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Exchange Effects in Ferromagnetic Resonance with Nonlocal Condluctivity*
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A solution is obtained for the surface impedance of a ferromagnetic metal with a wave-number-dependent
conductivity function, by an extension of the method of Reuter and Sondheimer. Computed curves are given
for some specific cases. It is concluded that exchange eRects are large under suitable low-temperature
conditions, but there are too many unknown parameters to allow a very accurate value of the exchange
constant to be deduced from resonance experiments. For extreme anomalous conductivity, exchange effects
depend on the combination (exchange constant) && (conductivity)'t'.

I. INTRODUCTION
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conditions of very small skin depth, the "ex-
change stiffness" or tendency of neighboring spins to
remain parallel, described by the phenomenological
exchange constant A, becomes important. It was shown
experimentally by Rado and Weertman'' that under

properly chosen conditions the effect is fairly large,
and Ament and Rado' have given a theory, valid for
the case of normal conductivity, relating the experi-
mentally measurable surface impedance to the exchange
stiffness and other parameters. This method is poten-

tially a useful tool for investigation of ferromagnetic
metals; but work has been hampered by the fact that
at low temperatures, where the exchange effects becom. e
large due to a decreased skin depth, the conductivity
becomes nonlocal and the existing theory is unable to
interpret the data. In this paper, we give a theory valid
for the case of nonlocal conductivity and for a general
range of fields and frequencies.

The effects of exchange can easily be understood
qualitatively. In the case where the applied held is
parallel to the sample surface, the following wave-
number-dependent dynamic permeability can be ob-
tained by the methods of Ref. 4:

p' (H.tt+4zrM, +2A q'/M, —iso/y'M, )'—co'

p(q) =-,
y (Heff+4zrM. +2Aq'/M. —zXto/y'M, ) (Hpff+2Aq'/M, —zXM/"r'M, )—co'

where y= —g~e~/2zzzc a.nd X is a phenomenological
damping constant. If the exchange constant 3 is
negligibly small, the ordinary theory of the anomalous
skin effect, ' with diffuse scattering of the electrons at
the surface, gives for the surface impedance

anomalous conductivity is Cp/q. In these cases there
will be resonance when the applied field satisfies
H, tt (H, tz+4zrM, ) = (to/y)'.

When the exchange constant becomes appreciable,
it will have the effect of shifting the resonance to a
field lower by the amount A(q'), where the bracket
means "appropriate average, " and it will also broaden
the resonance precisely because more than one value of
q' contributes to the average. It is expected that (q')
will be the inverse-square skin depth in order of magni-
tude, and that the broadening will be comparable with
the shift. As the work of Ament and Rado showed,
under some conditions the resonance linewidth is domi-
nated by exchange broadening.

In the normal and extreme anomalous cases re-
spectively, with exchange neglected, the skin depths
are given by

4zr'ztop " 4 ri zp to(qtr) )
ln 1— ~dq

C — 0 c'q'
(2)

which, in the cases of normal (N) and extreme anoma-
lous (EA) conductivity, respectively, reduces to

ZN ——(1 i) (2zrtop—/c'o p)" (3a)

gg~= (~3—3i) (zr to&p,'/4c Cr)"' (3b)

where the normal conductivity is cro and the extreme

*Supported in part by the U. S. Air Force Ofhce of Scientific
Research Grant No. AF 735—65 and by the Advanced Research
Projects Agency.

f United States Steel Foundation Fellow.
' G. T. Rado and J. R. Weertman, Phys. Rev. 94, 1386 (1954).' G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids 1

315 (1959).
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5N = (cs/2zrcoo pP)'ts

hag =2 (c /4~toCFP) its.

The dynamic permeability at resonance can be as large
as 1000, so the skin depth is significantly less, and (q')
greater, than they would be under the same conditions
in nonferromagnetic materials. For this reason anoma-
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ious conductivity effects become important when the
dc resistivity is still relatively high, i.e., at temperatures
not far below room temperature in typical cases. On
the other hand, when the temperature is reduced, the
conductivity "bottoms out" sooner and in the extreme
anomalous limit the mean conductivity Cz/(q) is smaller
than it would be in the absence of magnetism; at reso-
nance it is of the order of ten times the room-tempera-
ture dc conductivity in a typical case. The effect of
anomalous conductivity, as compared to the case when
the conductivity function is taken equal to the dc
conductivity, is to reduce exchange effects.

In order to evaluate these effects of exchange, one
must know the wave-number spectra of the fields, i.e.,
their Fourier transforms. One cannot use the results of
the usual anomalous skin-effect theory because the
wave-number spectrum is itself strongly modified by
exchange effects in the critical region near resonance.
Estimates can be obtained in various ways, ' but an
accurate solution when exchange effects are large re-
quires that the problem be solved self-consistently, i.e.,
that one solve the problem of the anomalous skin effect
where the permeability, as well as the conductivity,
depends upon wave number and frequency. In Sec. II,
we obtain in implicit form a solution of the problem by
an extension of the method of Reuter and Sondheimer.
In the subsequent sections, we discuss in more detail the
physics involved and examine numerically the prop-
erties of our solution in various cases of interest.

)The effect we are considering must be distinguished
from the exchange narrowing which has been derived
by Van Vleck for paramagnetic resonance~ and which
is expected to occur for ferromagnetic resonance also. '
In that case one finds that the size of the damping term
in the magnetic equation (4), when calculated quantum
mechanically, is reduced by exchange effects. In the
present calculation, on the other hand, we take the
damping term as given and investigate exchange effects
coming directly from the second term of (4).$

v x e(y) = (ia/c)(h+4s-m). (6)

The diffuse-reQection condition is represented by the
lower limit of the integral in (5), according to which
the current is generated by the fields seen by the elec-
trons along their trajectories. We have assumed that
all trajectories are straight lines, and that all memory
of its previous history is lost by an electron when it
strikes the surface. Further, we suppose that the con-
ductivity is a scalar. These assumptions will be sup-
ported in Sec. III.

Equations (4)—(6) form a coupled set of integral-
differential equations of the Wiener-Hopf type. They
may be solved by converting the equations to a gen-
eralized Hilbert problem, a method which is very similar
to that of Reuter and Sondheimer. Although the solu-
tion is the main contribution of the present work, we
relegate it to the Appendix because of its formal
character. We shall, however, at this stage, write down
the result and discuss it.

The functions characterizing the metal are

where
M =M,a+ m. (y)9+m„(y)j, (4a,)

H=H, gS+h, (y)9+h„(y)g, (4b)

and 3 is the exchange stiffness constant, y= —
g ~

e
~
/2mc

is the magnetomechanical ratio, X the phenomenological
magnetic relaxation constant, and M, is the saturation
magnetization.

We consider microwaves impinging from the nega-
tive direction, with the electric field in the z direction,
and the h fmld in the x direction. The fields will vary
significantly in the y direction only.

To proceed, we assume "diffuse reQection" at the
surface y=0 and write the Maxwell curl equations for
y&0, which are

4~
&»(y) = — ~(y —

y ) e(y)dy,
C p

II. THE FORMAL SOLUTION

We consider the metal to fill the region y&0, with
a dc magnetic field H, gg applied in the z direction.
Anisotropy fields and static demagnetizing fields are
included in B,~g. We use the time dependence e '"' and
represent the perturbing time-dependent parts of the
fields by small letters. The Landau-Lifshitz equation
for the precession of the magnetization is' "
dM/dl= q(M x H)+ (2Aq/M, s) (M x V'M)

—P,/yM ') (M x dM/dk), (4)

' G. T. Rado, J. Appl. Phys. 29, 330 (1958).
' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948}.' J. H. Van Vleck, Phys. Rev. 78, 266 (1950).
L. D. Landau and E. Lifshitz, Physik. Z. Sovejetunioo 8,

153 {1935).
"T.L. Gilbert, Phys. Rev. j.j}0, 1243 (1955),

(q) = (y)e ""dy

and p(q), given by Eq. (1). The conductivity 0 (q) be-
comes the ordinary static conductivity 0-0 for small q
and takes the form C&/q in the extreme anomalous case,

~
q~))1/wi r,i„. The dynamic permeability p(q) relates

the dynamic magnetic field h, (q) to the dynamic in-
duction b.(q),

5.(q) = h, (q)+4m m, (q) =p(q) h, (q) (8)

in the idealized case in which there is a single Fourier
component present. We have eliminated the y com-
ponents of the fields by one of Maxwell's equations,
which in this case is

b„(y)=h„(y)+4s-m„(y) =-- 0.
The problem presented. is to find the correct wavc-
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number spectrum of the fields. In the case of normal
conductivity, the integral part of the equation becomes
trivial, and discrete (complex) values of q are the only
ones allowed. The correct weighting of the several
values becomes a purely algebraic problem. In the
present case we proceed by Fourier transform, with the

surface terms being interpreted as 6ctitious sources of
current and magnetization. By dehning the fields to be
zero in the unphysical y&0 region, we can replace the
lower limit in (5) by —oo and introduce Fourier trans-
forms. After the usual partial integration, which gives
surface terms, we have, from (4) and (9),

(H,ff+47rM, +2A q'/M, i ho/&—2M,)4m prN, (0)+i(a4xrN„(0)2Apiq
&.(q) =p(q)h (q)—

Mg p ( He«+ 4rM, +2Aq'/M, i X~/—r'M. ) (H.fi+2Aq'/M. 8~/—r'M, )—&o'
(10)

where we have already dropped surface terms proportional to dm, (0)/dy and dm„(0)/dy, which vanish by the
"magnetic" boundary condition (see Sec. III).

Let us de6ne the roots g;, i=1, 2, 3, 4, such that

I (q) = (q' —q~') (q' —q')/(q' —qi') (q' —q '),
where Imq;~&0.

Further, let
g (q) = 1—47ri(oc

—'q—'o (q)p(q) . (12)

Then we show in the Appendix that the five equations (13) and (14) determine the values of the 6elds at the
surface:

(
8'q+C'

1+ ~X(q) —1 e, (0)=
(q

—
q )(q—

q )& 2Ayc (q' —q ') (q' —q2')

(q= ~q3, ~q4); (»)
alld

M, a&q y (H,«+47rM, +2A q'/M, i X~/p'M—,)47rm, (0)+m47rm„(0)

where

and

e, (0) (8'+iI/s )= (io/c) Ph, (0)+4m', (0)j,
1 " lng (q')

X(q) = exp dq'
2m'z

(14)

(15)

lng (q') dq' = limvriq[1 —X(q)j.
q~oo

(16)

Taking e, (0) as given, the five equations (13) and (14)
are to be solved for the five unknowns 8', C', m, (0),
m„(0), and h, (0), of which the first two are integration
constants and the last three are values of the time-
dependent fields at the surface of the metal. Of particu-
lar interest is h, (0), since the ratio (4m/c)e, (0)/h, (0) is
the surface impedance Z.

Ke have not found it possible to signi6cantly simplify
this set of equations. The range of exchange effects is
R= (A/2n. M ')"'=10 ' cm and in typical cases (R/5o)'
=0.0i, where 80 is the skin depth with the permeability
set equal to unity. Thus the exchange stiffness in natu-
ral units is small; but it is so central to the problem
that we have been unable to obtain a consistent and
manageable perturbative expansion in A for any case
of interest. Only when A=O or o.(q)=oo does there
appear to be a simple expression for the surface im-

pedance. These two cases are more easily handled
without the full apparatus of our method.

The complexity of our solution is unfortunate from
the point of view of general insight, but direct solution
of the above equations for specific cases is a fairly

straightforward computer problem. A PQRTRAN pio-
gram has been written which requires about 10 sec
of computing time per surface impedance value. Corn-

putations for various cases of interest have been carried
out on the IBM-7094 at the University of Maryland
Computer Science Center.

III. PHYSICAL ASSUMPTIONS

The solution just obtained is Inathematically exact,
but of course is no better than the model used. Our
primary assumption is the separability of the magnetic
properties from the conduction properties of the elec-
trons, i.e., the use of independent permeability and
conductivity functions, in sprite of the fact that the
conduction-band electrons have some magnetization
and the d-band electrons have some mobility. In so
doing we have followed the phenomenological phi-
losophy of the Landau-Lifshitz equation which has
proved successful in other cases.

The second important set of assumptions concerns
the simplification of the conductivity function. In gen-
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eral, we cannot expect the conductivity to be a diagonal
tensor. However, if the electric field is in a principle
direction a single component suSces, Note that com-
plications in the effects of magnetic anisotropy arise if
this direction does not coincide with a principle direc-
tion of magnetization. We thus confine ourselves to
this case.

Next, we have neglected the effects of the magnetic
field on the orbital motions of the electrons. We shall,
by sticking to a range of parameters such that co,r &~~~,
where co, is the cyclotron frequency, and v the transport
mean free time, reduce these effects a great deal. In
this case, the only effect of the magnetic field is to
curve the orbits slightly as they pass within the skin
depth. The result of this curvature is to give a small
negative dynamical magnetoresistance for nonmagnetic
materials (at inoderate field strengths). There is no
sharp resonant structure. The curvature effect is further
minimized by the fact that the most important elec-
trons have velocities nearly parallel to the magnetic
field. Although the question is not settled, we believe
that the neglect of orbital curvature within the skin
depth is not a seriously misleading approximation,
especially at a resonance where the skin depth is small.
In the same way we expect the dynamic Hall effect to
make but a small contribution. In fact, for the geometry
we have assumed the Hall currents make no contribu-
tion whatsoever.

For the conductivity we thus use the form familiar
from anomalous skin-effect calculations:

C &' ( x&8&&, ' x"—
q

2x&'&-

o (q) =Q ~
1—

~

ln
i~q ~ q l x&'&+q q

where
X = M 'L Te)gg 'VP

r.&.."= 3s.o o(s)/4r&&;C&; &'.

(17)

Since the formula is insensitive to the Fermi velocity
e& = 10s cm/sec, this conductivity function is essentially
determined by the C~&'~ and o-0&' values. In the absence
of an applied field it can be derived from the Boltzmann
equation in the case of a spherical Fermi surface. Our
Fermi surfaces are not spherical, but in any case (17)
is a reasonable interpolation between the static and
extreme anomalous limits.

Effective Inass ratios determined -from specific-
heat -data suggest that o.o&"' will be smaller than
o-Ocon~uction band by a factor of 10 to 30. This means

"A. B. Pippard, Rept. Progr. Phys. 23, 176 (1960).

The index s gives a summation over sheets of the Fermi
surface; o-0&'~ is the dc conductivity due to a given
sheet and C&; &*&/q is the extreme anomalous con-
ductivity, where"

C~~ &= (e'/4 '0&fp„dq„.

that the d-band conductivity will not come into play
until fairly low temperatures. Eventually, however,
(17) will go over to the simpler extreme anomalous forin

C&/q, where C&;=+,C&&'&. This typically requires a
resistivity ratio of 1000. Cp is determined according to
(18) by the Fermi-surface geometry and is expected to
vary appreciably with crystal orientation; it is not well

known for any ferromagnetic Inetal, and is one of
the quantities about which one would like to gain
information.

Crude but useful estimates of C& can be made by
using the formula for its average over angles,

(Cs )= e'5/16s-')i', (19)

where S is the total Fermi-surface area. Taking Phillips"2
values for the number of electrons in the various bands
of nickel and using (19) with an asymmetry correction
suggested by the neighboring element copper, we esti-
mate, for nickel cut with a (100) surface, C&.=0.7X 10~
cm 'sec '. This value will be used in the numerical
calculations to be discussed in Sec. IV. It does not differ
greatly from that found by Pippard" for copper, where
all the electrons are in the s-p conduction band.

The Landau-Lifshitz relaxation damping term (as
modified by Gilbert)' '" is introduced into Eq. (4) in a
purely phenomenological way, and in the absence of a
satisfactory microscopic model there are no theoretical
grounds for supposing the coefficient X to be inde-
pendent of temperature or frequency. Nevertheless,
measurements by Rodbell'4 of linewidths in nickel
whiskers indicate that X remains constant for tempera-
tures from —100'C to near the Curie temperature, and
over a change in frequency from 9.2 to 35 kMc/sec,
having a value of about 2.5&(10 sec ' in his best sam-
ples. In this laboratory linewidths have been measured
in bulk single crystals of nickel corresponding to about
this same value. "The linewidths measured earlier by
Bloembergen" in polycrystalline samples of nickel and
Supermalloy correspond to P values which remain
roughly constant from room temperature to near the
Curie temperature, the values being about 3&&10'
sec ' and 1.5&&10 sec ' for nickel and Supermalloy,
respectively.

The free-spin magnetic boundary condition which
we have used,

m'(0) =dm/dy ( „=p——0

is re-derived in Ref. 2 as a special case of a more general
boundary condition including a surface anisotropy con-
stant E,„,& to describe the tendency of the spins to be
"pinned" at the surface. If the direction of the surface
anisotropy is such as to tend to pin the spins parallel
to s, the magnetic boundary condition becomes

2A m'(0) —E,„,rm(0) =0. (20)
' J. C. Phillips, Phys, Rev. 133, A1020 (1964).
"A. B. Pippard, Phil. Trans. Roy. Soc. A250, 325 (1957).' D. S. Rodbell, Phys. Rev. Letters 13, 471 (1964).
~5 S. M. Bhagat and L. L. Hirst (to be published).
"N. Bloembergen, Phys. Rev. 78, 572 (1950).
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FIG. 1. Real part of surface im-
pedance versus II,ff, model calcu-
lation for nickel, 31.5 kMc/sec.
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FIG. 2. Real part of surface im-
pedance versus II,ff, model calcu-
lation for nickel, 10 kMc/sec.
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If this more general boundary condition is used in our
derivation, the result is that the terms in nz, (0) and
nz„(0) in Eq. (13) are multiplied by (1+K,„,&/2Aiq)
while Eq. (14) is unchanged. Such surface anisotropy
causes an increase in exchange effects. The free-spin
boundary condition is generally thought to be a good
approximation under typical ferromagnetic resonance
conditions; but see also Ref. 17.

Pote added ie proof. More recent experimental data
calls for surface anisotropy values which are not neg-
ligible, although nearer to the "free" than to the
"pinned" limit [Z. Frait and H. MacFaden (to be
published); J. R. Anderson, S. M. Bhagat, and L. L.
Hirst (to be published)]. When exchange dominates,
the linewidth in the "pinned" limit is about three times
that of the "free" case. Details will be reported in a
future publication.

Our method of solution can also be applied to the
geometry with the applied field perpendicular to the
surface. This geometry has been dealt with elsewhere

by another method. "
"Z. Frait and B.Heinrich, J. Appl. Phys. 85, 904 (1964).
"V.L. Gurevich, Zh. Eksperim. i Teor. Fix. 33, 1497 (1957)

LEnglish transl. : Soviet Phys. —JETP 6, 1155 (1958)g.

TABLE I. Results from model calculation for nickel.

I requency
(kMc) Conductivity (erg/crn)

Line@i'jdth H ffres

(Oe) (Oe)

5
5
5
5

10
10
10
10
31.5
31.5
31.5
31.5

normal
extreme anomalous
extreme anomalous
extreme anomalous

normal
extreme anomalous
extreme anomalous
extreme anomalous

normal
Cxi,reQle anOIQRIOllS
extreme anomalous
extreme anomalous

~ ~ ~

0
1.X10 '
2X10 '

~ 4 ~

0
1X10 6

2 X10-6
~ ~ ~

0
1X10-~
2X10-6

64
52.5

150
215
145
110
228
300
400
360
500
575

~ ~ ~

390
285
225

~ ~ ~

1370
1235
1170

0

7550
7390
7280

IV. NUMERICAL RESULTS

In Figs. 1, 2, and 3 we show computed curves of the
real part of the surface impedance versus applied field
for nickel at 5, 10, and 31.5 kMc/sec. We have used
extreme anomalous conductivity with C&——0.7)&10'4
cm 'sec ' as discussed above. The damping constant
is taken as X= 2.5)&108 sec '. We show curves for A =0,
1, and 2X10 ' erg/cm. The linewidths of these curves
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FIG. 3. Real part of surface im-
pedance versus H, ff, model calcu-
lation for nickel, 5 kMc/sec.
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are tabulated in Table I, with the room-temperature
(normal-conductivity) widths corresponding to the
same assumed value of X shown for comparison. The
linewidth given is the peak-to-peak width of the deriva-
tive of the real part of the surface impedance with
respect to II,ff.

As expected, these curves show a broadening of the
resonance and a shift of the peak toward lower fields.
These effects increase with frequency in absolute terms
but are relatively larger at low frequencies, and it
follows, as first realized by Rado and Weertman, ' that
one should work at as low a frequency as possible to
detect exchange effects.

To detect a shift in resonance upon lowering the
temperature is experimentally simple, but interpreta-
tion is upset by the fact that the effective field we have
used includes the anisotropy field, which, in pure metals,
takes on values of several kilogauss in going to low
temperatures. The anisotropy field would have to be
known very accurately to enable one to isolate the
exchange shift, which means that except in special
alloys of low magnetic anisotropy one must proceed by
observing linewidths. Careful work is required, since
such difhculties as poor sample surfaces or loose mount-
ing will introduce spurious broadening.

For the case of extreme anomalous conductivity
the natural dimensionless measure of exchange is
A (4vrteCp/c')"', so that observation of exchange broad-
ening or exchange shift in the resonance essentially
measures AC@".When exchange broadening dominates
the magnetic damping, the linewidth and shift should
be approximately proportional to (AC&+')'~'.

In addition to broadening the line, the exchange-
conductivity mechanism gives a qualitative change in
lineshape, causing the peak to be more rounded. This
is brought out in the derivative curves for the 10 kMc
case, Fig. 4. There is also a skewing of the resonance

shape, since the center of the line is shifted more
strongly than the fringes.

A 0 10 kMclsec

N

K«0

600 800 l000 I 200 l400 l600 I BOO

eff

Fn. 4. Derivative of real part of surface impedance versus H, ff,
model calculation for nickel, 10 kMc/sec.

V. THE EXPERIMENTS OF RADO
AND WEERTMAN

The most careful attempt to experimentally observe
exchange eGects in ferromagnetic resonance has been
made by Rado and Weertman, ' who measured both the
real and the imaginary part of the surface impedance
in Permalloy at 3 and 4 kMc. They discuss their results
in terms of the equivalent permeability,

p = (&&'&o/&~&)~'= (4s'&no/a&)L& (0)/& (0)j'
which is that wave-number-independent permeability
which would produce a given surface impedance Z if
the conductivity were normal and exchange effects
were absent. The normal-conductivity theory of Ament
and Rado' shows that if the resonance shape is deter-
mined entirely by magnetic damping then p,~„, plotted
in the complex plane, traces out a circle tangent to the
real axis at the origin as the field is varied, whereas a
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FIG. 5. Plot in complex plane of equivalent permeability
of Permalloy; room temperature.

characteristic asymmetric "egg-shaped" curve results
if the line shape is completely dominated by exchange.
Rado and Weertman obtained a good fit to their experi-
mental data at room temperature with the "egg-shaped"
curve, but their results were somewhat puzzling in that
the values they obtained for A were 2.88 and 3.80)& 10 '
erg/cm at 3 and 4 kMc, respectively, showing an ap-
parent dependence of A on frequency and disagreeing
with values of approximately 1.0)&10 ' obtained by
other methods. Discrepancies with further Ineasure-
rnents taken at liquid-nitrogen temperatures were
attributed to effects of nonlocal conductivity.

The dc resistivity of the Permalloy sample was 18.25
and 6.47 0-cm at room temperature and liquid-nitrogen
temperature, respectively. We note that this is a re-
sistivity ratio of only about 3 and that the nitrogen
resistivity is about that of a pure metal at room
temperature. For this reason the electron relaxation
time is short and the d-band contribution to the con-
ductivity remains negligible. From the known satura-
tion magnetization and g value of the Permalloy we
find it has 1.29 aligned electrons per atom, and from its
66:34 composition it follows that there are 0.61 con-
duction electrons per atom, assuming the conduction
electrons to be unaligned. This gives (C~)=0.23&&1024

cm 'sec ', and we take C~ ——(C~), assuming the sample
to be a random polycrystal. Effects of nonlocal con-
ductivity turn out to be small despite the p'I" factor in
skin depth; they cause the curve at nitrogen tempera-
ture to expand by about 10'P~ as compared with the
normal-conductivity curve. This agrees with an ap-
proximate calculation by Rado, and indeed the two
calculations should be equivalent when, as in the present
case, Rado's approximations are valid.

The situation for the 4 kMc/sec data is shown in
Figs. 5 and 6. In Fig. 5, curve a, a good fit is obtained
by assuming magnetic exchange constant A =4.00
)&10 ' erg/cm (increased by 5% over the value found

by Rado and Weertman due to the slight effects of

800-

600-

t 400-

200-

0-

I I

-600 -400
I

-200
I I I

'
I

0 200 400 600
8&V equ&

~
FIG. 6. Plot in complex plane of equivalent permeability

of Permalloy; liquid-nitrogen temperature.

"G. T. Rado (private communication).

nonlocal conductivity). But when one calculates the
nitrogen-temperature curve, using the same value of A,
the calculated p„„ is smaller than the experimental
values (Fig. 6, curve a). (The experimental curve
cannot be fit even if one ignores the above estimate of
the conductivity and regards C& as an adjustable
parameter. )

Over-all agreement at the two temperatures can be
improved somewhat by introducing magnetic damping
and decreasing the exchange constant correspondingly,
the damping constant and exchange constant being
required to be independent of temperature and fre-
quency. The best results are obtained for values in the
neighborhood of A=1&&10 ' X=1.25)&10' but the fit
still cannot be called good, as can be seen from curves b,
Figs. 5 and 6. These values, however, are in good agree-
ment with the evidence of other experiments. Negligible
damping, on the other hand, would mean A, &10 sec '
(about ten times too small on the basis of the measure-
ments discussed in Sec. III) and gives a value of 3
three or four times larger than the values obtained from
thin-film spin-wave experiments. It is also interesting
to note" that if the line shapes are ignored and attention
is centered on the shift in resonant field due to exchange
effects, then one deduces from these experiments
A=1&(10 '.

We are unable to suggest any satisfactory explanation
for the remaining discrepancies. We emphasize that for
the case of normal conductivity our results are identical
with those of Ament and Rado, and thus our calculation
is important only in the negative sense of showing that
the discrepancies encountered by Rado and Weertman
in trying to 6t their nitrogen-temperature data cannot
be attributed to nonlocal conductivity. If the values
A = 1)&10 ' erg/cm and X= 1.25 &&10' sec ' are approxi-
mately correct, the linewidth at room temperature is
about half due to magnetic damping and half to ex-
change broadening. Our conclusion is that exchange
effects have been observed but are not su%ciently
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dominant to permit a reliable value of the exchange lem."In this technique, one recognizes that the func-
constant to be extracted. tions e, Q), etc. defined as

VI. CONCLUSIONS

Using a physically reasonable model, we have solved
the mathematical problem of relating the surface im-
pedance of a ferromagnetic metal to the exchange
sti8ness, conductivity function, and other constants of
the problem. The principal difhculty remaining is the
uncertainty in the conductivity function, exchange
constant, and surface anisotropy. Although it would be
unrealistic to expect low-temperature ferromagnetic
resonance experiments to determine these unknowns
completely, such experiments should nevertheless yield
some useful information.
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APPENDIX

The solution of Eqs. (4)—(6) of the text is obtained
by the conversion of the equations to a Hilbert prob-

e, (t') = dye 'r "e,(y) (A1)

are analytic in the lower half-complex-| -plane, and that
the physical function e, (q) is

e, (q)= lim e, (q—irt).
~0+

We introduce NQ'), analytic in the upper half-plane,
defined by

0 OQ

dye '"'(4s/c) o(y —y')e, (y')dy'. (A3)
00 0

LWe shall avoid explicit evaluation of N(i ).7
Then Eqs. (5) and (6) of the text may be Fourier

transformed to yield

h, (0)—iqh, (q)+N(q) = (4s./c)o(q)e, (q) (A4)

e, (0)—+iqe, (q) = (iro/c)t h, (q)+4rrm. (q)7. (A5)

By introducing the dynamic permeability according to
(10), we obtain

2Ayc (q' —qr') (q' —qs')

where the symbols g(q), qt, and qs have been introduced in the text LEqs. (11)—(12)7.
Let us introduce the function

1 "
1ng(q)

X(i)= exp dq
2rri „q

with

X+(q) = lim X(quirt).
~0+

(,)-,(,)=—,(0)—( /. )p(,)N( )—( /. )p( )h.(0)

iM,roq (Hg ff+4rrM, +2A q'/M, i X~/p'M, )4rrvm—,(0)+4rri corn„(0)
(A6)

(A7)

(AS)

Note that X(f) is analytic, except possibly on the real f axis, and further, it does not vanish. What is more,

X'(q)/X (q) =a(q).

Multiplication of Eq. (A6) by (q
—qr) (q—qs)/X+(q) yields

(q —
q ) (q—qs)

(q—qr) (q q)sq'e, (q) —/X (q) = ——p(q)[N(q)+h (0)7—iqe, (0)
X+(q) c

(A9)

M,icoq' y (H,rt+47rM, +2A q'/M,

ikey&/y'M,

)4rrm, (0)+ir—o47rm„(0)

2Apc (q' —qP) (q' —qs')
(A10)

"N. I. Mushkelishvili, Singular Integral Eqnatt'ons (P. Noordhoff Ltd. , Groningen, The Netherlands, 1963).
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X-(q) = 1+ (iI/7rq)+O(1/q') .

We find, consequently,

ie, (0)—[q'+Bq'+ Cq5X (q)—
e, (q) =-

q'(q —qi) (q—
q~)

and

(A13)

(A14)

The left-hand side is the boundary value of a function
analytic in the lower half-plane whereas the right-hand.
side is analytic in the upper half-plane, It is a funda-
mental theorem of analysis" that the two functions can
be regarded. as being restrictions of a single entire
function which in this case is simply a polynomial P(q).
Thus)

e, (q) =P (q)X—
(q)/(q —q,) (q

—q,)q'. (A11)

Some of the coefFicients of P(q) are determined from
the conditions at infinity and zero. For small q, X (q) ~ q

and e, (q) is finite, thus implying that P(0)=0. For
large q, integrations by parts show

e, (q) = [e,(0)/iq j+ (ice/c) [h, (0)+. 4am, (0) 5. /(iq)'
+0(1/q') (A12)

and

forms of the fields in terms of the three unknown con-
stants A;, it is simple, in principle, to impose the
boundary conditions. In the case of normal conduc-
tivity, the functions f, (y) may be taken to be simple
exponentials exp( —n;y), where n, are roots of the equa-
tion discussed by Ament and Rado. This method is
very cumbersome, however, and we shall employ a
trick based on analytic continuation to obtain the
surface impedance.

The technique we use is valid if o(q) is not too patho-
logical. We have chosen the standard formula familiar
from anomalous skin-effect calculations for o (q), namely
(17), with o(q)=o( —q). We take o(f) . to be analytic
except for branch cuts beginning at ~x~'&, and along
the imaginary axis.

We now consider Eq. (A10) evaluated at q=&q3,
+q4, i.e., the zeros of p(q). In order to do this, we have
to continue e, (q) and g(q) into the upper and lower
half-planes, respectively. In view of the analytic prop-
erties of g(q), we can continue X (q) and thus e, (q)
by maintaining the relation X+(q)/X (q)=g(q). The
function E(q) can be ',continued into the lower half-
plane by indenting the contour of

=ie, &0)[(iI/m)+B+q, +q,j, (A15)

where 8 and C are still to be determined.
A straightforward way of obtaining the unknown

coeScients 8 and C, as well as h„etc. is to perform the
inverse Fourier transform on e, to obtain the functional
form of e, (y) in terms of integration constants; thus,

e*(y)=E ~'f'(y) [Z ~~f'(0) = e.(0)j

The microwave magnetic field may be determined from
this expression by quadrature, and m, (y) in turn from
h, (y) and. e,'(y). Finally, m„(y) is found from the
Landau-Lifshitz equation. Having found the functional

47r " dq' o. (q')e, (q')
$(q) =-

q
—

q

so that, for i in the lower half-plane

4x " dq' o(q')e, (q') 4w
+=-(l-)-.u-).

c 2iri q l c—

In particular, g(—q3) and E( q4) are finite-.
We have thus extended (A10) to complex q, and we

can now substitute the particular values q=~q3, ~q4
for which p(q) =0. It is further convenient to replace
B=B'—qi —q2, C=C'+qiq& since B' and C' remain
finite for A ~0 while 8 and C do not. We thus ob-
tain Eqs. (13) of the text.


