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FIG. 6. Possible level structure at the two sites deduced from our
simple model and experimental results. 21=250'K; b.=850'K.

V. CONCLUSIONS

It is clear that one-half of the ferrous ions in ferrous
formate are located at sites where the effective electric-
field gradient is appreciably different from that at the

orbital levels at both sites. Using Eqs. (3) and (6) to
6t the shape of the curves in Fig. 3 gives the approx-
imate energy-level splittings (t4,As) at the two sites.
Figure 6 shows the level structure for our idealized
model in which we find 2 &=250'K and 62=850'K.

location of the other half. The smaller electric-6eld
gradient occurs at the site possessing approximately
octahedral symmetry (type-1 sites). Further evidence
for this assignment is found when the absorber is taken
to a lower temperature. '

Our experimental results (Fig. 3) show that the
quadrupole coupling constant increases more rapidly
with decreasing temperature at the type-1 sites indicat-
ing that the ion orbital levels are closer together at that
site. According to our calculations the magnitudes of the
electric-ield gradients at the two sites at low tempera-
tures are consistent with the assignment of the ground
orbital state at the type-1 sites as a doublet and at the
type-2 sites a singlet.
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The valence and conduction bands of silver chloride and silver bromide were calculated using the aug-
mented-plane-wave (APW) method. For both crystals the calculated bands were adjusted so that the ex-
perimental value of the direct band gap at I' was duplicated (Le=5.13 eV in AgC1, Ee=4.29 eV in AgBr).
Several possible correction terms to the APW potential were considered. The effects of the nonspherical
cubic Geld inside APW spheres and the varying cubic Geld outside the spheres were negligible. The mass-
velocity correction was large for states which arise from the Ag+(4d) electron. The calculated indirect band
gaps were 3.28 and 2.89 eV for AgC1 and AgBr, respectively. These values are within 10% of the experi-
mental values. The indirect gap may occur along the L110$direction or at the point I.

I. INTRODUCTION —APW CALCULATIONS

'HE augmented-plane-wave (henceforth abbrevi-
ated APW) method has been employed in calcu-

lating the electronic band structure of silver chloride

and silver bromide crystals. This method was originally

proposed by Slater' and later used by Wood' in his

calculation of the band structure of iron. More recently,

*Research supported by the U. S. Ofhce of Naval Research and
the National Science I oundation.

t Presently employed by the National Research Corporation,
a Subsidiary of Norton Company, Cambridge, Massachusetts.

' J. C. Slater, Phys. Rev. 51, 846 (1937).
2 J. H. Wood, Phys. Rev, 126, 517 (1962).

Switendick' has extended the method to deal with
problems involving two atoms per unit cell in his band
calculation of nickel oxide. The APW' calculation of the
band structure of silver chloride and silver bromide has
been performed using the programs written by Wood
and Switendick for the IBM 709 computer.

In the APW method the one-electron potential
energy is constructed as follows. Spheres are inscribed
about each ionic site in the crystal; within each sphere
the potential energy of an electron is assumed to be the

'A. C. Switendick, MIT Solid-State and Molecular Theory
Group, Quarterly Progress Report No. 49, July 1962 {un-
published).
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spherical average of the one-electron potential energy
for an electron in the appropriate ion. In the region
between spheres, the potential is assumed to be con-
stant and put equal to zero.

Corresponding to this choice of potential energy, the
one-electron wave function is expanded in augmented
plane waves. An APW is a plane wave outside the
spheres, joined continuously to a solution of the
spherical-potential problem corresponding to a definite
energy inside the spheres. The assumed solution to the
one-electron problem in the crystal is a linear com-
bination of APW's, the coefficients being determined
by a secular equation. The last step in the process is to
equate the assumed energy inside the spheres to the
eigenvalues of the secular equation.

Since the APW functions are constructed to cor-
respond to the assumed potential, the convergence (the
number of APW's needed to adequately represent a
particular state) will be fairly rapid. However, one must
face some serious questions about the validity of the
assumed potential.

The general form of this potential is sensible from
physical reasoning, but the problem of choosing the
various parameters entering into the calculations is a
difficult one. One must determine the sizes of the APW
sphere radii; in addition, the ionic potentials themselves
usually depend on several parameters, especially the
"ionicity" (the limit of r/2 times the ionic potential,
for large r).

If one attempts to choose these parameters by
physical reasoning, the results may be quite confusing.
For example, in a real ionic crystal the previous simple
definition of ionicity cannot even be applied since an
electron never experiences a single ionic potential far
from ionic sites. In addition, the concept of sphere radii

may be misleading if there is any covalent bonding in
the crystal.

In order to avoid these (and other) physical argu-

ments, the present author has chosen the parameters in
a rather arbitrary manner, and then varied one of them
in order to obtain some agreement with experimental
results.

II. DETAILS OF THE CALCULATIONS
FOR AgBr AND AgC1

AgBr and AgCl both have the NaCl structure, that
is, two displaced face-centered cubic lattices. One
lattice is composed of silver ions, the other contains the
halogen ions. A silver ion is located at the origin of
coordinates. The six neighboring halogen ions are
located at the points +-,'a(1,0,0), +-,'a(0, 1,0), +-,'a
(0,0,1). There are 12 nearest-neighbor silver ions
located at &isa(1,1,0), &sr(1, —1, 0), &pa(0, 1)1),
&—,'ft(0, 1, —1), +isa(1,0,1), &-,'a(1, 0, —1). All trans-
lations which leave the lattice invariant are given by
T(rti, ls, ls)=st&ai+rtsas+ftsas where rti, rts, rts are
integers and a~, a2, as are three primitive translations:

a&=-,'tt(0, 1,1); a&
———,'a(1,0,1); as ———',a(1,1,0). For AgC1

—,'a= 5.23 a. u. , for AgBr, pa=5.46 a. u. s (a. u. = atomic
units).

The ionicity parameters were chosen in accordance
with the ordinary ideas of chemical valence (i. e.,
ionicity of Ag+ =+1, ionicity of Cl = ionicity of
Br-= —1).

The free-ion one-electron potential energies used are
those determined by the Hartree-Fock-Slater equations
and calculated using programs described by Herman
and Skillman. '

These potential energy functions for an electron
within each sphere are modified in two ways. First the
Madelung energy

Usr ———2n/(a/2) = —4u/ft

(n=1.747558 is the Madelung constant for an NaCl
structure') is added to or subtracted from the original
potential energy. That is,

about silver sites V(r) = (VHerman sk;llm, „)Ag+—Vsr,.

about halogen sites V(r) = (UH,„,„sk;il,„)h,f,g,„+Vsf.

Finally a positive constant Vp is added to the poten-
tial energy in each sphere. This constant will be treated
as an adjustable parameter that is eventually deter-
mined by fitting the calculated value of the band gap
at k=0 to the experimental value.

The choice of the sphere radii and the initial deter-
mination of Vp were made in the following way. First
the Herman-Skillman free-ion potential energies for
Ag+ and Cl were superimposed and plotted in the
$100$ direction LFig. 1(a)7. Then these potential
energies were corrected by adding or subtracting the
Madelung energy. The point where the Madelung-
corrected potential energies cross de6nes the sphere
radii and the first determination of Vp LFig. 1(b)j.The
net result of the Madelung correction and addition of
Vp is that the Herman-Skillman potential energies have
been altered by different amounts called V,h;fg.

fo«g+ V.hif~= Vp —Vw,
for halogen V,h;ft= Vp+ Vsf.

Thus, the corrected potential energies become:

for Ag V(r) (VHerman Skillman)Ag++ (VAg+)shift i

for halogen

V(r) = (VHerman-Skillman) halogen+ (Vshift) halogen ~

This corrected potential energy is shown in Figs. 1(c)
and 1(d) for the $100j and $110j directions.

When the above scheme is used in determining the
sphere radii and Vp, the bands subsequently found do

s R. Wyckoff, Crystal Strlctlrss (Interscience Publishers, Inc. ,
New York, 1963), 2nd ed. , Vol. I, p. 86.

5F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

6 C. Kittel, IrItroductiorI, to SoLAJ-State Physics (John Qliley 8z

Sons, Inc. , New York, 1956), 2nd ed. , p. 77.
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pyG. 1. Determination of Up and sphere radii.

not agree with experimental facts. Specifically, the band
gap at it= 0 is too small for both AgC1 and AgBr. This
discrepancy may be resolved by varying the magnitude
of Vo until agreement with experiment is obtained. For
both AgCl and AgBr the experimental band gap at,
k= 0, E„was duplicated when the magnitude of Vp was
reduced. The final form of the potential energy is shown
in Figs. 1(e) and 1(f) for the L100j and $110jdirections,
respectively.

This corrected potential energy should be more
representative of the actual crystalline potential energy
than that shown in Figs. 1(c) and 1(d). Along the line

joining the APW sphere centers (x, y, or s directions)
the ionic potential energies employed will have some
value V at the sphere radii. However, in some other
direction the actual crystalline potential energy just
beyond either of the APK spheres wiH not be equal to
V as in Fig. 1(d), but will have some larger value as in
our corrected potential energy LFig. 1(f)). Hence, a
jump discontinuity in the potential energy at the sphere
radii is needed to allow the APK method to represent
the behavior of the potential energy in different direc-
tions. The magnitude of this discontinuity is the
difference of the initial value of Vp Lwhich makes V (r)
continuous) and the 6nal value of Vp needed to fit E,.
For AgCl this jump is 0.869357—0.579357=0.29 Ry; for.

AgBr it is 0.87501—0.69465= O. I8036 Ry.

Although the size of the band gap at lr =0 depends in
a critical way on the value of Vo, the relative spacing of
core and valence states is almost independent of this
quantity. This corresponds to the physical fact that the
charge density associated with the p and d states lies
almost entirely within the APYV spheres. Hence, varying
Vo shifts the valence bands rigidly relative to the con-
duction band. In fact, changing Vo by as much as a few
tenths of a rydberg only altered the relative spacings of
valence bands by less than 0.01 Ry and left their
qualitative features virtually unchanged.

The APW bands for AgC1 and AgBr are shown in
Figs. 2 and 3, respectively. Values for the sphere radii,
V Q' ft V~p the free-ion potential energies as functions
of r, and the points in the Brillouin zone actually calcu-
lated for the bands in Figs. 2 and 3 are given in Ref. 7.

At this point it should be mentioned that because our
basis functions are located on different sites in the unit
cell, the symmetry properties of certain eigenstates of
the Hamiltonian depend on which ion is located at the
origin of coordinates. Switendick' has shown that
within the Brillouin zone it makes no difference which
ion is at the origin; but on the surface of the Brillouin
zone, the representation matrices for the ion located
at R =-,'a(1,0,0) must be multiplied by the factor

BAND STRUCTURE OF SILVER CHLORIDE
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7 P. M. Scop, MIT Solid-State and Molecular Theory Group,
Quarterly Progress Report No. 54, October j.964 {unpublished).' A. C. Switendick, doctoral thesis, MIT {1963){unpublished).
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In order to determine the slopes of the bands at
symmetry points within and on the surface of the
Brillouin zone, the expectation value of the momentum
vector was determined using k p perturbation theory
and well known selection rules. ' Thus, because of
parity, the slopes in any direction of all bands are zero
at I",I and L. At V the bands have zero slope along U
to N/, but nonzero slope along U to X and U to L. At
5" the bands associated with the one-dimensional
representations all have zero slope, the slopes of bands
assocl'ated with representation 8'3 are zero along 8' to
L but nonzero along 8' to X, 8" to U, and 8 to E. At
E the slopes of all bands are zero along E to 8' and
nonzero along E to I and E to F.

GI. DISCUSSION OF APW BANDS
Ch
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I'ro. 3. Band structure of silver bromide.
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exp/i(EKg —K~) R„j (here R is an operation of the
group of the wave vector and K~ is a vector of the
reciprocal lattice). One 6nds that the synunetries at
L, W, and Q are affected. The results are shown in
Table I.

After solving the secular equations and obtaining
eigenvalues, the eigenfunctions may also be determined.
For points of major interest in the Srillouin zone, we
have obtained the spherically-averaged radial charge
densities within each APW sphere. The total amount of
charge in each sphere associated with a given l value,
q~, and the amount of plane-wave charge (between
spheres) have also been calculated and are tabulated in
Ref. 7.

TABLE I. Representations for face-centered cubic structure
displaying different symmetries about different centers.

The gross features of the APW bands shown in Figs.
2 and 3 are simply interpreted using the appropriate
charge densities and symmetry of the various states.
The lowest conduction band in either crystal arises
mostly from s-like ionic functions and is nearly spher-
ical in the neighborhood of its minimum at Fj.

Most of the features of the wide valence band can be
explained by the variation in strength of the interaction
between states arising from the Cl (3p) or Br (4p) and
Ag+(4d) functions. Since the group of the wave vector
at k=0, (point group Oy, ) contains the inversion, the
bands are parity eigenstates at I'. Sy examining th
charge within each APW sphere, the valence bands a,t
this point are seen to arise predominantly from either
p or d functions with no mixing of p and d states At.
I"» the eigenfunction is mostly Cl (3p) or Br (4p) with
some Ag (5p). The I'ts and I'ss' states are almost
entirely Ag+(4d).

As one departs from along any of the three symmetry
directions, the valence bands exhibit a strong p-d
mlxlng.

In the $100j or 6 direction, the p-d mixing is zero at
I', increases until k= (vr/a) (1,0,0), and then decreases
to zero at the point X where k= (2s/a)(1, 0,0) (the
point group at X is D4~ and includes the inversion
operation). Along the L100jt110j or Z direction, the
mixing is greatest at the point k =~/a(1, 1,0). Because of
the transformation properties listed in Table I, the
Ag+(4d) function located at the origin and the Cl (3p)
Lor Br (4p)7 function located at -', a(1,0,0) both have
even parity at the point L. Consequently, this point is
one of greatest p-d mixing along the $1111direction.

For both AgCl and AgBr, the point at which the
valence band maximum lies is dificult to determine. In
either crystal both the uppermost Z4 and L3 points have
very nearly the same energy. For AgC1 the Z4 eigen-
value is 0.001 Ry higher than that of L3,. in AgBr the
L3 state is 0.0177 Ry higher than that of Z 4. Thus the
AP% calculations do not clearly resolve the location of
the valence-band maximum in either crystal.

9 J. Zak, J. Math. Phys. 3, 1278 (1962).
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The APW valence bands for AgCl and AgBr are
quite similar to those recently calculated by Bassani,
Knox, and Fowler" (henceforth abbreviated BKF)
who used the tight-binding method. Although the
techniques of calculation are quite different in the two
methods, the only important differences in the results
are that their A~ and 65 states for the highest valence
bands in the L100$ direction rise higher than those
found by the APW method.

The most glaring discrepancy in the APW calculation
is in the comparison of the calculated value of the
indirect band gap with experiment. For both crystals
the calculated indirect band gap is approximately
0.5 eV larger than the observed value"" In the re-
mainder of this paper we will consider possible cor-
rections to the APW bands and show that the final
calculations are consistent with experiment.

IV. ESTIMATES OF CORRECTION TERMS TO
THE APW CALCULATION —INTRODUCTION

There are a number of possible causes for the dis-

crepancy of 0.5 eV in the APW value of the indirect
band gap. Some of these are: the lack of self-consistency
in the calculation, errors in the ionic potentials em-

ployed, the effects of a varying potential outside the
APW spheres, the effect of the nonspherical portion of
the cubic field inside APW spheres, spin-orbit coupling,
and other relativistic effects such as the Darwin and
mass-velocity corrections.

In the absence of a self-consistent calculation it is
very difficult to estimate how closely the present calcu-
lation approaches self-consistency. It is the opinion of
the author that since the Herman-Skillman ionic
potentials employed were self-consistent, and since the
crystalline potential has been adjusted to fit the bands
at I', that the APW calculation is not far from self-
consistency.

Even though the Herman-Skillman potentials are
self-consistent, the one-electron energies are higher than
those determined by Hartree-Pock calculations because
of the p'i' approximation. The Cl (3p) eigenvalue is
about 0.106 Ry higher, the Br (4p) eigenvalue is
0.092 Ry higher, and the Ag+(4d) eigenvalue is 0.122 Ry
higher. Since the bands were fit at I'&5, only the variation
of the difference between the Herman-Skillman and
Hartree-Fock eigenvalues for the halogen and silver
ions could affect the shapes of the energy bands (to
first order). Because of the p-d mixing away from F, the
uppermost Z4 and I.~ valence band states would be
shifted downward relative to I'» by at most 0.01 Ry.
This correction not only is small compared to the
discrepancy in the indirect gap, but has the wrong sign
(i.e., it would tend to increase the error).

' F. Bassani, R. $. Knox, and W. B. Fowler, Phys. Rev. 137,
A1217, (1965).' F. C. Brown, J. Phys. Chem. 66, 2368 (1962).' Y. Okamoto, Nachr. Akad. Kiss. Gottingen II Math. Physik.
K1. 1956, 27S (1956).

For KC1, DeCicco" has studied the effect of a varying
cubic field outside APW spheres and the nonspherical
cubic field inside APW spheres. He concluded that even
though these fields vary substantially in the regions of
interest, their net eRect on the energy bands is quite
small —usually of the order of a few thousandths of a
rydberg for valence bands and rarely more than a
hundredth of a rydberg for conduction bands. An
estimate by first-order perturbation theory indicates
that these effects are of the same order of magnitude in
AgC1 and AgBr. Since these corrections are roughly a
factor of five or ten times smaller than the discrepancy
we are trying to resolve, we may conclude that the
effects of the cubic fieM not taken into account by the
APW method are negligible.

The Herman-Skillman parameters which characterize
the spin-orbit and mass-velocity effects for Cl (3p),
Br (4p), and Ag+(4d) electrons are of the order of a
few tenths of an electron volt. As we shall show in
Secs. V and VI the spin-orbit splitting will not resolve
the discrepancy of 0.5 eV, but the mass-velocity cor-
rection by itself can account for this error.

V. SPIN-ORBIT INTERACTION

As we shall show in this section, the spin-orbit inter-
action cannot account for the discrepancy in the size of
the indirect band gap. However, since spin-orbit effects
are of intrinsic interest, the details of the calculation
will be discussed for three valence band states: I'~5, and
the Z4 and I.3 states at the valence band maximum
along the [110jand L111jdirections, respectively.

The APW wave functions at each of these three
points in the Brillouin Zone were multiplied by the
usual two-component spinors and the matrix elements
for the spin-orbit operator were calculated. Because of
the form of the APW potential energy, there are no
contributions to the matrix elements from the region
between spheres LV(r) = constant in this region). Thus
the spin-orbit matrix elements are a sum of terms arising
from the regions inside the halogen and silver spheres.
There are no overlap terms to be considered because of
the form of the APW wave functions.

The spin-orbit interaction splits the I'~5 state into
two levels: a fourfold-degenerate I'8—state with energy
+X, and a doubly-degenerate I'6 state with energy
—2A. . For the I'~5 state, the amount of charge within
the silver sphere is very small and to a good approxi-
mation one finds that

n' a(„1d Vg(r)
X =— — pq(r)dr Ry.

4 s dr

Here a is the fine-structure constant (equal to 1/137),
pi, (r) is the spherically-averaged radial charge density
within the halogen sphere, V~(r) is the halogen free-ion

» P. DeCicco, MIT Solid-State and Molecular Theory Group,
Quarterly Progress Report No. 54, October 1964 (unpublished).
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potential energy, and EI, is the radius of the halogen
sphere. If pi, (r) were exactly equal to the free-ion charge
density and R& were replaced by inanity, X would equal
one half the free-ion spin-orbit parameter. However,
since the halogen wave function is slightly compressed
in the crystal, X turns out to be about 10/o higher than
its free-ion value. For AgCl, ) =0.0033 Ry and the
I'a —I'a splitting (equal to 3X) is 0.0099 Ry or 0.13 eV;
for AgBr ) =0.0143 Ry and the splitting is 0.0429 Ry
or 0.58 eU.

When spin is included, all bands in the [110$ or Z
direction are doubly degenerate and have symmetry
Z5. At the valence band maximum in this direction the
spin-orbit perturbation is zero to 6rst order; the energy
is shifted in second order by an amount X'(dE) ' where
X is of the order of the appropriate spin-orbit parameters
and hE is the difference in energy of a neighboring
band. For AgC1 and AgBr this shift is roughly a few
thousandths of a rydberg and may be safely neglected.

The L3 state at the valence band maximum in the
[111j direction is split by the spin-orbit interaction into
two levels: a doubly-degenerate L6+ state and L4+ and
L5+ states which are degenerate with each other because
of time reversal symmetry. The energy levels are given
by &e (1.4+ and I.a+ have energy +e, I.,+ has energy—e) where

) 3„'—EX4g' for AgC1,

~4„'—E~4~' for AgBr.

Here E is a parameter which is a measure of the dis-
tortion of the Ag+ free-ion wave function by the cubic
6eld. For zero cubic Geld, E would equal unity; for
AgCl, K=0.67; for AgBr, E=0.83 (AgBr has a larger
lattice constant than AgCl and hence a smaller cubic
field strength). After approximating X„i by (qi) Q) f „i
and inserting the numerical values of the q's, f„&'s
and E's, one obtains e= —0.0032 Ry for AgCl and
e=+0.0029 Ry for AgBr. Thus, first-order perturbation
theory gives a small splitting at L3, and indicates that
in AgBr L4+ and L5+ lie above L6+; in AgCl the L6+
state is highest. Since the magnitude and sign of t.

depend on the difference of two almost identical num-

bers, either of which may be error by ten percent, these
results are far from being precise. However, we may
conclude that the spin-orbit splitting at L3 should be
less than 0.007 Ry or 0.1 eV.

VI. MASS-VELOCITY PERTURBATION

The mass-velocity perturbation may be approxi-
mated by a spherically-symmetric operator about each
site in the crystal. Since the electron's speed is
largest in the neighborhood of the nucleus, we ignore
the mass-velocity effect for the plane waves between
APK spheres, and restrict ourselves to calculating the
correction to a given energy level by considering only
the portion of the wave function within spheres.

Using 6rst-order perturbation theory, an AP% level

is shifted by
az(k) =Pi[qih(k) ~ii+qi, (k)vi,g,

where the q~'s are the amounts of charge within the
halogen and silver spheres associated with the APW
state, and the vE's are the ionic mass-velocity parameters.

Ke must now determine the mass-velocity param-
eters. For a first estimate we can use the free-ion
parameters since the radial wave functions within
APW spheres for the free ions and the crys'tal are
substantially the same, especially near the nucleus
where the mass-velocity effect is largest.

For the free ions, Herman and Skillman calculated
the mass-velocity shift by first-order perturbation
theory, averaging the mass-velocity operator V'= —o,'
(E-V)' over the free-ion wave function. However, a
more accurate calculation has been performed by
7Vaber' who solved the Dirac equation for the energies
of the two possible j values of a given electron. By
taking the appropriate weighted average of Waber's
two eigenvalues one obtains the energy for an electron
with all relativistic eBects included with the exception
of spin-orbit coupling.

In Table II, we compare the Herman-Skillman and.
Waber calculations for Cl (3p), Br (4p), and Ag+(4d)
ionic eigenvalues. Waber's eigenvalues are higher than
those of Herman-Skillman for every case shown. This
may be explained by the fact that the mass-velocity
operator in reality produces two effects for a valence
electron:

1. It lowers the eigenvalue because the mass-velocity
operator is always negative.

2. It raises the eigenvalue because the core electrons
are drawn closer to the nucleus, producing a stronger
inner shielding of the nucleus.

The Herman-Skillman calculation ignores the second
effect which, as %aber's calculation indicates, is
actually greater in magnitude than the first.

It is interesting to note that VVaber's eigenvalues are
very close to the Herman-Skillman nonrelativistic
energies. Therefore, in our perturbation calculation, we
may approximate the mass-velocity parameters by the
difference of the Waber and Herman-Skillman (non-
rela, tivistic) levels given in column four of Table II.
After using these mass-velocity parameters and the
appropriate q~'s, one obtains the following shifts in
energy for the uppermost valence bands at I'15, Z4, and
I.3 (in rydbergs):

I 16 Z4 L3
+0.0002 +0.0389 +0.0399 AgCl
+0.0009 +0.0343 +0.0269 AgBr.

Thus the mass-velocity perturbation raises the Z4
and L3 states relative to the F15 state by 0.37 to 0.55 eV,
a large correction that virtually eliminates any dis-
crepancy in the final value for the indirect band gap.

"J.Waber (private communication).
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TABLE II. Comparison of Herman-Skillman' and Waber free-ion eigenvalues.

Cl (3p)
ar (4P)
Ag+(4d)

II-S
(nonrelativistie)

—0.19094587—0.18183391—1.5682048

IX-S (including
mass-velocity)

—0.19794587—0.21283391—1.6152048

Waber
(relativistic)

—0.1906440—0.1807204—1.5082592

Waber minus II-S
(nonrelativistic)

+0.00030187
+0.00104187
+0.0599456

& The Herman-Skillman mass-velocity energy was found by interpolation from their tables which list only the energies for atoms with even Z.

TAaz, z III. Comparison of calculated and
experimental' values for band gaps.

Indirect J& ~

Direct gap gap, 8;g (Calculated-
(at k =0)L", (experiraen. tal) APW)

AgC1 5.13 eV 3.25 eV 3.84 eV
Ag8r 4.29 eV 2.68 eV 3.24 eV

(Calculated
APW and

mass-
velocity)

3.28 eV
2.89 eV

& The experimental values quoted for the band gaps are the values of the
absorption edges and have not been corrected for the exciton binding energy
which is of the order of a few tenths of an electron volt (based on a hydro-
genic model). If the exciton binding energy were constant for all k values,
one could (because of the fitting procedure employed) correct all the ex-
perimental and calculated values listed by simply adding this constant.

owever, since the valence and conduction bands have considerable width,
the exciton bands will exhibit k dependence. In the absence of a detailed
knowledge of the exciton hands, these corrections were not included in the
present calculation.

VII. FINAL RESULTS AND COMPARISON
WITH EXPERIMENT

Ke shall present only a few remarks on the over-all
band structures of AgCl and AgBr since BKF have
given a detailed analysis of the experimental da, ta and
its relationship to the energy bands.

The value of the indirect band gap found by the
APK method is about 0.5 eV too small for both AgCl
and AgBr. After a preliminary survey of several possible
correction terms omitted in the AP4V calculation, it
was shown that the mass-velocity correction by itself
could account for the discrepancy. In Table III we

compare the calculated values for the direct and indirect
band gaps. By examining Table III one can see that the
mass-velocity correction is needed in order that the
calculated value for the indirect band gap be in reason-
able agreement with experiment.

The energies for the Z4 and 13 points at the valence-
band maximum in the [110) and [111j directions,
respectively are practically identical in both crystals
after the mass-velocity correction has been included.
For AgCl the energies are equal to within 0.0l eV, for
AgBr the I.~ state is about 0.1 eV higher. Thus the
location of the valence-band maximum cannot be
clearly determined in either crystal; BKF indicate that
both possibilities are consistent with experiment.

At F» the spherically-averaged radial charge density
inside the halogen sphere was compared with that of the
free ion (found from Herman-Skillman's program). For
both AgCl and AgBr, the crystalline charge density
was slightly larger near the nucleus than in the free ion,
accounting for the larger spin-orbit splittings. For

AgBr the calculated splitting is about 0.58 eV and is in
agreement with experiment; for AgCl the calculated
splitting is 0.13 eV and more than twice the observed
value. A plausible explanation for the smaller splitting
in AgCl may be given in terms of many-body effects."

At I.3 the spin-orbit contributions from the halogen
and silver ions have opposite sign. The theoretical upper
limit to the splitting is 0.1 eV and is in agreement with
the observed exciton splitting in both crystals.

The details of the conduction bands hypothesized by
BKF do not agree with those calculated by the APYV

method, the chief difference occurring for the symmetry
labels at L,. In the absence of a calculation BKF tenta-
tively assigned the lowest conduction band to have

symmetry (I., in our convention) and the second
lowest conduction band to have 1.& symmetry (jrs. in
our convention). Strictly speaking, because of parity,
electric dipole transitions can occur only between primed
and unprimed states at J. However, since one may
consider I.r —+ I.s transitions (which actually take place
near I ) in the sense described by Phillips, " the parity
of the states at J. is not of the utmost importance.

VIII. CONCLUSIONS

The band structure for both AgCl and AgBr appear
to be in quite reasonable agreement with experimental
facts. The success of this calculation not only illustrates
the validity of the energy band method but shows that
many of the details of the crystalline potential not
explicitly taken into account by the APW method are
negligible. Furthermore, the importance of relativistic
corrections and their effect on some of the important
features of the over-all band structure has been
demonstrated.
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