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On the basis of the Van Hove theory, an analysis is given of those properties of the neutron-scattering law
which inliuence the decay constants (the reciprocal relaxation times} in neutron thermalization. It is shown
how the known di6erences in the long-time behavior of the correlation functions for a gas, a liquid, and a
solid are reflected in the diferent behavior of the differential cross sections at low energies. This behavior
ultimately determines the general character of the spectrum of decay constants for a uniform neutron
distribution in an infinite medium. For a gaseous moderator, either there is an in6nite set of discrete decay
constants, strongly accumulating towards the lower limit X*=mingvZ(v)g of the continuous spectrum, or
else the spectrum below )* is empty altogether. On the other hand, for a solid, the set of discrete decay
constants is always 6nite, or possibly empty. The liquid appears to allow, in principle, all three possibilities,
but normally the spectrum is expected to resemble that of a solid. In any case, the existence of the lowest
decay constant Xv (and hence the existence of an infinite set for a gas) is trivial whenever absorption is absent
or of the 1/v kind. Only an absorption rate vZo(v) which strongly increased in the small-v region could cause
the complete disappearance of the discrete spectrum. In this event any initial neutron distribution slowly
evolves towards a singular distribution containing a 5(v) term, or some weaker singularity, and the decay
rate approaches X*.

I. INTRODUCTION

+ v'Z, (v' —+ v) 1V (v', t)dv'. (I)

Herein 1V(v,t) is the neutron number density per unit
velocity interval, and Z(v) the macroscopic total cross
section (the inverse mean free path of the neutrons),
which is the sum of contributions due to scattering and
to absorption:

z(.) =z, (v)+ z„(.),

z, (v) = Z, (v ~ v')dv'.

The "thermalization kernel" Z, (v —+ v') is given by
the angular integral of the macroscopic differential
scattering cross section (defined here per unit volume in
velocity space),

Z., (v —~ v') =— Z, (v —~ v') v"dQ,

~ This work was performed under the auspices of the U. S.
Atomic Energy Commission.

t Fulbright-Hays Visiting Scholar. Permanent address: Insti-
tute of Physics, University of Ljubljana, Ljubljana, Yugoslavia.

M~ NE of the basic problems in neutron-thermalization
theory deals with the time evolution of a neutron

distribution in an ininite sourceless unchanging medium.
Both the medium and the neutron distribution are
assumed to be uniform and isotropic.

In the case of a nonabsorbing medium we want to
know how, and how fast, thermal equilibrium is ap-
proached. A s1ightly more general problem is posed by
considering an absorbing medium, where we have the
equation

8
V(v, t) = —vZ (v) lV (v, t)—

at

and obeys the detailed balance relation,

vM(v)Z, (v ~ v') =v'M(v')Z, (v' ~ v),
M(v) = v' exp( —mvs/2k~T) .

We shall look. for solutions of the form

N(v, t) =1V(tp)e "'

with 1V(v) satisfying

Lvz(.)—) ].V(.) = v'Z, (v' ~ v)lV(v')dv'

Several recent papers' ' have been devoted to this
subject, and particularly to the nature of the spectrum
of the decay constants X. Corngold, Michael, and Woll-
man' have shown that the values assumed by the
function tlZ(v) form the continuous part of the spec-
trum. As pointed out by Grad~ in a related context, this
is a consequence of a theorem of Acyl and von Neu-
mann. A rigorous investigation of the nature of the
spectrum, for the case of a monatomic gaseous modera-
tor, has been carried out by Shizuta. '

In view of what has been said, the lower limit of the

'N. Corngold and P. Michael, On the Decay Constants in
Pulsed Neutron Experiments, 1962 (unpublished).' N. Corngold, P. Michael, and W. Wollman Proceedings of the
Conference on Neutron Thermalization, Vol. 4, p. 11.03, BNL
Rept. 719 (C-32), 1962 (unpublished); Nucl. Sci. 8z Eng. 15, 13
(1963}.' J. U. Koppel, Nucl. Sci. Eng. 16, 101 (1963).' N. Corngold, Nucl. Sci. Eng. 19, 80 (1964);N. Corngold and
P. Michael, ibid. 19, 91 (1964).

'M. J. Ohanian and P. B. Daitch, Nucl. Sci. Eng. 19, 343
(1964).' C. S. Shapiro and N. Corngold, Phys. Rev. 137, A1686 (1965);
C. S. Shapiro, Brookhaven National Laboratory Report No.
BNL 8433, 1964 (unpublished).

7 H. Grad, Proceedings of Third International Symposilnr, on
A'are/ed Gas Dynamics, 1063 (Academic Press Inc. , New York,
1963), Vol. 1, p. 26.

8 F. Riesz and B. Sz.-Nagy, /&'NrIctional Analysis (Frederick
Ungar Publishing Company, New York, 1955).' Y. Shizuta, Progr. Theoret. Phys. (Kyoto) 32, 489 (1964).
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II. PROPERTIES OF THE THERMALIZATION
KERNEL

It will be convenient to generalize Eq. (3) by intro-
ducing an artificial parameter c,

v'Z. (v'~ v)X(v')dv'. (4)c[v~(.)—) ],~(v) =

"M. Nelkin, Physica 29, 261 (1963).
» M. G. K.rein and M. A. Rutman, Uspekhi Matem. Nauk

(N. S.) 3, 3 (1948). LAm. Math. Soc. Transl. , 2nd ed. , Ser. 1, Vol.
10, p. 199 (1962). See, in particular, p. 274, proposition (p').g

continuous spectrum is at
X*=min[vZ (v)].

Usually the collision rate vZ(v) reaches its minimum
value at v=0, and we shall henceforth assume that this
is so, and that X*&0.

It is very plausible that V is a natural upper bound
for the decay constant of any non-negative solution of
Eq. (3). That is, no neutron distribution can decay
faster than the infinitesimal group of neutrons with the
smallest possible collision rate. ' "

If there is a nonempty discrete spectrum below A*,

the smallest decay constant Xo corresponds to the unique
non-negative solution Es(v), in view of an extension of
the Perron-Jentzsch theorem" (see also Sec. III). Any
neutron distribution asymptotically approaches this
so-called fundamental mode of decay.

For a constant absorption rate (a 1/v absorption
law) the existence of this particular mode immediately
follows from the detailed balance relation, namely

Xp(v) ~ M(v),
),=),&.& —=vZ. (v) .

On the other hand, for non-1/v absorption the
existence of such a discrete decay mode is not at all
trivial. On the contrary, simple artificial models are
conceivable where the discrete part of the spectrum is
empty altogether (example in Sec. IV).

The results obtained with some realistic kernels also
appear quite intriguing. For the proton gas model the
existence of an infinite set of discrete decay constants
below the bound X*has been proved. ' The computations
carried out by Shapiro and Corngold' suggest that this is
true for the monatomic gas model in general, although
the decay constants are strongly bunched towards )*.
On the other hand, for a model of a solid, the results of
those computations indicate that the discrete decay
constants are truly finite in number.

The aim of the present paper is to examine the condi-
tions for the existence or nonexistence of the discrete
decay constants. It will also be shown which of these
conditions we may expect to be fulfilled for real
moderators. This should lead to a unified picture for
the results previously obtained for special models by
analytical or computational means. At the same time
we hope for an explanation of the noted different be-
havior of a gas and a solid in this respect.

Following an idea of I,ehner and Wing, "we then look
for the eigenvalues of c for a given )«X*.The results,
when ) is allowed to vary, lead to the desired eigenvalues
of X for c= 1. We are safe in limiting the discussion to
real values of X; complex X in Eq. (3) are easily excluded
after the thermalization kernel is made symmetric
according to detailed balance:

Z, (v,v') = [vM (v)/v'M (v')]'t'r, (v ~ v') .

The form of Eq. (4) is further simplified by in-
troducing

e), (v) = ([vz (v) —X]/M (v) }'"E(v) .

The resulting equation

c%'), (v) = Eg (v,v') +g (v') dv' (5)

contains the kernel

I/2

Eg(v, v') = Z, (v,v') . (6)
[vZ (v) —) ][v'Z (v') —X]

In order to link the problem to the usual theory of
integral equations with symmetric kernels, we shall ask
for solutions of Eq. (5) which are square integrable in
(0,~) and thus belong to the Hilbert space L'(0, eo ). Of
course, since the kernel Ez in general is suKciently well
behaved, the solutions are expected to belong to a much
narrower class of functions, which are continuous for
v&0. The restriction to the I.' space is meaningful only
with respect to the behavior of %q(v) at v —&0 and
p ~00 ~

The existence of a nonempty set of such solutions
4q„(v), corresponding to a bounded discrete spectrum
of eigenvalues c„(X), is guaranteed whenever

0 0

Eg'(v, v')dvdv' (~ . (7)

"G. M. Wing, AN INtrodttctioN to Trurtsport Theory (John
Wiley 8t Sons, Inc., New York, j.962).

In order to decide about this condition, we shall have to
investigate some of the properties of Z, (v,v'). The
remainder of this section will be devoted to that task.

For reasons mentioned in the introduction we shall
be particularly interested in the behavior of E&,(v,v')
for X close to V. The factors (vZ —X) in (6) then enhance
the values of the kernel in the near-zero velocity range.
Thus we have to know the behavior of Z. (v,v') in this
range, as well as the behavior of vZ(v).

1.Gertera1 propertt'es of 2, (v,v'). Several of the general
properties of the kernel Z, (v,v'), which are of interest
here, can be derived from Van Hove's theory of slow-
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neutron scattering, "—"According to this theory the
differential scattering rate, for a macroscopically iso-

tropic medium, is a function of only two variables:

vZ, (v ~ v') = (m/4zrh)ZsS(K, co),

where Zb is the macroscopic bound-atom scattering cross
section, and

have been widely used. The latter is exact for the free
monatomic gas, where the width function p is given by

For this particular case we have a closed expression
for S,

co = (m/2h) (v' —v"). (10) S(K,co) = exp —(vsrrK)' —
~ i

. (17)
2zr' vsr~K~ &2vsrKf

S(K,co) is expressed by Fourier transforms of certain
correlation functions,

)c(K,t)e '"'dt$(K,co) = (2zr)
—'

An easy improvement over (14) and (15) can be
introduced by Vineyard's convolution approximation, "
which takes some account of the Gd contribution to G,

(11) responsible for interference effects. The resulting )((K,t)
and S(K,zo) are modified by a structure factor,

= (2zr)-' dr G(r t)ei(z r ~z)dt (12)

where
$(K,co) =e-"'$(K,co) =S(K, —co) z

r = t't/2tsT.

The transforms of S(K,(o) are

and they are real.
The incoherent approximation, G(r, ) =G, (r, t), and in

particular the Gaussian approximation,

G(r, t) =$4zry(t) j st' expL. . r'/47(t) j—(14)

(15)x (K,t) =expL —K 'f (t)j,
'3 L. Van Hove, Phys. Rev. 95, 249 (1954).
"G.H. Vineyard, Phys. Rev. 110, 999 (1958).
"M. Nelkin, Proceedings of the Symposium on Inelastic Scatter-

zng of Neutrons, 1960 (International Atomic Energy Agency,
Vienna, 1961),p. 3.

"N. Corngold, lectures from the Second Neutron Ptzyszcs
Conference, 1968 (University of Michigan Press, Ann Arbor,
Michigan, 1964)."V. F. Turcin, Medlennye neitrony (Slow Neutrons), Moscow,
1965 (unpublished) .

For simplicity we shall confine ourselves to the case of a
medium consisting of identical atoms, when

G(r, t) =G, (r,t)+ (Z„s/Zs)(Ge(r, t)—pj, (13)

with Z„i, being the coherent part of Zb, and G„G~ the
correlation functions used by Van Hove. If different
atoms are present G is a linear combination of several
such functions. '4 We had to subtract from Ge(r, t) the
limiting value Ge(oo, t) =p= the number density of the
atoms, because for any macroscopic system this term
gives rise to a contribution which essentially belongs to
the uncollided beam ""

It is convenient to symmetrize $(K,co) and other
relevant functions according to detailed balance. As
previously, we shall indicate such symmetrization by a
tilde:

where f(K) is the spatial Fourier transform of Gd(r, 0) p-
= g(r) —p. We shall use this kind of approximation only
for an estimate of g(K, t) for small t, and for an asymp-
totic 6t for large t, where'4"

v(t) v( ) (-id),
—& D(~ t

~

—ri) (liquid).

(18a)

(18b)

Whereas in the gas case the width function continues to
increase like t', corresponding to the free motion of the
atoms, the liquid exhibits in the asymptotic limit only
a linear increase, which corresponds to the diffusive
motion, and is governed by the self-diffusion coeKcient
D. In a solid such motion is negligible, and y(t) tends
to a ffnite limit y(~).

Z. Small velocity a-pproscimatiorts For .reasons ex-
plained before we want to know how $(K,co) behaves for
small I(: and ~. First we must take care of a singular
term which arises from the asymptotic part of x. For a
solid we may write

X(K,t) =F(K) expL —K'y(~))+X'(K, t), (19)

S(K,co) =F(K) exp(K'Dri) +S'(K,co) . (22)
7r (O'K4+co')

All three cases (17), (20), and (22) agree in

S(K,co)-+F(0)8(co) for K —+0,
'8 P. A. Kgelsta6 and P. Schofield, Nucl. Sci. Eng. 12, 260

(1962).

which results in a decomposition of S into the elastic
and inelastic parts

S(K,co) =F(K) expL —K'y(zo)]it(oz)+S'(K, &o). (20)

A similar decomposition can be carried out for a liquid,
where we may speak of "quasielastic" and "truly
inelastic" scattering:

X(K,t) =F(K) expL —K'D(~ t
~

—ri) j+X'(K,t), (21)
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S'(x,(u) =~'Si (0), (24)

for small ~ and. or.

An expression for Z, (v, v') follows from Eqs. (2) and

(8), with the substitution (9):

Z, (v, v') =
2m (vv')"'

(n~/A) (v+ v')

X S ~, —(v' —v") I: dl~. (25)
~ (m/@) ( v,—v'

~

Since S is a non-negative function, and since it is
reasonable to assume that the integrand in (25) does
not identically vanish over any interval of ~, it follows
that Z, (v,v') vanishes only at v or v' —&~ and, possibly,
at ~ or ~' —+0.

For a monatomic gas Eq. (25) leads to a well-known
result, " which we need only in the small-velocity
approximation,

foi' 'v g'v and 'v, v &&vs�. (26)

In the case of a solid we are going to use only the
inelastic part 5,' of the kernel, derived from S' in the
way of Eq. (25). For small velocities the approximation
(24) leads to

2,'(v v') = (m/fv)'Zvsi(0) (vv')'"(v'+v"). (27)

For a liquid we obtain

gtvF(0) (v+v')'+g'-(v' —v")'
X, (v,v') = ln

4ir (VV') "'- (v —v') '+q'(v' —v") '

which is a conseqaience of g(0,i)=F(0) being time-
independent. The latter can be seen from the dehni-
tion" ' of the correlation function X.

An approximation of S'(x,a) for small ~ and ~v is
obtained by expanding x (K,f) in powers of ~', which is
certainly permissible. The ~ term vanishes, in view of
what has just been said, so that

5'(~, iv) =~'Si (~v)+~'Sg (~v)+

For a solid, Van Hove's considerations about the
asymptotic behavior of the correl. ation functions lead to
the conclusion that S,(0) is finite. Assuming that the
same is true also for a liquid, we have in both cases

The few available data, "--" indicate that the self-
diffusion coefFicient of monatomic liquids ordinarily
equals a few times 10 ' cm'/sec, whence it follows that
the parameter g introduced here is of the order of 10.

The remarkable differences in the three small-
velocity approximations are a direct consequence of the
different long-time behavior of the correlation functions,
as explained previously in terms of the y(t).

The discontinuity in the derivative of Z, (v,v') at v= v'

in the gas case, and the logarithmic singularity for the
liquid, indicate that neither of these Z, can be a de-
generate kernel. The same applies to Z, ' for a solid,
where discontinuities are found along some lines in the
v/v' plane, corresponding to certain values of cv.i3

3. Square integr-ability of Z, (v,v'). We are now ready
to examine whether the kernel Z, is square integrable in
the sense of Eq. (7). In the gas case the answer is known
to be positive. In general, divergencies might be feared
to arise from too slow vanishing of the integrand at
v or v' ~~, or from singularities either inside the v/v'

plane or at e —+0, e'~0.
For large

~

v—v'
~, that is for large momentum trans-

fers, any medium behaves like a free gas, and there is
no doubt about the convergence of the integral in that
region. Here Z, is found to decrease roughly exponen-
tially. This implies that a strip of constant width along
the line v= v' in the v/v' plan. e is excepted, and next we
are going to estimate the average of Z, across that strip.
Equation (25) leads to a double integral of S(~,~v). The
integral over d~ is estimated to be of the order of
x(K,O) exp) —~'p(0) j. Since 7(0))0, the integral over
chal is bounded, and the quoted average is seen to de-
crease like 1/v' with v —+ ~ . For the liquid this suffices to
assure the square integrability of Z, in the (v-+~)
portion of that strip, since the logarithmic singularity
at v'= v causes no harm. In case of a solid the same can
be assured for Z, ', which has no such singularity.

We are left with the last possibility that the integral
might diverge in the near-zero velocity range. This
actually happens with the liquid, as we can see from
Eq. (28). Summarizing, we have

2, '(V, V')dvdv'& ~ for gas or solid, (29a)
0 0

for liquid,

where, in case of a solid, Z, stands for Z, '.
g. I'ositive defviviteness of Z-, (v,v'). With respect to the

problem of eigenvalues of Eq. (5) it would also be useful
to know whether 2, (v,v') is positive definite. Let us see
if we can assure this for the more general kernel 2, (v,v'),
i.e., whether

(29b)

where
+OL(vv')i~'1, (28)

Q( q ) = dv dv'Z, , (v,v') q (v) q (v') )0 (30)
g =- Ii/2mD.

' A. M. Weinberg and E. P. Wigner, The I'hysica/ Theory of.VeltrorI, Chairs Reactors (Chicago University Press, Chicago,
1958); E. P. Wigner and J. E. Wilkins, Jr., U. S. Atomic Energy
Commission Rept. No. AECD-2275, 1944 (unpublished).

for arbitrary real y(v).
20 R. E. Housman, J. Chem. Phys. 20, 1567 (1952)."I.. D. Hall and S. Rothman, Trans. Am. Inst. Mining, Met. ,

Petrol. Engrs. 206, 199 (1956)."J.Naghizadeh and S.A. Rice, J.Chem. Phys. 36, 2710 (1962).
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We express Z, (v,v') in terms of 5(«,~), and the latter
function as a transform of G(r, t). After introducing

dt G(r, t) i P(r, t) i

'-. (32)Q((p) = Z—b dr
2'

Thus, non-negativity of G(r, t) is a suKcient condition
for the positive definiteness of Z, (v,v'), and hence of
Z, (v,v'). I.et us also observe that, incidentally, f (r,t) is a
solution of the Schrodinger equation for free space,
namely that corresponding to an initial wave function
in momentum space ~v 'I'&p(v).

In the Gaussian approximation, and moreover in any
incoherent approximation based upon a classical picture
of G(r, t), this function is indeed non-negative. But we
cannot hope that this is true in general, because of the
oscillatory character of Gz(r, t) p, which—constitutes a
contribution to G(r, t). Still, an occurrence of negative
values of G(r, t) does not necessarily destroy the
definiteness of Z, (v,v'). Namely, P(r, t) is not completely
arbitrary, because of the extra variable t introduced by
Eq. (31). We may try to produce a,n example of a
negative Q by choosing It (r,0) such that it differs from
zero only where G(r,0) is negative. However, according
to the mentioned quantum mechanical analogy, such
a "wave packet" soon spreads out in space, with
1'~f(r, t) ~'dr staying constant. This means that the
integral in Eq. (32) involves an averaging over a broad
space-time region, and the result might very well be
positive. The conclusion is that Z, (v,v), and con-
sequently Z, (v,v'), are positive definite under much
wider conditions than that of G(r, t) being non-negative.

5. Properties of Z, (v). We now turn to the integrated
scattering cross section, for which a convenient expres-
sion is obtained from Eq. (25), after inversion of
integration order,

1 hq'
Z. (v) =- —

~
Zt, v

—' ~d~
2m& 0

—(A/2m) «2+ v «

S(x,a))d(o. (33)
—(~/2m) « —e«

Another useful relation follows then

Ib(r t)= (2v) ' v "'y(v) exp i—(v r——,'v'-t) dv (31)
fs

we get

where

p, (8) —4~—&/2g ~~+~

b i~ i—l2gs/—v~

Z, = (1+m/M)-'Z ~.

(36)

(37)

For a liquid the nonanalytic behavior of the integrand
in (34) at v, ~ —&0, as seen from Eq. (22), causes the
expansion of vZ, (v) to involve also odd powers:

vZ (v)=X~'+a v+b v'+

After some manipulation Eq. (34) leads to

v'(~' —1)
a, =- Zpp(0).

(n'+ 1)'

(3g)

(39)

But for the factor ip(vp —1)/(vp+I)', which for large iI

is close to unity, this expression is the same as for the
elastic part. of Z, (v) at v —+ 0 for a solid, "as we can see
from Eqs. (33) and (20).

Since Z, (v) -+ Xi)0 as v —+~, the scattering rate
vZ, (v) increases indefinitely with increasing v. Usually
the increase is monotonic, and for all models used in
computations so far the absolute minimum of vZ, (v) is
at v=0.2' However, an exception to this rule follows
from Eqs. (38) and (39) if iI(1.

Since the absorption rate vZ (v) presumably behaves
at v —& 0 and at v —&~ in a similar way as vZ, (v), their
sum, vZ(v), has the same general properties as those
derived for vZ, (v). In particular, the limits Z(~) and
fvZ(v)$„0 are finite and positive. We continue to main-
tain the additional restriction that the latter limit coin-
cides with '«*, the absolute minimum of vZ (v). Any case
not in accord with this restriction would require a sepa-
rate investigation, which is hardly justihed as no such
cases of practical importance are known so far.

In the small-velocity range we are going to use the
truncated expansions,

vZ(v) =V+av for a liquid, (40a)

=X*+bv' for a gas or solid, (40b)

expect, for small v, an expansion of the form

vZ, (v) =9'~+b,v'+ (35)

and similarly for vZ, '(v) in, case of a solid. Equation (34)
shows that ) ') is positive and 6nite. The value of b, is
obtained through repeated diRerentiation of this equa-
tion. We may mention the known results for the rnon-

atomic gas

—L"~.()j=- —»
dv 2 ss

ti
S ., — .~+- ~.-d. . (34)

2m )

where, in the last case, Z (v) stands for Z, '(v)+Z, (v). We
shall slightly strengthen the previous restriction by re-
quiring that the (nonnegative) coefficients a and b,
respectively, do not vanish.

To make sure that this integral converges we verify
from Eqs. (17), (20), (22), and (24) that no singularity
arises at x~0, and we observe that the integrand
strongly vanishes as ~ —+~.

Since the right-hand side of (34) is even in v, we

III. THE EIGENVALUE SPECTRUM

After the above preparation we return to Eq. (5). For
the case of a solid an explanation is needed with respect

'3 H. Honeck (private communication).
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/

avoiding a discussion of negative eigenvalues of c in
Eq. (5).

An immediate consequence of the symmetry, non-
degeneracy, square integrability, and positive de6nite-
ness of the kernel is that for any A )*, and also for
X=)P in case of a solid, there is an infinite set of eigen-
solutions %i,„(v), corresponding to positive eigenvalues
c, which are bounded as follows, '

0 0

Eg'(v, v')dvdv') cp) ci) )0 (43)

o

FIG. 1. Qualitative picture of the eigenvalues
c (P) for a solid moderator.

to the elastic scattering. Obviously this cannot inhuence
the neutron velocity distribution —the corresponding
terms in Eq. (3) cancel. Therefore, we redefine Eq. (4),
with Z'(v)=Z, '(v)+Z, (v) and Z, '(v' —+ v) substituted
for 2 (v) and Z, (v' —+ v), respectively. We shall, however,
omit those arrows henceforth.

In view of what has been said about the collision rate
vZ (v), the kernel Ei(v,v'), for X&X*, inherits some of the
properties of Z, (v,v'). In particular, Ei, (v,v') is positive
valued, decreasing to 0 only at e or v' —& ~, and possibly
at e or e' —+0. Moreover, the kernel is continuous,
except, in case of a solid, for jumps across certain slant
lines in the v/v' plane, and except for the logarithmic
singularity at v ~ v in case of a liquid. Only for X=X*,

and only for the gas and the liquid, a stronger singu-
larity appears at v, m'~ 0. From the behavior of Z, for

v, v' —+ 0, we also conclude how the square integrability,
as shown by Eqs. (29a) and (29b), is affected by the
additional factors in (6), namely

E '( i, v)dvd v&v~ for X&X* (41)

0 0

Ei~'(v, v')dvdv'= ~ for gas or liquid, (42a)

for solid.

The exception (42a) is due to the mentioned singularity
at zero velocities.

We recall tha, t Z, (v, v') is nondegenerate, which is then
true also for Ei(v,v'). As the extra factors in (6) may be
incorporated into the trial function pp in (30), a positive
definite Z, (v,v') gives rise to a Ei, (v,v') with the same

property. Since many if not all possible Z, (v,v') are
positive de6nite we shall adopt this as a general assump-
tion for the Ei, (v,v') under consideration. This assump-
tion is not essential, but will allow us the convenience of

and which accumulate only at 0. An extension of the
Perron-Jentzsch theorem" assures that cp is simple, that
the corresponding solution is non-negative, and that
there is no other such solution.

In order to translate these statements into answers to
the original problem, we have to see how then c„vary
with ). First we prove, by integrating both sides of
Eq. (4) over v, that

cp(0) &1,
because of the non-negativeness of the corresponding
solution and of the cross sections. The sign of equality
applies to a nonabsorbing medium.

For X&X* the kernel Ei(v,v') depends upon
analytically, and we find that (cjE&/W) too is square
integrable in the sense of Eq. (41). This is suKcient for
the application of a theorem of Rellich, ' which guaran-
tees the continuity of c (X).

A formula well known from perturbation theory'
equates the derivative of c„P) to the corresponding
"diagonal matrix element" of BEi/R. With the .4'i (v)
normalized, with the differentiation of (6) carried out,
and through some manipulation, the result simplifies into

dc„(X) "ei„'(v)dv
(44)=c.(X)

vx(v) —X

which is positive. Thus all eigenvalues c„ increase
monotonically with P. In case of a solid the proof of
continuity can be extended up to the limit ) ~ )*, but
the dc„/dX are likely to become infinite at that point.

For a solid we now already have a complete qualita-
tive picture of the c„(X), as shown by Fig. 1. On the
horizontal line c=1 we read the decay constants )„.
They are 6nite in number, as already indicated by
Shapiro and Corngold. ' Their results also show that
ordinarily only very few X„, or sometimes only the
fundamental X0 do exist. As mentioned in the introduc-
tion the existence of the latter decay constant is trivial
for any medium with no or only 1/v absorption. (Such
absorption merely shifts the curves c„(X) to the right. ]

By introducing an absorption rate which would
increase suKciently strongly with v, one could in principle—but not very easily in practice —depress the curves
c (X) below the line c= 1, which means, for a solid, that
cpP*)&1. Then the spectrum of X below V would be
empty.
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In the case of a gas for X close to 'A* only the value~
of Ex (v, v') in the near-zero velocity range are significant,
and we expect that the limiting behavior of the c P ),
as ) —+ X*, is not a6ected by making the kernel equal
zero for ~ or ~'& v~, with some Q.xed e~.

We take v~ small enough so that the approximations
(26) and (40b) are valid. After introducing

x= D/(~*—l )$'t'v ~,= Lb/(~' —X)$'t",
C (x)= (1+x')'"+x(o),

(45)

the integral equation can be reduced to a second-or3er
differential equation, which happens to be in simple
relationship to the hyper geometric equation. The
boundary conditions are C (0)=0 and C (xt) =0. The first
one is satisfied by the particular solution Lnotation as
in (24)]

GAS

where

C (x) =xF (-,' (1+v), —,
' (1—v); —,'; —x'),

v= (1 ce/c)1/2

c = 2Zs/llvsr.

(46)

(47)

(4g)

FIG. 2. Qualitative picture of the eigenvalues
c„(X) for a monatomic gas.

One of the formulas for the analytic continuation of
the hypergeometric function'4 helps us to satisfy also
the second boundary condition. If x& is suKciently large,
i.e., if X is suKciently close to )*, we may take only the
leading terms of the expansions around infinity, and put
the boundary condition into the simpler form

I 1'e(1+v)jI (1 v)
v lnxg= ln. +2 (rt+1)srs. (49)

I'L-:(I—)31 (I+! )

For c)0 we have either 0(v(1 and I+1=0, or v is
imaginary and n an integer. The first possibility is
excluded by verifying that both sides of Eq. (49) would
have opposite signs. Through separate consideration it
can also be shown that v=0 is not permissible. We are
left with an infinite set of imaginary eigenvalues of v,
corresponding to a set c (c*,n=0, 1, 2, . . .. An expan-
sion in powers of v for small

~
v ~, and Stirling's formula,

for large
~
v~, lead to the conclusion that the interval

(O,c*) is filled by the set c„(X) ever more densely as
x~ ~~, that is, as X —+ V. This result does not depend
upon the choice of the cutoff velocity v&, so that it no
doubt holds also for the original equation (5).

From the picture thus obtained (Fig. 2) we conclude
that whenever

(50)

there is an infinite set of discrete decay constants P„
below )*, with the only accumulation point X*. In the
opposite case, when c*&1, there are no such decay
constants. Again, through the trivial existence of ) 0, the
latter possibility is excluded if the gas exhibits no or
only I/o absorption. Formally this is confirmed by

24 Baternan Manuscript Project, edited by A. Erdelyi (McGraw-
Hill Book Company, Inc. , Qew York, 1953-1955).

v=i(c* 1)'". — (52)

By substituting the definition (45) of xr into (49) we see
that the higher decay constants ) „should approach the
bound X* roughly like a geometrical progression, namely

(V—)„)/(V—X„~i)=e' t~"~. (53)"K. M. Case, Phys. Rev. 80, 797 (1950).

evaluating c* with b from Eq. (37):
c*=6 (sr)'" (1+rm/M)'. (51)

The value of this constant ranges from 42.5 to 10.6 for
1&%(~. In view of its magnitude the possibility of
causing the discrete eigenvalues to disappear, by intro-
ducing some non-1/v absorption, does not seem realistic.
It would be necessary to increase the value of b more
than 10 times to achieve c*(1.This would require an
absorption differing violently from the 1/v law in the
small-v range.

The existence of the infinite set of discrete decay
constants is no surprise, as it was known earlier'
that the proton gas model has this property. What
matters here is only the behavior in the near-zero
velocity range, and this is alike for any free gas. Some
correlation between the methods used here and in the
proton gas case can be established by observing that the
mentioned equation for C (x) represents an approxima-
tion to the Wigner-Wilkins equation, "and has actually
been obtained in the same way as the latter. The
Schrodinger analogy used by Corngold et a/. ' leads to the
infinite set of eigenvalues only under the condition that
the "singular potential" is suKciently strong. " This
condition turns out to coincide with (50).

A few more results about the X„can be extracted
directly from the condition (49). Now c=1, and the
value of v is given:
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c(1+x)y(x)= L(x'/x)y(x')dx'. (54)

The kernel

~~»(0) (1+&)'+~'(1—e)
L(f) = In

4~a (1—$) '+q'(1 —P) '

taken from (28), can be expanded as follows:

L(E)=Z -4i~-"" "
l=1

(56)

with all A~)0.
Thinking of an expansion around infinity we may try

to approximate the solution by p(x) ~ x" '1 1+0(x ')j,
or by a sum of two complex conjugate such terms if v is
complex. Since the integral in (54) acts somehow like a
transformation of scale, there is ground to believe that
such an approximation is valid for x))1,where the factor
(1+x) in (54) can be replaced by x. With this ansatz,
and with x in the range 1(&x&(x~, the equation shows
that the exponent, if —1(Re(v)(1, is related to c by

c=I (v), (57)

where L is the Mellin transform of the kernel,

I (s)= I (q) ~-'dP.

This transform can be expressed in a closed form, '4

qZ»(0) sin(mrs/2) —sin1 (-,'~—8)sjI (s)=
20 s cos(mrs/2)

(58)

8= arcsinL2q/(q'+1) j.
For —1(s(1 the values of L(s) range from the
minimum

L(o) =1~x»(0)/2a)e (59)

to infinity. We see that | is imaginary if c(L(0),
whereas —1(v(1 if c)I (0). Let us also note that for
small s

L (s) =I (0)L1+s'8 (-,'x——,'0)$. (60)

For a, nonabsorbing gas, with no or only 1/n absorption,
where Eq. (51) applies, this ratio varies from 7.0 to 57
for 1(M(~. For small M this crude prediction is
quite well veri6ed (to within 25% for the proton gas) by
the numerical results of Shapiro and Corngold. On the
other hand, for the heavier gases, and for the few
eigenvalues computed there, the prediction falls far
short, which is understandable: the cutoff is too severe
in this case.

In the case of a liquid we apply the substitution
x=an/(X* —X) and a cutoff xi ——uzi/(X* —X). For X

close to X* Eq. (5) then leads, in an approximate
way, to the following equation for the function P(x)
= (1+*) '"+.(~):

Information about the possible range of eigenvalues
of c can be gained by applying a hnite Mellin transform
to Eq. (54). It follows that the function

y(s) = y(x) x'—'Ch,

y(x) =-', (e"x"-'+e-"x-"-')=x-' cos(1v1lnx+8) (62)

for 1&(x(&x~. If this is to refer to the non-negative
solution we have to require that (roughly) 1v1(m/1nxi.
Hence in the limit xi —+~ (i.e., for ) —+ V) the largest
eigenvalue co(X) approaches the limit

P=L (o). (63)

If c has the value (39) this limit is greater than 1, and
approaches 1 for large g, when

c*=(q'+1)/(g' —1) . (64)

With (62) the right-hand side of Eq. (61) can be
estimated. Setting then s=%v we obtain, in a rough
way, a condition for the eigenvalues, reading for small
y as

cos(21v1lnxi+28) =const.

This looks quite suggestive, and one is tempted to guess
that the consecutive eigenvalues of c, as determined
through Eq. (57), correspond to increments of 21v11nxi
in steps of 2m. In the limit xj —+~ the eigenvalues of c
then fill densely the interval (O,c*), as in the gas case.

While it has not been possible to achieve a proof of
this conjecture, strong support is obtained from a
simplified mod. el. We replace the kernel L(x'/x) by the
first term of the expansion (56). This again leads to a
hypergeornetric differential equation, and the same
technique applies as in the gas case. The solutions indeed
behave as we have supposed in the above argument, and
the eigenvalues have a similar spacing as predicted by
Eq. (65), filling in the limit an interval (O,c ).

Although such an approximation of the kernel on the
whole is very poor, especially for large p, it 6ts asymp-
totically for both large and small x'/x, and also preserves
the property that the square integrability is lost for
x~= ~. Since the latter property is responsible for the

for —1(Re(s)(1, satisfies the equation

1
c—L(s)jy(s+1)+c4 (s)

~(2f)= —Q Ai . (61)
(2l—s—1)xP'-' —'

We recall that the largest eigenvalue co corresponds to
a non-negative solution Po(x), and hence to a go(s)
positive for s) —1. This helps to prove that co(L(0).
In fact, if the contrary were true, there should exist a
real s= v, causing the first term in (61) to vanish. The
remaining terms have contradictory signs.

As a consequence only imaginary z are admissible, so
that
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appearance of the continuum of limiting points, there
seems to be sufFicient ground for believing that the
previous conclusions are correct.

Setting c=1 we can again estimate how fast the
discrete decay constants approach the limit V. The
above conjecture implies that

where v is the root of L (v) = 1. If Eq. (64) is valid we
find from (60) that v= (4/vg)'~'. With g= 10 the ratio
(66) then equals 7&&10', so that for any practical pur-
pose the higher X are indistinguishable from the
continuum.

The last result again indicates, just as Eqs. (39) and

(64) did, an approach to solid-like behavior. This is
understandable, because for large q the kernel is strongly
peaked, almost resembling a 5 function. To say it
otherwise: for typical liquids the "quasielastic" scatter-
ing is almost elastic. Consequently this part of the
scattering can be only of little importance for the decay
constants, except for indistinguishable details like those
just mentioned.

Another consequence is that, before drawing the 6nal
picture, we must take into account also the "truly
inelastic" scattering, represented by the terms neglected
in (28). If this part of the kernel is non-negative and
of comparable magnitude as for a solid, it alone would
normally produce one or several discrete limiting points
c„(X*) above the value c*. The combining of the two
parts presumably does not alter the continuum below
c* (if the Weyl-von Neumann theorem is applicable),
whereas the uppermost discrete point co(X*) can be
shifted only upwards, as we may judge from a well-
known variational formula.

The picture of the eigenvalues c P ) for a liquid thus,
in principle, combines the features of Figs. 1 and 2. How-
ever, if g is large the pattern of the decay constants is
expected to be~~practically the same as for a solid
(Fig. 1).

IV. SINGULAR DECAY MODES AND GENERALI-
ZATIONS OF THE PROBLEM

Although the above criteria for the existence of dis-
crete decay constants appear understandable, the
possibility —even if not very realistic —of any empty
discrete spectrum is still puzzling. It does not seem clear
how a given initial neutron distribution would evolve in
such an exceptional case, and whether in any way an ex-
ponential decay mode would eventually be approached.

Such questions inevitably involve us with singular
solutions of Eq. (3), i.e., solutions X(v) not square
integrable with the weight required by symmetrization;
this is to say that Jo" L1V'(v)/3II(v)]dv diverges A.
class of such solutions has been discussed elsewhere, "
and we therefore shall not enter the mathematical
details, but rather proceed by a more physical reasoning,
and turn„our attention to non-negative solutions.

We have seen that the disappearance of the discrete
decay constants is caused by non-1/v absorption.
Qualitatively, the effect of such absorption is easily
understood. If vZ, (v) increases with increasing v, the
faster neutrons are depleted sooner than the slow ones,
so that an initially Maxw'ellian neutron gas undergoes
"absorption cooling, " as we may say. Similarly, in the
opposite case of decreasing vZ, (v), one could speak of
absorption heating.

Normally, through competition between thermaliza-
tion and absorption cooling or heating, a certain neutron
velocity distribution, which then stays constant in
shape, is asymptotically approached. This is the
dominant mode. However, an exception is conceivable
too. If the absorption cooling effect is extremely strong,
the thermalization might be too weak to compete, and
the neutron gas cools down so strongly that the neutron
distribution slowly approaches a singular one, corre-
spondingly to the decay rate A*. Vnder a restrictive
condition, which can be shown to hold for a solid
medium, this iV(v) contains a term 8(v), and thus
belongs to the known family of singular solutions. ' ' In
other cases, depending upon the properties of the
thermalization kernel in the near-zero velocity range, in-
stead of B(v) a weaker peak, ~ v", arises, with —1(v& —,'.

It should be possible to base the existence of a
singular non-negative solution upon a suitable extension
of the Perron-Jentzsch theorem. However, let it be
sufhcient here to quote one example where the dis-
appearance of the discrete spectrum can be demon-
strated, and the singular solution constructed, in a
straightforward way. We take the separable kernel,

Z, (v' ~ v) ~ vM(v)Z, (v)Z, (v'),

and an absorption rate vZ, (v) which increases suK-
ciently strongly with v in the thermal region. We sub-
stitute X(v) = 5(v)+1V&(v) and X=X~ into Eq. (3), and
determine Xi(v) from an inhomogeneous integral equa-
tion. The requirement that Ei(v) be non-negative leads
to an inequality involving vZ, (v), which we can verify to
coincide with the condition for the disappearance of the
regular non-negative solution.

The presence of the 8 term means that a 6nite per-
centage of the neutron gas has cooled down to absolute
zero. We may also say, for the time evolution of any
regular distribution, that the entropy, reduced to a
standard number-density, diverges towards —~.This is
contrary to the ordinary case, where the reduced
entropy approaches a finite limit, corresponding to the
dominant mode 1VO(v).

The above picture, which lends some understanding
for the possible disappearance of discrete decay con-
stants, can be adapted to several more general problems.
In some of these the discrete spectrum actually does
disappear under quite realistic conditions.

First, we may wish to introduce into Eq. (3) the more
general kernel Z. (v'-+ v), and ask for angle-dependent
solutions E(v). Much of what has been said previously
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is likely to remain true also in this context, although
there might be some trouble with the square-integra-
bility of the corresponding E),(v,v'). In view of what has
been found for related problems in the kinetic theory of
gases" "itmay happen that in some cases E),(v,v') even
for X(X* is not square integrable, but that some
iterated kernel does ful611 this requirement. Such a
situation would merely reflect a strong enrichment of the
set of the c„()).). Otherwise little would have to be
changed in our pictures.

A related problem is that of the diffusion length,
where we are assuming a steady neutron distribution of
the form

with 1V(v) obeying the equa, tion

vtz (u) —p/c]Ã (v) =fv'z. (v' v)s (v')dv'

As shown by Corngold4 a suKciently strong absorption
causes the discrete spectrum of I. to disappear, that is,
regular solutions of the quoted form then no longer
exist.

A broader problem, which can be looked upon as a
combination of the previous two, is that of solutions of
the form

1V (r,v, t) =N(v)e'n'e i'

The 6nite 8 reasonably well simulates the behavior of
neutron distributions in systems of 6nite geometry, as
long as the geometry is not too small. It has been shown4

that the discrete spectrum disappears if 8 is suKciently
large. Computational investigations of this problem
have been carried out by Shapiro and Corngold, ' by
Travelli and Calame, ' and by Ghatak and Honeck.

If scattering is isotropic the quoted problem can be
reduced to the same form as for 8=0,4 and then treated
along the lines of Sec. III. The only change to be made
consists in the replacement of E),(e,v') by

IC),e(t) t) )

arctan
i)'z (t)') —)),

'e E. Hecke, Math. Z. 12, 2// (1922)."R. Dorfman, Proc. Natl. Acad. Sci. U. S. SO, 804 (1963).
"A. Travelli and G. P. Calame, Nucl. Sci. Eng. 20, 414

(1964).
'9 A. K. Ghatak and H. C. Honeck, 5ucl. Sci. Eng. 21, 227

(1965).

For the gas we notice that E),*&(t),t)') is still square
integrable, as long as B&0.Hence the pattern of Fig. 1
applies instead of Fig. 2, and the set of discrete decay
constants X„ is no longer infinite.

The rigorous treatment of the time-dependent prob-
lem for finite geometry is signi6cantly more compli-
cated, and can be achieved by methods devised by
Lehner and Wing for a one-speed problem. For a
separable kernel and for spherical geometry Nelkin"
has shown that the discrete decay constants no longer
exist if the radiusis suKciently small. Recently, a gen-
eralization of this work has been reported". The
explanation is but little different from that given before.
Here the thermalization has to compete not so much
with absorption, but rather with the evaporation of
neutrons. This produces a well-known effect—that of
diffusion cooling. If the radius is too small the diffusion
cooling is so strong that again competition is broken
and the neutron gas is cooled "inde6nitely. "

Even for one-speed theory an example of this kind
can be quoted —that of a cylinder of infinite length. As
shown by Judge and Daitch" (for the case of isotropic
scattering) the discrete decay modes disappear if the
radius of the cylinder is smaller than 0.737 scattering
mean free paths. (The quoted figure has been recom-
puted to a greater accuracy on the basis of work by
Cady and Clark. ")The analog to the indefinite diffusion
cooling in this case consists in the evolution of the
neutron distribution towards one which is progressively
more strongly peaked in the axial direction.
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