confirm this expectation. For the sake of
completeness we shall derive all the formulas from the
beginning.

A. Phonon Drag for "Free Electrons"

Consider the transport of electrons and phonons in a
solid in which a small electric field E is directed along
the X axis and a strong magnetic field 8 is directed
along the Z direction. The steady-state equation for
phonons of mode q can be written as

r)Nq/e)1)electrons+tlNq/e)11relaxation= O r (2 1)

where the 6rst term is due to the electron-phonon col-
lisions, and the second term is due to phonon collisions
other than those on electrons. It is assumed that the
phonon distribution E, is homogeneous in space co-
ordinates. The second term can be approximated by
introducing a relaxation time v, defined by

BN,/@],6,.-=—(N.—N, ')/ .(~), (2 2)

where S, is the thermal equilibrium distribution, and

q indicates the state of the media taking part in phonon
relaxation. In the case of scattering of phonons from
the walls of the specimen, g indicates the size and the
surface condition of the sample; and for scattering on
impurities, g depends on the number and the nature of
impurities. In case of phonon-phonon scattering, g
states the distribution of other phonons, i.e.,

r, (tl) r, (N, ',N," ~ ) .

This makes (2.1) a set of coupled equations for different
phonon modes. It is next assumed that for the purpose
of calculating rq(ri) we can regard all phonon modes
except q to have their thermal equilibrium distribution

N, ', etc. , so that r(r)) can be replaced by r, (T) where
T is the lattice temperature. The transport problem for
each phonon mode q can then be discussed separately.
The justification for using this "single-mode" relaxation
time ha, s been investigated by Herring' " and
Carruthers" and is seen to be quite good except at ex-
tremely low temperatures. The essence of their argu-
ments is that the phonon-drag phonons, i.e., phonons
which are shifted significantly from their thermal equi-
librium distribution, have wave vectors q„much smaller
than the wave vector q& of thermal phonons. The latter
remain in thermal equilibrium because of a much shorter
relaxation time. Also, because of their abundance,
thermal phonons are the ones which contribute most to
the relaxation of low-frequency phonons which justifies
the assumption. Since the wave vector of phonon-drag
phonons increases continuously with the magnetic field,
"P. Carruthers, Rev. 'Mod. Phys. 33, 92 (1961).

the above criteria also put an upper limit on the mag-
netic field for which the present calculation is valid. The
upper limit on the magnetic field can be obtained from
the following argument: In the quantum region, the
wavelength of phonons that interact with electrons is
approximately equal to the size of the cyclotron orbit
which has a radius equal to (hc/eB)'is for the lowest
orbit. On the other hand, phonons of thermal energy
have a wavelength of (hS/kpT). The above criteria,
therefore, demand that

N, Nq-'= r q(T) (»q/~1) j.l..t (2.3)

For the time rate of change of N, due to electron-
phonon collisions, we can write

~Nq/~1 j l-t=Z I ~q'( ~ I ') ~q (Ir ~1')j

where Wq'& ' (1t —+ 1s') is the probability of transition for
an electron state to go from p to p' through emission
(absorption) of a phonon of mode q; f„ is the electron-
distribution function; p specifies a complete set of
quantum numbers including spin which labels the elec-
tron states in the presence of external fields. In the one-
electron approximation, the Hamiltonian for the elec-
trons can be written as

where
3C=3('p+ &, (2.5)

3(' = (1/2ttt) {p.'+(p,+hh 'x)'+ p,')+eBx, (2.6)

and V is the interaction potential with phonons, im-
purities, etc. ; he= (eB/hc)'" has the dimensions of in-
verse length. %e have neglected the energy due to the
interaction of electron spin with the magnetic field and
assumed an isotropic effective mass for the electrons.
The problem of anisotropic mass can be treated" but
leads to somewhat cumbersome expressions. The eigen-
functions and eigenvalues of Ko are given by

lt &,t„,t,——exp{i(k„y+k,s)) &pl{he(x—xp))
and

hi, t„,r„=h'k, s/2nt+ (l+-,')htp+ eExp

= els„,i„+eExp,

where &p is the cyclotron frequency eB/tqsc;

(2.7)

(2.8a)

(2.8b)

xp ———(1/htrs) (h„+eE/htp), (2.9)
"(a) L. E. Gurevich and G. M. Nedlin, Fiz. Tverd. Tela 3,

2779 (1961) LEnglish transl. : Soviet Phys. —Solid State 3, 2029
(1962)j. (b) T. Ohta, J. Phys. Soc. Japan 18, 909 (1963); 19,
769 (1964).

'8 M. I. Klinger and P. Voroniuk, Zh. Ek.sperim. i Teor. Fiz.
33, 77 (1957) LEnglish transl. : Soviet Phys. —JETP 6, 1958)g.

(hc/eB)'i'»(hS/h, T)

where S is the velocity of phonons. This limitation was
first pointed out by Gurevich et al. '~

As we assume that r, (T) is independent of the mag-
netic field, we have
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and yg are wave functions of a simple harmonic oscil-
lator with energy (l+s)hpp. The energy expression is
correct only up to terms linear in the electric field. The
two spin states are degenerate, and we have omitted
the corresponding quantum number. We assume that
the electron density is small enough so that we can use
classical statistics, in which case (1—f„)~1.Further-
more, in the extreme quantum region, ko))kT, all elec-
trons are in the state with /=0. The magnetic quantum
number / does not change during scattering because of
insufBcient energy exchange between the electrons and
the scatterer; this means that 1=0 for both the initial
and the final states in (2.4). To calculate scattering in
the lowest order, f„c anbe taken as the equilibrium dis-
tribution with respect to e„as defined by (2.8b); we can
neglect the electric-field-dependent term in energy" for
writing f„if we are interested in calculating dlV»/dT], i„
correct only up to linear terms in the electric field.
Therefore, we can write for the electron distribution in
the lowest Landau level

by using (2.10) and (2.12). The resulting expression is

X»— ) ~ ~'I' 1
Vsa r

dt .g„, &kpTyi k
I q I

8Zgp / Ap)» )S, cosh/
krPkpT (2kpTi

f kp&» )+—' expl-
& 2kTi

AP~» ) ( A&a» 'l

+2 X, sinh
I z expl

2k, Ti E 2k.Ti

X
eBg„ken,

(2.13)
~B2koT yq

2

where Bp~ is a dimensionless constant (superscript f is
for free electrons) given by

f(k,)= (y/vrkT)'~' exp( pk, '/kT)—, (2.10)

where we have written yk, s for (k'/2m)k, s which is the
energy due to electron motion parallel to the magnetic
field. In the lowest approximation the transition proba-
bility W(p —+ p') for any part of perturbation potential
is independent of the other part of perturbation. Equa-
tion (2.4) is not affected by the presence of impurities,
etc. This is very important from the experimental point
of view because ionized impurity scattering is almost
always present in semiconductors at low temperatures
and the present calculation of scattering from a long-
range potential in the presence of a magnetic field is of
a doubtful nature. "From here on, we regard V to be
entirely due to the electron-phonon interactions and
expand V in normal modes of phonon

V=+ V»e'»'
q

(2.11)

Using the Born approximation, the transition proba-
bility is given by

f yg, ' ) ( k'p~»'
B»&=expl —

I expl
4kpT i 5 4yq, skpTi

X I (» o'I c"**I
» p) I', (2 «)

and e is the total number of electrons.
Equa, tion (2.13) is correct up to terms linear in the

electric field. The second term within the square
brackets on the right-hand side of Eq. (2.13) describes
the relaxation of phonons to thermal equilibrium due to
scattering on electrons. This part of the electron-phonon
collisions can be written in terms of a relaxation time,
i.e., the collision rate is proportional to E,—E, . As
was stated in the Introduction, this term gives rise to
the "saturation" effect. ' The first term proportional to
the electric field is the "drag" exerted by the drifting
electron on a phonon system in thermal equilibrium.
The lowest order term of this can be obtained by putting
3f» = Jt'/»P on the right-hand side. Using (2.3) and (2.13),
we can obtain the phonon distribution and the energy
Aux transported by phonons. Before we do that, we
shall consider the effects due to the band structure.

lV»(~~ ~') =—
I

a& x, i

x l(4'I""'lf.&l'~(h. —h'~»») (2»)

where the upper sign holds for emission of phonon and
the lower for the absorption; Lrq is the energy of the
phonon exchanged; 8', depends upon the electric field,
and the explicit dependence is contained in the 6 func-
tion of energy. The term dE,/dt I,i„t, can be calculated

"A. H. Kahn and H. P. R. Frederikse, in Solid State Physics,
edited by F. Seitz and D. Tnrnbnll (Academic Press Inc. , New
York, 1959), Vol. 9.

4 A. H. Kahn, Phys. Rev. 119, 1189 (1960).

B. Effect of Nonparabolic Band

So far we have been talking about a hypothetical
solid in which the periodic crystal potential is turned
off. This model can be used for electrons in a realistic
crystal, provided the energy band in which the electrons
move is removed far enough on the energy scale from
other bands. One has to, in this case, simply replace the
free-electron mass by the effective mass of the crystal
electrons or, in the more general case of anisotropic
energy surfaces, by an effective mass tensor. This ap-
proximation is sufficiently accurate for the conduction
bands of Ge and Si. But for the valence bands of these
materials, and for the valence as well as the conduction
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bands of III-V compound semiconductors, the free-
electron model is not appropriate. This is because,
owing to the close proximity of the several energy bands,
there is a strong interaction between them and the effect
of this interaction changes with the magnetic field. Con-
sequently, the energy levels and the wave functions are
somewhat different from those obtained for the free
electrons. The band-structure effects will be considered
in this section. Since we have assumed that all electrons
are in the lowest La,ndau level (l= 0), we need to know
the energy and wave functions of only this level. The
spacing between the Landau levels which is affected
most"" by the band-structure effects will be of no
concern to us.

First of all, we note that the spin-orbit interaction
splits the almost spin-degenerate Landau levels by an
amount which depends upon the magnitude of the g
factor. The values of the g factor can be quite large; in
m-InSb, spin splitting of the levels is quite comparable
to the Landau level spacing. 4' Ke assume that there is
no scattering of electrons between the spin-split levels.
One can then carry out the calculation for each spin
state separately and add the final results, taking into
account the difference in the Boltzmann occupation
probability of each state. The Holtzmann factor, in our
case, makes the contribution of the higher of the spin
states vanishingly small and we neglect it comp)etely.

Also the curvature of each quantized level p which
relates energy to crystal momentum parallel to the mag-
netic field is not constant as in the free-electron case
but changes with the energy of the quantized level and
the magnitude of k, . In high magnetic fields, the density
of states at k.-=0 is very large, " therefore the major
contribution to the transport properties comes from
states v ith small k, .This makes the transport properties
in the quantum region much less sensitive to the change
in curvature with k. provided the electron gas is non-
degenerate. Ke consider y to be a function of 8 but
independent of k, .The effects considered so far are small
and taken into account in a trivial manner as can be
seen from the structure of Eq. (2.13).

Finally we have to consider the change in the wave
functions which affects the transition probabilities. As
Kane" has shown, to get the energy and wave functions
away from the band edge it is sufhcient, in the case of
InSb, to consider the interaction between the conduc-
tion band and the triply degenerate valence bands only.
In this approximation, in zero field the wave functions
of the heavy hole band do not mix with the conduction-
band wave functions. Away from the band minima, the
conduction-band wave functions have a component of
the other two valence bands proportional to k, the major
amount of admixture coming from the light hole band.
The mixing of the wave function is due to the k.y term

"See, for example, B. Lax in Solid State I'hys~cs, edited by
I'". Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 11.

"G.Bemski, Phys. Rev. Letters 4, 62 (1959l.

of the Hamiltonian. " In the presence of a magnetic
6eld the momentum operator p is replaced. by y+eA/c,
and in this case the wave functions of the heavy hole
bands also enter the conduction-band wave functions.

The problem of finding the electron energy states has
been solved independently by Vafet" and Roth" follow-
ing the formulation of Luttinger and Kohn. 44 An 8)&8
Hamiltonian matrix is calculated in a representation,
the basis of which is formed by the wave functions
which diagonalize the Harniltonian at k=0 in the
absence of the magnetic 6eld. The periodic part of these
wave functions are symbolically represented by

The sign ~ attached to each symbolic wave function
refers to the direction of quantization of spin. The
orbitals

l X), l F), and
l Z) tra, nsform under the sym-

metry operations of the crystal as coordinates along the
cubic axis while

l 5) has the symmetry of an s-type wave
function. We denote the eight combinations of (2.15)
by U„, where p goes from one to eight. In the limit
k=0, the combinations U~ and U2 correspond to the
conduction band, U3 and U4 to the light hole band, U5
and U6 to the heavy hole band, and the last two to the
split-off band. If the magnetic field is directed along one
of the cubic axes of the crystal which is chosen as the
Z axis, the eigenvalue equation in the matrix form is
given by Eq. (2) of Bowers and Yafet." The eigen-
functions in real space are given by"

where n refers to the band index and C„are to be ob-
tained by solving Eq. (2) of Ref. 45; the y's, as before,
are simple harmonic-oscillator wave functions; the m, &

is the quantum number for angular momentum in the
Z direction. The coeScient C„ is zero for the state for
which l—m, ~+(—)—,'(0. The energy levels are given
by the solutions4' of

Z, ,,(~, ,—E,) (l, ,+~)—P'l k,'+ 2(l+-', )k ']
XP (,g+shf&sP'Dk~'=0) (2.17)

where the zero of energy is 6xed at the valence-band
maximum, in zero field; E, is the energy gap; I' is the
interband matrix element defined by Kane, '~ and 5 is
the spin-orbit splitting of the valence band. In the above
derivation, terms of the order of (3E,/SP'm, )h', which

43 L. Roth, B.Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
44 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
4' R. Bowers and Y. Yafet, Phys. Rev. 115, 1165 (1959).
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arise from the electron free mass m„have been neglected
compared to unity.

We make the further approximation, following
K.ane, '7 that 6))) and obtain the following simpler ex-
pressions for the energy and wave functions of the con-
duction band:

-,1/t2Zg 1 8I"
71,+=—+—P.,2+ (k,2+2 (l+'2) k/42} a24P2k//2

2 2
'

3
)

(2.18), f &q & /'8,'= expl —
l
expl—

4kpTP k 4yq 2kpTJ( 2)6
y1+= p«1@1+(2)'"pk.Ups 1

—2(p)'"
E+

// q12 ) / q42 q14 )X-pl —
ll 1—2~' +~' l, (226)

2k/121 k 2k//2 4ks4)

X42U44/6/+1+2(2) 42U54// 1] y
—(2.19)

(—2)'
p«2p 1+(2)'"pk, U4p 4+2(p)"'

E where n„ is the coefficient of the valence-band admix-
ture. We can now write the phonon transport equationX42Uppp, ,—2(-2, )' 'nU64//+1], (2.20)

small electric field E applied transverse to the magnetic
field, the energy levels are obtained by adding a term
eExp to Eq. (2.21) and the wave functions remain un-
changed; xo is now given by an expression similar to
Eq. (2.9). The electron-phonon sca, ttering rate is calcu-
lated as in Sec. IIA. Formally Eq. (2.13) remains valid
except that y is now given by Eq. (2.23) and 8, has
the value for band electrons 8,' given by

where
='286+-'24/+yk, 2, (2.21)

where E+ are the normalization factor, and
422=P2k&2(21+1) It c.an be easily seen that as 8 goes
to zero, the coeflicient of p-wave admixture is the same
as given by Eq. (17) of Kane" except that k, is replaced
by k. If the magnetic field makes an angle 8 with the
cubic axis, the energy values are still given by (2.18)
but the wave functions are linear combinations of P4+
and P/ .

In accordance with our remarks in the beginning of
this section we assume that all electrons occupy the
lowest quantized level with energy Xp+ given by (we
omit the + sign on ) )

4P2k 2 gP2k 2 1/2

&p=—+- &6'+ +
2 2 3 3

iV q
—cV 1

pkpTI klq, l

epq„ f fi/dp y
X — Ep coshl

kspk pT -(2kpT1

Incog+ 2(X4 /VpP) sinh—
2koT

eEq„A+, —

X
ka'koT' pq

(2.27)

and
(g 2+4P2k 2/3}1/2

2P2
7=

3 (g 2+4P2k 2/3)1/2

(2.22)

(2.23)

The wave functions are

leap+= (1/Ã+)P pU14pp+(2) PkgUppp —2(p) Pk//U44prq

(~ g )1/2K2( +P- )'/'-
Uiqo —i U4+1 p

(3,+Z,) /2 (3g+~,)'/'
(2.24)

Now we assume that, in the presence of an additional

where we have put k, =0 for the purpose of calculating
the coefficients of the wave functions. Since the major
contribution to the transport properties comes from
states with small k„ this assumption is not expected to
introduce any serious error. Similarly we have

VZ(, yL )1/2 -&3(~—& )'/'
'U24pp 2 U6'P1 (2 25)

(3~ P )1/2 ($2/ —g )1/2

Solutions of Eq. (2.27) are obtained by the iteration
procedure. The lowest order term is obtained by putting
&,=1V,' on the right-hand side. The next correction
term gives rise to the saturation effect. We calculate the
energy fiux due to each term separately.

C. Thermoelectric Power due to Phonon Drag-
No Saturation

F=+ &S'61 (/V, —/V, p), (2.28)

where S is the sound velocity in the crystal and the
summation is carried over all modes and all branches of
the phonon spectrum. For optical phonons 5 is vanish-
ingly small and we can neglect the contribution of
optical phonons to F. The only nonzero component of.
F is along the Y' direction; other components go to zero

Following Herring' we can obtain the energy Aux P
carried by phonons. Under assumptions similar to that
of Ref. 6, we get for F
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on summation. The Peltier coe%cient w is given by'~

(2.29)

where p„, is the element of the magnetoresistance
tensor"

p„.=B/nec. (2.3O)

The thermoelectric power Q„ is obtained from ~„by
using the Kelvin relation:

&o(~&oZ')'i' 1 q„2

Q,=—
[

—

I P S2[ V, [2a,,(r)B,~

e E 7 i (koT)' & [q, [

( Ace~ ) ( Ac@~ )X X,' cosh( [+2 exp[ —
[ . (2.31)

&2u, r& k 2u, ri

saturation effect is therefore larger at lower tempera-
tures. Moreover, since the electron-phonon scattering
rate in the quantum region depends upon the magnetic
field, the correction due to the saturation effect may
change with the field. If the phonon relaxation time is
independent of q, for example in the case of boundary
scattering of phonons, the saturation effect increases
with the magnetic field. The correction to Q„arises from
the second-order term in the solution of Eq. (2.27). In
this section we shall calculate this correction. The
correction to the phonon spectrum A(E—E,o) is given
by

( Aa&~ )&(Ã,—X,') =—2 sinh[ [Pr, ~ 0)
I 21,ri

The form of Vq to be used depends upon the mode of
electron coupling to acoustic phonons. For scattering
due to the deformation potential we have

V,=qD (hq/25S)'",

where gD is the deformation potential constant and 8 is
the density of the crystal. For piezoelectric mode of
scattering we have

(Aa&~) ( m= —2 sinh[ [n.'[
&2u,ri E&z,pi

~ 2

X [V[B,
SPAN

'
V,=~~(a/2osq)i&2, ( "~q ) (' Ace~ )X ~V,' cosh/ [+-,' exp[-

E2u, ri '
E 2q, Zi

(2.33)

Following the steps of Eqs. (2.2g) to (2.31) we obtain

where g~ is the coupling constant of the dimensions of
force. Since the two types of scattering arise from the
same source, there may be coherence between them.
Therefore we put

[ V, ['= (&/2&S)(nD'q+2pl pn cosP+qI'/q), (2.32)

where P is the phase correlation between two types of ~Q.———&
'ykpT Ppg q q

2
scattering.

D. Saturation EGect

In the above derivation LEq. (231)] we have as-

sumed that the relaxation time of phonons 7 q is deter-
mined by phonon-phonon collisions or phonon collisions
ori the walls of the specimen; in particulal we have
neg1.ected the influence of electron-phonon collisions on

q. Formally this approximation is introduced by re-
placing & on the right-hand side of Eq. (2.27) by 1V,O

wh jch makes the second term within the square
brackets of that equation equal zero. Obviously, this
assumption is valid for vanishingly small density of the
charge carriers. If the density of charge carriers is large
enough the electron-phonon scattering decreases the
phonon relaxation time and hence the phonon drag Q„.
This decrease in Q„due to a finite density of charge
carriers has been called the "saturation effect" by
Herring. The density of charge carriers for which the
saturation effect becomes significant will depend upon
the relaxation time due to phonon-phonon scattering
and the boundary scattering of phonons; the longer the
relaxation time, the smaller the value of e for which the
saturation effect shows up. The correction due to the

(2.34)

where AQ, is the correction to Q~ due to the saturation
effect.

The phonon-drag thermoelectric power can be ob-
tained by integrating Eqs. (2.31) and (2.34). We have
taken into account the inelasticity of electron-phonon
collision which also removes the divergence pointed out
by Kubo" and Adams and Holstein" in the correspond-
ing case of magnetoresistance. Results similar to
Eq. (2.31) have been obtained by other authors. "These
authors have not considered the band-structure effects
nor the "saturation effect."The correction due to the
saturation effect changes with the magnetic 6.eld; it can
either decrease or increase with the magnetic field, de-
pending upon how fast the relaxation time of phonons
changes with the wave vector q. The percentage correc-
tion increases with the 6eld if [U, [ r, is an increasing
function of q and vice versa. We also like to point out
again that in the quantum region the phonon drag Q is
independent of electron scattering other than that on
acoustic phonons. This result holds only in the case of
transverse fields and arises because of the peculiar fact
that the current Qow in the direction of the electric field
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is caused by scattering processes themselves. From
our procedure it is clear that we have calculated the so-
called "isothermal" coefficient of thermoelectric power,
i.e., the temperature gradient is zero except in the
direction in which the electric field is measured. On
the other hand, the arrangement of the experiments is
such that it measured the adiabatic coefficient. The
difference between the two types of coefficients is ex-
pected to be negligible in a solid where thermal conduc-
tion is mostly due to lattice waves.

III. ELECTRONIC PART OF Q

We gave a rather detailed discussion of the electronic
part of Q in our earlier paper' where we also discussed
the discrepancy between our calculations and those of
Ref. 5. After we submitted our paper' for publication,
we became aware of some recent work." in which the
same problem has been discussed using slightly different
approaches. Obraztsov4~ has discussed the corrections
to the thermomagnetic coefficients that arise from the
diamagnetism of the conduction electrons in the quan-
tum region. He has pointed out, as we also did, ' the
neglect of the electrostatic part of the energy in the cal-
culations of Anselm and Askerov. ' According to him,
only the electrostatic part of the energy is affected by
the corrections due to diamagnetism. It is rather diffi-
cult to see how far and in what manner the corrections
pointed out by him apply to our calculation. Zyryanov
and Silin ' have criticized the m approach in calculating
the thermomagnetic coefficients in the quantum region.
They point out that Einstein's relation is not valid in
the collisionless transport problem in the quantum
region. It seems to us that their criticism should be
directed to the use of Einstein's relation for calculating
the Peltier coefficient x rather than the use of the ~
approach itself in the quantum region. There is not
enough evidence that the Onsager's relation breaks
down in the quantum region and the m approach merely
uses one of these relations. In our calculation, for
example, we have used the Kelvin relation but not the
Einstein's relation. A detailed discussion of these works
is beyond the scope of the present work.

Although our calculation is elementary and lacks
mathematical rigor, we believe it is nearer the truth
than, for example, the work of Anselm et a/. ' A reason
for this conviction, among other things, is the experi-
mental evidence that we presented in Ref. 1, especially
in Fig. 5 of that paper. It is not likely that the difference
between the end results of our calculation and that of a
more careful solution of the problem will be so large as
to change the results of this analysis. At worst, it may
mean corrections of the order of few percent in the nu-
merical values of the constants obtained. Therefore, we

P. S. Zyryanov and V. P. Silin, Zh. Eksperim. i Teor. Fiz.
46, 537 (1963) /English transL: Soviet Phys. —JETP 19, 366
(1964)j.

tr Yu. N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) LEnglish
transl. : Soviet Phys. —Solid State 6, 331 (1964)g.

have calculated the electronic part of Q as in Ref. 1
except that we have made corrections to account for the
nonparabolic band. This has been done by using the
energy spectrum given by Eq. (2.18) instead of Eq. (A3)
of Ref. 1. The change in the electronic part of Q in the
quantum region beyond its limiting value in the classi-
cal high-field region is given by

AQ c—
Q (P) Q limiting

g xts" exp( —xi)
k l=o

=— ln g xmas exp( —xi)+
e l~

p xir~' exp( —xi)
L=O

p 8I'4k&'~—1+-', 1nl I+in—,(3.1)

&9Zc'GATI

where
-'(8 '+ (8P'kiP/3) (t+-') }'I'

(3.2)

and where eo and e~ are the charge carrier densities in
zero field and magnetic field 8, respectively. This pro-
cedure takes into account the spin splitting of the
Landau levels as well as the change in the effective
mass parallel to the magnetic field, with the quantum
number / and the field 8.The dependence of y on k, has
been neglected.

IV. EXPERIMENT

Most of the details of the experiment were given in
Ref. 1. Here we want to make some additional remarks
to supplement those in our earlier paper. The experi-
ment in high field measured only the change in the
Seebeck voltage for a constant heat input to the sample
as the magnetic field was increased. There is enough
reason to believe' that the mean temperature of the
sample as well as the temperature gradient did not
change with the field. The temperature gradient was
determined indirectly by comparing the observed
Seebeck voltage with the calculated value of Q in the
classical high-field region where Q takes a limiting value.
For such fields, the electronic part of Q does not depend
upon the mechanism of electron scattering and can be
calculated accurately, ' knowing the electron density.
The small contribution due to phonon drag in the classi-
cal region was replaced by Q~ measured on sample 581
in zero field.

Figure 1 shows the limiting value in classical high
fields of the total thermoelectric power thus calculated
for sample 808. The dotted part of the curve gives the
electronic contribution; Q~ is the difference between the
two curves and is seen to be small. The neglect of in-
crease in Q„ in the classical region implies that the tem-
perature gradient thus determined was slightly over-
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TABLE I. The measured values oi the increase in thermoelectric power AQ' over the ciassical limiting value Q&;;&. We have
DQ'=Q(B) —Q~;;~. The calculated values of the electronic component of AQ' are given as AQ, '. The difference between the two is the
phonon-drag component nQ„'. The numbers are in pV/deg.
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FrG. 1.The calculated values of the thermoelectric power in the
classical saturation region for sample 808. The electronic part
(dashed curve) which is independent of electron scattering in this
region is calculated from the known values of the electron density.
The phonon-drag part which makes a small correction between 10
and 30'K is replaced by the measured values of Q„ in zero 6eld.
The solid curve is the sum of the two contributions.

estimated as to its actual value. The error in AT due to
this is, at the worst, less than 10% as can be roughly
determined from the magnitudes of Q, and Q„ in the
classical region. Obviously a better procedure would
have been to measure Q directly, at least in the classical
region. Unfortunately, absolute measurements of Q
could not be made on the samples which were used for
high-held measurements. The numerical results in the
analysis are obtained from the data for sample 808

which, of all the samples, had the highest electron mo-
bility, the least density of charge carriers and the
highest value for the electronic part of Q. Thus the
errors due to the above-cited reasons were the smallest.
Sample 801 was broken during the experiment before
we could collect all the high-field data on that sample.
The difference between the measurements on these two
samples is small. The increase, dQ'$—=Q(B)—Q(limit) j,
of the total thermoelectric power in the quantum region
over its classical limiting value is given in Table I for
sample 808 for a few selected values of the magnetic
field. The electronic part of AQ' calculated from
Kq. (3.1) is also given in the same table as AQ, '. The
first two terms of (3.1) were evaluated numerically
terminating the summation over / at l =20. The phonon-
drag part of BQ' is obtained by subtracting the electronic
part from the measured value. Figure 2 shows the
typical values of the various quantities at 43 and 8.8'K
which are, respectively, in the upper and lower range of
temperatures. The results obtained in this paper are
obtained by comparing AQ„' with the theoretical
phonon drag Q given by Kqs. (2.31) and (2.34).

V. ELECTRON-PHONON INTERACTION

Besides the information about the band structure,
the phonon drag Q involves two unknown quantities,
viz. , phonon-relaxation time 7q and the constants of
electron-phonon interactions. The constants of the
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constant gD, and another constant g~ which determines
the piezoelectric mode of scattering. The 6rst question
that we want to investigate is the relative magnitudes
of the two types of scattering. This question can be
settled by the magnetic-field dependence of hQ„' as can
be seen by an inspection of the results obtained after
integrating the expressions of (2.31) with the phonon-
relaxation time given by (5.1). For a first estimate, we
neglect the effects due to the nonparabolic nature of the
band. The resulting theoretical expression is

Q„=collst. (2k/i')'

i/2

X qzPI2+ I ~3/2 cosPX //n ///'+'
I 2k'' 2k''

Q (8 8o)
P

6,000

I-
O)

4,000
Qf
CI

where
(5 2)

(5.3)

(8.8')
2s000

' (1—x') 1
exp (—v/x') —— dx,

(nx'+1)" (5.4)
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FIG. 2. Some typical values of DQ', the increase in the thermo-
electric power in the quantum region over its limiting value in
classical high fields. The calculated values of the electronic part
of AQ' are shown by the dotted curve. The solid curve shows the
phonon-drag part of AQ' obtained by subtracting the electronic
component from the total measured values.

10

band structure are fairly well established. At the low-
temperature end of the range of our measurements
T&20'K, the phonon-drag phonons have a very long
relaxation times due to collision with other phonons.
The resultant relaxation length is of the order of several
cm. If, as is usually the case, the experimental sample
has a cross-sectional dimension about 1 mm, these
phonons collide much more frequently with the walls
of the specimen than with other phonons. The phonon-
relaxation time due to boundary scattering is deter-
mined by the dimensions of the sample and the velocity
of sound; it is independent of q and T. For the bound-
ary-scattering relaxation time v. ~, we use

~ 10
'Q

a
5

rg=b/5, (5.1) 21

where b is the width of the sample perpendicular to the
magnetic field and the temperature gradient. To get in-
formation about the electron-phonon interaction, we
assume that below 12'K, phonon-phonon collisions are
completely negligible and the phonon-relaxation time
is given by the known quantity of Eq. (5.1).

A. Deformation Potential versus Piezoelectric Mode

The electron-phonon interaction is determined essen-
tially by two constants; the deformation-potential

IO
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FIG. 3. Measured values of the phonon-drag component of the
thermoelectric power in the quantum region plotted as a function
of magnetic field for various temperatures. The range of tempera-
tures is where the mean free path of phonon-drag phonons is de-
termined by the size of the experimental specimen. The quadratic
variation of AQ„'with 8 indicates the piezoelectric mode of electron
scattering is unimportant as compared to scattering via deforma-
tion potential.
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FIG. 4. The comparison of the calculated values of phonon-drag
thermoelectric power for boundary-scattered phonons with the
measured values. The curve marked I shows the calculated values
neglecting the admixture of valence-band wave functions and the
saturation eff ect. The curve marked II is the correction, to be sub-
tracted, due to the admixture of valence-band wave functions.
The correction due to the saturation eBect also to be subtracted
is given by curve III. The solid line gives the sum of the three
contributions. The deformation-potential constant gD which is the
only unknown of the theory is adjusted to match the experimental
values shown by dots.

to the nonparabolicity of the band are small. At 7.7'K
the thermoelectric power falls off even more rapidly
than B' at the lower end of the magnetic-field range. At
still lower temperature (6.5'K) the departure from the
quadratic law is even greater.

There may be two reasons for the breakdown of the
quadratic law; first, the approach towards the degen-
eracy temperature and second, the effect of ionized
impurity scattering. In quantum regions the degeneracy
condition of the electron density changes with the mag-
netic 6eld because of a change in the density of states.
Therefore, under the conditions of mixed statistics that
we have at low temperatures the behavior of the ther-
moelectric power will be different from the quadratic
Geld dependence of the nondegenerate electron gas.
Also the ionized impurity scattering reduces the phonon
drag to almost zero in the classical region, while in the
extreme quantum region the phonon drag, as we
pointed out earlier, is expected to be unaltered by the
presence of ionized impurity scattering. A smooth
transition of these conditions will increase the exponent
of 8 in Q~-versus-8 curve. The data of Fig. 2 neverthe-
less suggest that the piezoelectric mode of scattering is
negligible and that most of electron-phonon scattering
occurs through the deformation potential. These con-
clusions find further confirmation from a detailed com-
parison with theory of the above data and also the
results at higher temperatures. Therefore, for the re-
maining part of this paper we equate g~ to zero.

and I's are numbers of the same order which have only
a very weak dependence on the magnetic field and the
temperature. If go ——0, then Q„varies linearly with the
magnetic field; on the other hand, if gi =0, then Q„
varies quadratically with B.This is in accord with the
similar results obtained by Adams and Holstein" for
transverse magnetoresistance. If the two types of scat-
tering are comparable, the exponent of B will change
with the field, starting with a value 1 and approaching
a value 2 for very high fields, i.e., the Q~-versus-8 curve
is bent upwards. The experimental results for a set of
temperatures are shown in Fig. 3. The selected range of
temperatures is low enough for phonon-phonon scatter-
ing to be negligible, and also the conditions for the
extreme quantum region are satisfied before the effects
due to nonparabolic band become important. On the
other hand, the temperature is high enough so that the
use of classical statistics for the electron gas is valid.
The magnetic field dependence of AQ„' changes with
the field; the curve bends down as the field is increased.
The observed change in curvature has the opposite sign
from what may be considered as due to the mixing of
deformation potential- and piezoelectric-type scatter-
ing. In fact, the change in curvature arises from the
nonparabolicity of the band.

With the exception of 7.7'K curve, the thermo-
electric power increases almost quadratically with the
field between 10 and 30 kG where the corrections due

B. Size of Deformation-Potential Constant

Once we accept that the piezoelectric mode of scat-
tering is negligible and that the phonon-relaxation time
is given by (5.1), the only unknown of the theory is the
deformation-potential constant. The value of gD can
therefore be determined from the magnitude of EQ„'
in the boundary scattering range of phonons. The theo-
retical values are obtained by a numerical integration
of Eq. (2.31). The correction due to the saturation
effect is calculated from Eq. (2.34). The following nu-
merical constants related to InSb are used:

S=3.7&&10' cmjsec,
8=5.79 gjcc,

80=0.23 eV,
I'= 0.44 a.u.

Figure 4 shows the relative magnitude of the different
terms of the theory calculated for T=10.1'K assuming
g„=0.The dotted curve marked I is the Q„of a free-
electron gas with an effective mass which changes
slowly with the magnetic field according to Eq. (2.23).
It is calculated from Kq. (2.31) after replacing 8,' by
its free-electron value 8,~ as given by Kq. (2.14). The
curve marked II is the correction to be subtracted when
the band-structure effects are considered. This is also
calculated from Eq. (2.31) replacing 8,' )Eq. (2.26)]
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25 and above 60 kG, the experimental values fall below
the calculated curve. The disagreement at the lower end
of the magnetic-field range may be, as explained earlier,
due to the increasing inQuence of ionized impurity
scattering as the field is decreased from a high value.
The reason for disagreement at high fields is not clear,
but it probably arises due to the limitation of the above
rather simplified theory. We shall postpone the dis-
cussion of this point to Sec. VII and confine our atten-
tion, for the moment, to data between 25 and 60 kG
where good agreement is obtained.

The values of the deformation-potential constant g~
obtained from the data at different temperatures are
listed in Table II. The different values agree with each
other within 5%. Owing to some experimental error
the measured values of AQ„' at 11.9'K are too low (as
is seen in Fig. 5), which explains the rather large devia-
tion of gD at 11.9'K. From Table II we get an average
value of gD=8.25 eV.

IO
10 20'

f t 1 ~ I I

40 60. 80 IOO

B(kG)

FIG. 5. The comparison of the calculated values of phonon-drag
thermoelectric power with the measured values. The deformation-
potential constant g~ is adjusted to match the experimental points.
The values of gD thus obtained are listed in Table II.

by the difference (8,' B,~). The corre—ction is small
and negligible at low fields as may be expected for an
electron density of 3&&10"/cc at 10.1'K in the classical
region. The percentage correction increases with the
field as the valence-band admixture increases and
becomes 24% at 100 kG. The term due to the satura-
tion effect also to be subtracted is marked as III. This
is calculated from Eq. (2.34). For calculating this term
we have neglected the band-structure effects, i.e., re-
placed 8,' by its free-electron value B,~. The saturation
term also increases from a value of less than 3% at 10
kG to more tha, n 12% at 100 kG. The solid curve is the
algebraic sum of all the contributions. The experimental
data are marked by encircled points.

Figure 5 shows the comparison of the experimental
data at other temperatures in the boundary-scattering
range of phonons to the theoretical values corresponding
to the solid curve of Fig. 4. The value of q~ is adjusted
in each case to normalize the theoretical curve to the
experimental value at 30 kG. It is seen from Figs. 4 and
5 that between 25 and 60 kG the experimental data are
in fair agreement with the calculated values, assuming
no piezoelectric scattering. The good agreement ob-
tained within these limits of the magnetic field is
spoiled and the disagreement that already exists outside
these limits is considerably worsened if a finite amount
of piezoelectric scattering is introduced. This further
con5rms our initial assumption of g~ being zero. Below

VI. PHONON RELAXATION TIME

Next we turn our attention to the data at higher
temperatures where the relaxation time of phonons is
determined by phonon-phonon collisions. Since the
piezoelectric scattering is negligible and the electron-
energy surfaces are isotropic in momentum space, the
transverse phonons are not expected to interact with the
electrons. Of course, we have assumed that in the long-
wavelength limit, phonon branches can be labeled as
purely longitudinal or purely transverse. So the in-
formation that we get about the phonon relaxation time
relates only to the longitudinal phonons. What we wish
to find is the frequency and temperature dependence of
the relaxation time and possibly its absolute magnitude.
Guided by Herring's expressions for the relaxation time
of long-wavelength phonons due to collision with
thermal phonons, we assume a relaxation time of the
form

(6.1)

Using (6.1) in Eq. (2.31) and integrating, we get the
thermoelectric power in the phonon-phonon scattering
range:

AQ„'= const(gzPA/T") (2&a')'—"I (2 (6.2)

TABLE II. The values of the deformation-potential constant
qD obtained by matching the calculated values of AQ„' to the
measured values in the boundary-scattering region of phonons at
diferent temperatures. A good match between the two values is
obtained for magnetic fields between 25 and 60 kG.

& (eV)

6.5 8.59
7.7 8.43
8.8 8.15

10.1 8.31
11.9 7.90
17.7 8.12

Average q~= 8.25 eV
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TanLE III. The values of constant A LEq. (6.1)] obtained by
matching the calculated values of DQ„' using q~=8.25 eV to the
measured values in phonon-phonon scattering region.

T('K)

30.2
33.4
37.5
43

4 48X10'
4 33X10'
4 32X10'
4 37X10'

Average 4.37X10'

IO

value to the experimental data at different temperatures
are listed in Table III. The different values are again
consistent with each other within about 5/z.

Incidently, we also find that if it is assumed that the
piezoelectric scattering of electrons is the dominant
mode of scattering, we have to assume a negative value
of m to fit the experimental data. This implies a phonon-
relaxation time increasing with the wave vector of
phonons, which is not likely. The data again confirms
the absence of any appreciable amount of piezoelectric
scattering.

2 r I I f

6 8 IO 20 . 40 0 80 100
TEMPERATURE (4K)

I

FIG. 6. The phonon-drag thermoelectric power for 6xed mag-
netic field in the quantum region plotted as a function of tem-
perature. The straight line drawn through the data points between
25 and 45'K has a slope of 4.46 indicating that the relaxation time
of phonons varies as T ' .

where the constant is again given by (5.3) and I», is
an integral of the form (5.4). Neglecting the weak tem-
perature dependence of I3~2, we observe that, for a fixed
magnetic field, DQ~'~T &"+si'&. The measured values
of EQ„' for fixed values of the magnetic field are plotted
against temperature in Fig. 6. A straight line with a
slope of 4.46 can be drawn through the data between 27
and 43'K, suggesting a value of 3.0 for r. Above 43'K,
deviations from the straight line are observed which are
expected as the temperature approaches the Debye
temperature ( 205'K).

Figure 7 shows the comparison of the measured values
of DQ~' at T=33.4'K with two different calculated
curves. We have used m equal to one and two to cal-
culate curves marked I and II, respectively. Both the
curves are normalized to the measured value at 35 kG.
The band-structure effects and the saturation effect are
taken into account as in Sec. V. It is clear that a value
of no= 1 gives a much better fit to the data in the inter-
mediate field range. Deviations are observed in both
low-field and high-Beld ranges. Deviations at low fields
are probably due to the effect of ionized impurity scat-
tering as explained in Sec. V and also due to the reduced
accuracy of the data because of its small value.

Using the value of q~ obtained in Sec. V, we can 6nd
the constant A of Eq. (6.1) where r =3 and m= 1. The
values of 2 obtained by normalizing the calculated

VII. DISCUSSION

IO

IO

Fxo. 7. The com-
parison of the meas-
ured values of the
phonon-drag thermo-
electric power with
the calculated values.
The solid curve
marked I is calcu-
lated assuming that
v.~1/q. The dashed
curve marked II is
calculated assuming

(V)-I/V'.
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To summarize, we have found that the deformation-
potential type of scattering dominates the electron-
phonon interaction in e-InSb for T&6'K. The value of
8.25 eV is obtained for the deformation-potential con-
stant. The relaxation time of long-wavelength longi-
tudinal-acoustical phonons for 7&40'K is given by

r, (T)= (4.4X 10')/qT' sec,

where q is in cm ' and T in degrees Kelvin.
The value of the deformation-potentia1 constant ob-

tained from this experiment is close to Ehrenreich's
estimate of 7.2 eV for the same constant. However, our
value is by a factor of 4 smaller than the value obtained
by Haga and Kimura from the analysis of free-electron
infrared absorption. The phonon-drag experiment can-
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not be reconciled with such a large value for gD. Scruti-
nizing the accuracy of our measurements once again,
the thermoelectric power measured by us may be a
slight underestimate because of the manner in which
we calculated the temperature gradient. The error in
AQ' due to this is small, no more than 10% in the most
unfavorable case, which can increase g~ by no more
than 5%. Secondly, we believe that the electronic com-
ponent of DQ' is given by our Eq. (3.1). An error of a
few tens of microvolts/deg in AQ, ' is not of much sig-
ni6cance since BQ„' is several 1000 pV/deg. On the
other hand, assuming a value of 30 eV for g~, if we
estimate the phonon-drag thermoelectric power in the
zero field (as done in Ref. 1) we get a va, lue of 800
pV/deg which should be observable, if correct. However,
independent measurements of the thermoelectric power
of m-InSb by different authors show a much smaller
value, almost the whole of which can be accounted for
by the electronic term.

Our second conclusion regarding electron-phonon
scattering is that there is no interaction via the piezo-
electric mode for T&6'K. The statement should be
modi6ed to say that the high-field phonon drag is not
affected by piezoelectric scattering because, as the
theory shows, the scattering in the piezoelectric mode
is discriminated against. This is because in the quantum
region the mean wavelength of phonons that interact
with electrons continuously decreases with the magnetic
field. The nature of interactions is such that the ratio
of piezoelectric scattering to deformation-potential
scattering decreases with the decrease in wavelengths
of the phonons.

Our conclusions about the relaxation time of phonons
are not in agreement with Herring's theory. Although
the cubic dependence of the inverse of the relaxation
time on temperature is in agreement with Herring's
prediction, there are two points of disagreement. First,
we find in Eq. (6.1) the value of m=1 instead of the
ideal value of two predicted by Herring. Also it has
been predicted that the sum of the exponents r and m
is always 5, while the sum of exponents in our case is 4.
Deviations from the theoretical value 5 are expected
only when the condition T((8o (Debye temperature
= 205'K for InSb) is violated. We have no explanation
of these disagreements.

Finally, we wish to say a few words about the dis-
agreement between the measured and the calculated
values of AQ„' for fields higher than 60 kG; the meas-
ured values are always less than the calculated values.
There may be two reasons for this. First, we see that
in a high magnetic field the wave vector g„of phonon-
drag phonons becomes comparable to q~ of thermal
phonons. For example, at 10'K, q, = (AT/AS)

=3.7&(j.0' cm ', which is only about three times
q~$= (eB/Ac)i"g at 100 kG. Our theory is in error in as
far as the assumption q&))q„ is violated in this case. The
theory of phonon drag in extremely high magnetic 6elds
when 8) (Ac/e) (kT/AS)' has been discussed by Gure-
vich and Kfros. ' They predict that in this situation the
thermoelectric power becomes independent of the mag-
netic 6eld once again. Instead of the saturation pre-
dicted by them we observe that, at 6.5'K, B,Q„' goes
through its maximum value at 90 ko and starts de-
creasing as the field is increased further. Second, we
observe that in the theory we have neglected the broad-
ening of the electron-energy levels due to collisions.
Collision broadening is one of the mechanisms invoked
to remove divergence in the theory of magnetore-
sistance" in the quantum region. The inelasticity of
electron-phonon collision is another. VVe have consid-
ered only the latter mechanism. Since the scattering
rate increases with the field, it is possible that the colli-
sion broadening becomes dominant in high 6elds while
the inelasticity of collisions dominates at low 6elds.
The 6nite energy of the interacting phonons gives rise
to the second exponential factor in Eq. (2.14) with the
consequence that Eq. (2.13) remains finite for q, =0.
The electron energy states have a finite width A/r
and a corresponding spread hk, in momentum along
the magnetic held. A collision is not significant unless
it changes k, by an amount greater than LB, which
means only phonons with q, &6k, can take part in
electron scattering. Collision broadening thus sets a
finite lower limit to the integral over

~ q, ~
and a corre-

sponding lower limit x;„ in the integrals I„of Eq.
(5.4). If the value of x; is such that the factor
exp( —v/x;„') of Eq. (5.4) which arises due to in-
elasticity, is already small, the eHect of collision broad-
ening will be negligible. In the opposite case a finite
x;„reduces the value of integral I„and hence the cal-
culated values of Q~. The value of x;„depends on the

magnetic 6eld because of its dependence on v. At
present, the theory of collision broadening has not been
worked out in the quantum region. It seems that for
T&20'K, co1lision broadening may be responsible for
]ow measured values in high fields, while for low tem-
peratures the 6rst explanation also plays a part.
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