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we consider only asymptotic behaviors. Using the technique we used in subsection (b) we find
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Thus we see that in both limiting cases the effect of nonlocality of the kernel E& D.e., the term containing the
additional factor (zzr —zzs) and/or (zzs —N4) in coe%cient of e i"'fi] is quite negligible. This fact suggests that it is
a plausible approximation to replace nonlocal kernels by equivalent local ones, as we have done in the derivation
of Eq. (35).
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The temperature dependences of the thermodynamic functions, as derived from lattice dynamics, are
examined for the limit of low temperature and also for high temperatures (those above a high characteristic
temperature). Particular attention is given to the effects of anharmonic terms in the lattice potential
energy. Detailed calculations are reported for central-potential models for fcc, bcc, and hcp lattices. In
particular, the normal-mode frequencies and Gruneisen parameters were calculated for a large number of
points in the Brillouin zone as a function of volume; and the specific heat, compressibility, thermal-expansion
coeKcient, and macroscopic Gruneisen parameter were calculated as functions of temperature and volume.
At fixed volume the isothermal compressibility shows little temperature dependence and the explicit an-
harmonic contribution is small; at zero pressure the compressibility increases with increasing temperature
and the explicit anharmonic contribution is again small. The thermal-expansion coefhcient exhibits similar
behavior at high temperatures. The anharmonic specific heat is proportional to temperature at high tem-
peratures, and also depends strongly on the volume. The effective Debye temperatures and the macroscopic
Gruneisen parameters exhibit a wide variety of temperature and volume dependences. Approximations are
developed for quantities which determine the behavior of thermodynamic functions at low and high tempera-
tures, and approximate relations between several anharmonic properties are found. These approximations
are tested by comparison with accurate calculations for the central-potential models.

I. INTRODUCTION

'HE purpose of the present paper is to report the
results of a study of the thermodynamic proper-

ties of crystal lattices. The study is based on the
lattice-dynamics free energy, and particular attention is
given to the sects of the anharmonic terms in the
lattice potential energy. Detailed calculations of thermo-
dynamic functions for models based on central-potential
interactions among the ions have been carried out for

*This work was supported by the U. S. Atomic Energy Com-
Dllsslon.

fcc, bcc, and hcp lattices. Even though the central-
potential models are probably inadequate for an accur-
ate description of most real materials, it is believed that
the qualitative behavior of these models is representa-
tive of real crystals.

In order to study the statistical thermodynamics of a
system, the first step is to define a mechanical problem
of motion for the system. If the thermodynamic proper-
ties are to be studied as a function of configuration, then
it is necessary to formulate the mechanical problem in
such a way as to allow the conhguration to be varied.
Indeed, this is necessary in principle in order to define a
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derivative of a thermodynamic function with respect to vectors vk, ,
configuration. For a crystal composed of interacting +k, pp' Zn' ~0pn'p, '

ions, the con6guration may be varied in the mechanical
problem of motion by externally applied forces; this
procedure has been discussed previously. '

The Hamiltonian for a conservative system of a finite
crystal, composed of interacting ions plus externally
applied forces, may be written

X= U(r„,) W—(r„,)+-,' P„,, M, (u„,)'
+Q n, (pX np fnp)+np+s Znn', pp' ~np, pn'+ ps''n'p'

+ (1/3 )~nn'n", pp'p" &np, n'p', n" p"Unpin'p'+n''p"19 I't~

4(1/ n )~n nl/I p pl/I Cnp lpnl nllplI nlllp lt

X+n +n '+n" "+n'"p"' (1 1)

and the equilibrium condition is

&(exp Lsl ~ (r„.,' —r,)], (1.4)

p p' &—k, pa~k, pp'&k, p's' ~~& c(ks J &as' p

Pp %ps, „m s „——M.h,. (orthogonality), (1.6)

3I, P, ss, „v s,p, ——3f,happ (completeness), (1.7)

where v k, ,=vk, ,* has been taken. There are E wave
vectors k distributed uniformly over the Brillouin zone,
and there are 3J values of the polarization index s.

Throughout the present paper it is considered that the
anharmonic terms in (1.1), namely those cubic and
quartic in the displacements, may be treated as a per-
turbation. The Helmholtz free energy F is a function of
configuration and temperature T, and may be written

X„, f p=0—, all (ps,p) . (1.2)
F=FIr+F~, (1 8)

Here and in the following, the notation is the same as
that used previously. ' 4 The symbol e labels a unit cell,

j labels an ion in a unit cell, i labels a Cartesian co-
ordinate, v stands for a pair of indices (n, j), and p
stands for a pair of indices (j,i). There are J ions per
unit cell, M; is the mass of an ion of type j, and 3f,
is the total mass of ions in one unit cell. The equilibrium
position of ion (I,j) is r„,=r„+r;, the displacement of
ion (n, j) from its equilibrium position is n„,, and n„;
is the time derivative of n„,. The function U(r„,) is the
static lattice potential which results from interactions
among the ions, and IV(r„,) is the work done on the
1attice by the external forces, measured from an arbi-
trary initial configuration of the lattice. The coefficients
X p A p p etc. , arise from interactions among the
ions, and f„p is a component of the external force applied
to ion (e,j) in the equilibrium configuration.

Terms in the potential energy which are of higher
order than quartic in the displacements are not con-
sidered here. In addition, the present work is restricted
to the case of only surfa'ce forces applied to the crystal;
hence, f„p vanish in the interior and (1.2) becomes

FH= U+&J&lr
+ET Ps, , inL1 —exp( —bees, /ET)], (1.9)

Fa=(&J) 'ZI „-',&~~, . (1.10)

Here U is the static lattice potential, as in (1.1), and
EII is the harmonic zero-point vibrational energy per
ion. U and ~k, are functions of the configuration only.
The quantum derivation of F& has been given by
Ludwig'; the expression is complicated and need not be
given here.

The thermodynamic functions may be obtained from
Ii by means of well-known formulas. ~

k '= V(8'F/BV')r,

P = k(a'F/a T—a V) v,r,
C= T(8'F/8 T') v—,

(112)

(1.13)

where U is the volume of the macrocrystal, containing
2VJ ions, for which the free energy has been computed,
k is the isothermal compressibility, P is the thermal ex-
pansion coefficient, and C is the specific heat at constant
volume. A macroscopic Gruneisen parameter is de-
fined as

X,=O, for all (e,j) in the interior. (1 3) y=PV/kC.

Surface effects may be eliminated by considering a
macrocrystal containing X unit cells in the interior, and
the harmonic Hamiltonian may be diagonalized with
the aid of the cyclic boundary condition. Hereafter the
origin of coordinates is taken at a cell vector in the in-

terior, i.e., r„=0 for m=0, and surface effects are elimi-

nated from all lattice sums. The harmonic Hamiltonian
represents a generalized eigenvalue problem, whose
solution is given in terms of the ak matrices and the

' D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965).' D. C. Wallace, Phys. Rev. 131, 2046 (1963).' D. C. Wallace, Phys. Rev. 133, A153 (1964).
D. C. Wallace and J.L. Patrick, Phys. Rev. 137, A152 (1965).

A subscript A will be used to specify the explicit an-
harmonic contribution to a function, namely that con-
tribution arising from Jig, while a subscript H denotes
contributions arising from IiII, including the volume
derivatives of FII. These latter terms are quasiharmonic
terms.

' In Refs. 1 and 4, the 3I,&ok,' were referred to as the eigenvalues
of ak matrices. Since the transformation which diagonalizes ak,
according to (1.5), is nonunitary by virtue of (1.6) and (1.7),
it is more appropriate to refer to 3E,cokp as the eigenvalues of
matrices whose elements are (ill, '/3E, M,'l'I'aq, » .

'W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).' Equations (1.11)-(1.13) are derivable from the de6nitions of
J, C, P, and A as given in any standard text; for example, R.
Fowler and E. A. Guggenheim, Statistical ThermodyrIumics
(Cambridge University Press, Cambridge, England, 1939).
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F~~=g&', (2 2)

where 0~0 is the harmonic Debye temperature at T=O
and is given by

(K8IIQ) '= (U/72N Jh'7r')p, dnLc, (8,$)] '. (2.3)

In (2.3) the P, is carried out over the three acoustic
branches and the J'dQ is carried out over all angles
8, @. Here and in the following a subscript t denotes a
low-temperature form, while a subscript 0 denotes a
T=O form. The coe%cient g, which depends on the
con6guration only, is quite complicated, even for primi-
tive lattices. The form (2.1) has been known since 1912,'
while the rigorous proof of (2.2) has been given only
recently. '

With the aid of (1.11)—(1.13), and keeping only the
lowest order temperature dependence at low tempera-
ture, the following results are obtained:

kg ——ko+O(T'),

p, = ko To [1VJ(127r—4/5) (K/81I o4)

&& (d8Iro/d V)+4(dg/d V)], (2.5)

C,=3.tVJKT'[(47r'/58IIoo) 4(g/V JK)], —(2.6)

(2.4)

where
ko ' ——V(d'U/dU')+lV JU(d'E /dV') (2.7)

The relative contribution to k~ of the term of order T4 is
extremely small at low temperatures and will be ne-
glected hereafter. In addition, the explicit anharmonic
contribution to ko ' has been omitted in (2.7); this con-
tribution is negligible for purposes of the present study
(&0.01%).

Since FII& and F&& both go as T4, they both give con-
tributions with the same temperature dependence to
each thermodynamic function. Thus the explicit an-
harmonic contribution to each function may be con-

M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954).

9 P. Debye, Ann. Physik 39, '?89 (1912).

II. LOW- AND HIGH-TEMPERATURE BEHAVIOR

Low Temperature

In order to determine the temperature dependence of
the free energy in the limit of low temperature, it is
necessary to use the method of long waves, ' since it is
the k dependence of appropriate integrands which in-

evitably determines the temperature dependence. Ac-
cording to the method of long waves, for a given direc-
tion of k there are three acoustic modes for which
&o,(8,&)=c,(8,&) ~

k ~, s = 1, 2, 3, where (8,&) are the angles
which specify the direction of k. The asymptotic low-

temperature expressions for the free energy may then be
written

FIrg= U+NJErs 1VJ(n—.4/S)(K8IIo)(T/hzo)', (2.1)

sidered small at low temperatures. It is convenient to
define a quasiharmonic Gruneisen parameter p«by
neglecting the explicit anharmonic contributions; this
gives the well-known quantity

allo = —d 1n8Iro/d ln V,
= &c. '(o+V.))/(c. '), (2.8)

where the brackets ( ) indicate an average over acoustic
modes and over angles, and where

y, = —d inc, /d lnV. (2 9)

Fgr=GT'+O(T ')+. (2.11)

where here and in the following a subscript T denotes a
high-temperature form. The leading T' dependence of
F» was first shown by Born and Brody"; the coef5ci-
ent G depends on the con6guration only.

In contrast to the low-temperature limit, the high-
temperature contributions FIJI and Fgv do not have the
same leading temperature dependence. The relative
contribution to each thermodynamic function which
arises explicitly from F» increases with increasing T,
and consequently cannot be considered small in general.
The high-temperature behavior can be studied by drop-
ping all contributions which decrease with increasing T;
this procedure gives

kz '= V(d'U/dV')$1+PoT+P4T']

Pr =Pl(1 PoT) L1+PoT+—P4To] 1—
C& 3N JKP1—PoT——],

(2.12)

(2.13)

(2 14)

pg
——[K Qg, yg,] LV( 'dU/Vd')] ', (2.15)

p.= 2(UdG/dU)LK Z. 'r']-', (2 16)

p, = $K p, ,, p„][V&(d&U/d V')]-' (2.17)

P =LV'(d'G/d V) ]LV( 'd U/dV) -]' (2.18)

P o——2G/31V JK, (2.19)

q„=—(V/». ) (d~,./d V), (2.20)

The expressions (2.12)—(2.14) are expected to apply at
temperatures somewhat above a high-temperature char-
acteristic temperature, such as 8Ir„(de6ned below), but
not so high that F~T becomes comparable to FIJI.

The definition of e~„is based on the high-temperature

"M. Born and E. Brody, Z. Physik 6, 132 (1921).

High Temperature

The asymptotic high-temperature expressions for
the free energy -are

F~, = U+KT gg„Lln(k(og, /KT)
+(1/24) (hoop, /KT)' — ], (2.10)
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1
Pks PsM 3 ~ (2.27)

GI. METHODS OF CALCULATION

Central-Potential Models

The numerical calculations of the present paper are
restricted to the following: one or two ions per unit ce)l
with all masses the same (i.e., all M;=M); uniform
volume changes, i.e., with no change in the relative unit
cell parameters; and all pairs of ions interacting accord-
ing to a given central potential. The fcc and hcp lattices
are treated for eight Lennard-Jones potentials, abbrevi-
ated LJ(n,P) where n and P are exponents appearing in
the potential form. The bcc lattice is treated for LJ(6,4)
and for three Rydberg potentials, abbreviated R(v&0/v3).
These models are discussed in detail in a previous
paper. 4

In particular, c is the nearest-neighbor distance, ep is
the value for which the static lattice potential U is a
minimum, and a. is defined by

0 = 6—6p 6p. (3 1)

Note that 6p is a erst approximation to the nearest-
neighbor distance at temperature and pressure equal
zero; a second approximation' is (1+/&)ep where ~ is a
small parameter defined in (3.19) below. All volume
derivatives were transformed to 0- derivatives in the
numerical work. The cok, were obtained as a function of
cr by diagonalizing the ak matrices, whose 0. dependence
was calculated according to

a~(o) = a~(0 =0)+Of (da~/do)(0 =0)]+. . (3.2)

The series (3.2) was calculated to order 0' in all cases.
At any 0-, the derivatives of the cok, were obtained with
the aid of the Hellmann-Feynman theorem":

d(cVco~, ')/do. =g„n ~,„(da~/do)„ i~, , , (3.3)

For two ions per unit cell the dynamical matrices and
their 0- derivatives were transformed to real-symmetric

"See, for example, G. K. Horton and H. SchiB, Proc. Roy. Soc.
(London) &250, 248 (1959)."H. Hellmann, Iiinfuhrleg ie di e QNamtenche7nie (Franz
Deuticke, Leipzig, 1937); R. P. Feynman, Phys. Rev. 56, 340
(&939).

expansion for the harmonic specific heat. "
C~r 3Ã——JK L1 (1/—20)(8'„/T) '+ .], (2.22)

(K8~ )''= (5A'/3)L(31') —' Pg„(ag )'] (2.23)

The macroscopic Gruneisen parameter has the follow-
ing properties at high temperature.

yli~(1 piT)(—1 p5T) —', (2—.24)

ya =(3cVJ) 'Q~, ,y~„(2.25)

(U/pe„)(dye„/d U) =1—(3iVJyII„) ' Qi, , f~, . (2.26)

Note that in the limit k=0 for the acoustic modes,

form. Quantities containing first derivatives of &u~„such
as Pi of (2.15), were computed by direct summation
over the reduced portion of the Brillouin zone for several
values of 0. for each model. Quantities containing second
derivatives of coi„such as Pi of (2.17), were obtained
from the 0. dependence of quantities which contain only
the first derivatives. The required volume derivatives of
G were computed approximately, as discussed in
Sec. V.

Method of Long Waves

The object is to find the real-symmetric 3)&3 matrix
X(8,$), whose eigenvalues are 3ELc,(8,$))', s=1, 2, 3.
For a primitive lattice, an expansion of a~ to order k'
for small k yields 2 directly. '

X(8)y)=ay/k' to order k' (34)

LX(8,y)];; = ——,
' g„Ao;„;(k, r„) . (3.5)

Here k=k(8,&) is a unit vector in the direction of k.
For the special case of two ions per unit cell with all

masses the same and a single central potential between
all pairs of ions, it is possible to find a simpleexpression
for X. The a& matrix, to order k', may be written

(3.6)

where

P= Pp+-', k'P2,

Q= Po+i (k—
( Q,+-,'k'Qi, -

(Po)*' = —2- AD ',-"
(P2);;.= —Q„A 0;; „;;(k r ),
(Qi)" =

(Q~);; =

(3.7)

(3.8)

(3.9)

(3.10)

&(8A)=2(P~+Q2 —QiPO 'Qi), (3.13)

X.pi(8, y) = 2PO+-,'k'LP2 —Q2

+2(Po 'QiQi+QiQiPO ')]. (3.14)

The eigenvalues of X(8,&) are M(c, (8,$)]'; the eigen-
values of R,~i(8,$) are M~, ' for the optical branches.

The elements of the matrices 0 and (dX/do) are simply
expressed in terms of previously tabulated lattice sums. 4

These matrices were computed for all the models at
0=0. The 7„defined by (2.9), were computed by an
equation analogous to (3.3). The low-temperature in-

Pp, Pp, Qi, and Q& are all real-symmetric 3X3 matrices.
Now a& of (3.6) may be reduced to order k' by a straight-
forward application of matrix perturbation methods,
i.e. , a&is transformed by a unitary transformation so that
the oR-diagonal submatrices are zero ot order k'. The
real-symmetric 3&(3 matrices along the diagonal of the
reduced form then give the acoustic and optical fre-
quencies as eigenvalues. In particular
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tegrals were carried out numerically by taking 5(10') 1604 digital computer. The computer was also used for
points in the double-angle integrations; this gave all extensive studies of the accuracies of representative
integra1s accurate to 2 parts in 104. sums and integrals.

Reduced Quantities

All calculations were carried out in terms of reduced
quantities, which are denoted by a superscript bar. Some
needed definitions are

IV. RESULTS

Eigenvalues and Gruneisen Parameters

Figures I—6 are representative graphs of g~, and y~,
along certain lines in the Brillouin zones for the models

U(o =0) = cVJD, defining D; (3.15)

V(o =0) =XJV„defining V, as the volume

per ion at o =0; (3.16)

r)p, =M(o~k.,) ';

Q„=(3~VJ) ' Ps, ,(zl~.)"";
(3.17)

(3.18)

~= (fz'/MDe ')'"
a dimensionless small parameter. (3.19)

For most elements, 0.5((10')s(5.0.4 Some of the re-
duced quantities of the present work are as follows:

rfi„(ep'/D——) rid. , 0„=-(ep'/D)&~'ft„;

Pa= Fzz/~~~JD Ea= J-'zl/D;

6= (D/!7JK')G;

8zI AOH/D-—;.
(.'= C/.VJK;
Ip= (D/V. )k;
P= (D/K')P, similarly for Pi, P, , P, , P, ;

P4
——(D/K) 'P4.

(3.20)

9H„=«L(5/3) Qz]'z'

E~———,'~0g,

(kp) '= V'(d'U/d V')

+V ((Pgzz/rf V') at o = () . (3.23)

(3.21)

(3.22)

In addition to the low- and high-temperature studies,
detailed calculations were carried out for intermediate
temperatures with the aid of the reduced tempera-
ture T.

The transformation of all equations to reduced equations
is straightforward; for example,

Or X W
k-vector

FIG. 1. Some vaiues of ea, for fcc lattice, LJ(12,6) potential,
at ~ =0. The line marked (2) is doubly degenerate.

3.2

2.8-
(2)

2.6L—
2.2

2.0

t.8

1.6

k-vector
W K

Fin. 2. Some values of pk, for fcc lattice, LJ(12,6) potential
(top g»ph) and LJ(6,4) potential (bottom graph), a«=0. The
]ines marked (2) are doubly degenerate.

T= T/Olz„, OJz„evaluated at o =0. (3.24) bcc LJ (6, 4)

With the aid of (3.17), (3.20), and (3.21) it follows that

kzpik, /KT= L3&z,/50s(o =0)]'I"I' ', for any o; (3.25)

the quantity in (3.25) is needed for all intermediate tem-
Perature calculations. The functions Frr, Czr, Pzr, and
y~ were computed for each lattice model for sr = —0.02,—0.0$ - - 0.06andfor 7=0.04 0.08 - - 4.00. Thecal-
culations were carried. out by direct summation over the
reduced portion of the Srillouin zone4; all such sums are
in error by no more than 1 part in 10' for T&0.20.

All numerical work was done with the aid of a CDC-

0
H

k-vector

FIG. 3. Some values of &&, for bcc lattice, LJ(6,4) potential,
at o.=o. The line marked (2) is doubly degenerate.
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2.4

y
2.2

l.8

1.6

1.4r
tt-vecto r

FIG. 4. Some values of yg, for bcc lattice, LJ(6,4) potential,
at 0——0. The line marked (2) is doubiy degenerate.

in the L011$ and nearby directions. This property of the
central potential bcc models has been discussed pre-
viously in connection with the stability of such models, '
and further effects of these small frequencies will be
noted below. The gk, curves for the eight hcp models
are again quite similar when appropriately scaled. An
interesting result for the hcp is that along the line
AI on the zone surface there are three lines for the gk,
spectrum, each line being doubly degenerate and each
pair corresponding to one optical and one acoustic
branch.

For the acoustic modes only, the p&, do not approach
the same limits as k approaches zero from different direc-
tions; this causes no difhculty since at k=0 the acoustic
mode p, are not physically signi6cant. For each lattice,
the curves of y~, for all the central potentials studied
are qualitatively similar in shape.

I2

0
L

k-vector

FIG. 5. Some values of g&, for hcp lattice, LJ(12,6) potential,
at o.=0. The lines marked (2) are doubly degenerate.

Low- and High-Temperature Quantities

The low-temperature quantities at a=0 are listed in
Table I. For a given central potential, it is seen that fcc
and hcp quantities differ only on the order of 2'Po. The
small values of Hap/K and perp for the bcc models refiect
the small values of the velocities c, for one branch for k
near the L011) direction. With the aid of (3.23), it is
seen from Table I that the relative contribution of
V'(d'E&/dVs) to the compressibility at T=0 and o =0 is
&15~ for all the models studied. This would represent a
small contribution for most elements, since ~=10 '.

The high-temperature quantities at 0-=0 are listed
in Table II. For each central potential studied, the
various Brillouin zone sums are nearly the same
for fcc and hcp; consequently, it is not necessary

3.4

3.2

TABLE I.Thermodynamic quantities in the limit of low tempera-
ture, evaluated at p. =0. The error in s 'V'(doErr/d V') is no more
than 1%;the error in other quantities is no more than 2 in the last
place given.

3.0

2.8
t2)

2.6
F.

tt-vector

FIG. 6. Some values of yg, for hcp lattice, LJ(12,6) potential,
at s-=0. The lines marked (2) are doubly degenerate.

of the present paper. The values shown are all for 0 =0
For the fcc lattice, the curves of gl„ for all eight Lennard-
Jones potentials are nearly identical when scaled so as to
coincide at any particular k vector. The various models
for bcc show qualitative similarity in the p&„ for ex-
ample, the frequencies are small for one branch for k

Model

fcc LJ(12,10)
fcc LJ(12,8)
fcc LJ(12,6)
fcc LJ(12,4)
fcc LJ(10,8)
fcc LJ(10,6)
fcc LJ(8,6)
fcc LJ(6,4)

hcp LJ(12,10)
hcp LJ(12,8)
hcp LJ(12,6}
hcp LJ(12,4)
hcp LJ(10,8)
hcp LJ(10,6)
hcp LJ(8,6)
hcp LJ(6,4)

bcc LJ 6,4)
bcc R(i)
bcc R(2)
bcc R(3)

&ao/s

13.03
11.58
9.936
8.009

10.50
8.990
'?.942
5.385

13.19
11.73
10.09
8.152

10.65
9.145
8.099
5.527

3.4'?0
3.151
2.841
2.544
2.825
2.514
2.190
1.566

3.47'?
3.154
2.836
2.529
2.824
2.506
2.177
1,535-

2.907 2.004
2.014 0.4042
3.406 0.8389
4.233 i.717

Vo(do U/d V')

13.33
10.67
8.000
5.333
8.889
6.667
5.333
2.667

Io 'U'(doErr/d V')

167
133
101
73.1

102
75.4
54.6
24.5

2.667
0.4532
1.47i
3.19i

23.3
1.58
5.59

14.8

hcp same as fcc within
the stated accuracy.
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Tpj BLE II. Quantities which determine the thermodynamic behavior at high temperature, evaluated at 0 =0.The maximum errors are
1 in the last place given for Hrr„/s, d Insrr„/d lnV, yn„, and Pq, 2% for d incan„/d lnV; 25Pg for Ps, Pq, and P4', and 10% for Pq. Within
these errors, the values for hcp are the same as for fcc, except for P&. The quantities needed to calculate P& for fcc and hcp have been
given previously. '

Model

fcc LJ(12,10)
fcc LJ(12,8)
fcc LJ(12,6)
fcc LJ(12,4)
fcc LJ(10,8)
fcc LJ(10,6)
fcc LJ(8,6)
fcc LJ(6,4)
bcc LJ(6,4)
bcc R(1)
bcc R(2)
bcc R(3)

11.73
10.59
9.313
7.841
9.746
8.603
7.837
6.019
5.890
3.595
4.940
6.287

d lngrq„

d lnt/'

3.765
3.401
3.014
2.581
3.050
2.665
2.308
1.543
1.541
0.4117
0.8229
1.365

3.690
3.335
2.964
2.559
2.989
2.619
2.269
1.531
1.544
0.3608
0.7841
1.357

d lny~„

d lnt/'

1.30
1.04
0.709
0.283
0.903
0.627
0.510
0.139
0.155
0.312
0.522
0.800

0.8302
0.9380
1.111
1.439
1.009
1.179
1.276
1.722
1.737
2.388
1.599
1.276

3.4
3.3
3.3
3.3
3.0
2.9
2.5
1.3
0.74

—0.25—0.04
0.32
1.0
0.10
0.44
0.62
1.5
1.5
1.6
0.76
0.26

13
13
12
11
11
9.6
7.3
2.3
1.3

1~ 1
1.1
1.1
1.2
0.95
0.91
0.70
0.15

l.4

I.2—

I.O

I—
C 5CH(o o)

to give the hcp values in Table II. The difference be-
tween year„and —(d 1ngrr„/d ln V) is generally small; the
fact that these quantities are not equal has been pointed
out by Barron "

Certain of the present results may be compared with
previous work. Sarron" has calculated y~o and y~„
for the fcc lattice for LJ(12,6), LJ(10,4), and LJ(8,6)
potentials at o.=0. His values for yIIO agree with the
present results within 1.5'%%uo; his err„are the same as the
present values rounded to three signi6. cant figures.
Barron and Klein" have calculated some quantities
similar to fIIr„/K and (d lnfIIr„/d ln V) for the fcc LJ(12,6)
model. Their calculations for (rs/rr)'=1. 00 (see their
Table I) correspond to a o-value, in the present nota-
tion, of 0.0296. The present results agree with those of
Barron and plein at this value of o-. Blackman" has

found values of about 4.66 for y~o and 4.89 for yJI„ for
a two-dimensional hexagonal la, ttice with LJ(12,6)
potential; these values are much larger than the pres-
ent results for hcp with the same potential.

General Temperature Dependence

Figures 7—9 are representative graphs showing the
temperature dependence of thermodynamic functions
at constant volume (o.=0) and at constant pressure
(P=0), with the explicit anharmonic contribution
shown in each case. Certain approximations were made
in obtaining these results. The explicit anharmonic cor-
rections to C and P were not included at low tempera-
tures; such corrections are too small to be represented
on the graphs shown. At o-=0 the explicit ahharmonic
corrections were calculated by means of the high-
temperature forms for T&0.5. In calculating the thermo-
dynamic functions at zero pressure, the first step was to
minimize the free energy with respect to o. at each chosen
temperature. The resulting o-, which corresponds to

C
5

0.8

0.6

0.4

0.2

I—-C(o o)—

fco LJ (l2, 6)

K ~ .0025

2.2

2.0-

1.8-
k
ko

I.6-

l.4—

0.0 I I I I I I

0.0 0.4 0.8 l.2 l.6 2.0 2 4 2.8 & 2 5.6 4.0
T

FIG. 7. Reduced specific heat at constant volume as a function
of reduced temperature for fcc LJ(12,6) with ff;=0.0025. C~ is
the harmonic contribution and 9 is harmonic plus anharmonic
contributions; 0.=0 represents fixed volume and O. =IT1 represents
zero pressure.

"T.H. K. Barron, Phil. Mag. 46, 720 (1955).
'4 T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. (London)

82, 161 (1963).
's M. Blackman, Proc. Phys. Soc. (London) 74, 17 (1959).

l.2—

I.O

0.8 I I I I I I I I

0.0 0.4 0.8 I.2 I.6 2.0 2.4 2.8 5.2 5.6 4.0

Fn. 8. Isothermal compressibility k, divided by k(1=k(7=0,
0 =0), ss a function of reduced temperature for fcc LJ(12,6)
with ff;=0.0025. k~ is the harmonic contribution and k is harmonic
plus anharmonic contributions.
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2.0

0.8

0.4

0.0 0.4 0.8 l.2 l.6 2.0 2.4 2.8 3.2 3.6 4.0
T

l'n. 9. Reduced thermal-expansion coe%cient as a function of
reduced temperature for fccIJ (6,4) with a =0.0025. Pyy is the quasi-
harmonic contribution and p includes explicit anharmonic con-
tributions; a =0 represents fixed volume and 0 =g 1 represents
zero pressure.

zero pressure, is denoted by (T&. For 0& T&4, the major
contribution to the free energy is FII—&VJFII, therefore
this function was minimized to determine (T~. The eRect
of including lVJE~ is to increase (T& by approximately K,

and the increase is nearly constant in temperature. The
eRect of including F~ is to decrease o-i, the decrease
being negligible at T=0 and of the order of K at T=4.
These minor corrections to 0~ were neglected, since
they lead to only minor changes in the graphs of the
thermodynamic functions. An example of the tempera-
ture dependence of 0& is shown in Fig. 10. Finally the
explicit anharmonic corrections to C were calculated as
functions of (aq, T), while for k and P the explicit an-
harmonic corrections were taken to be the same at
0.= o-i as at 0-= 0. The explicit anharmonic contributions
were not calculated for the bcc models.

Certain general results of these model calculations
may be summarized as follows. For each central po-
tential studied, the set of curves for O.

q, C, P, and k are
very nearly the same for fcc and hcp. Also, at a given 7',
(7i varies little with the lattice type or the potential con-

Effective Debye Temperatures

The eRective Debye temperatures were computed
from the specific heat values for all the models. "These
results are illustrated by the curves of II/HIrp Figs. 11
and 12. A wide variation of behavior was found. for the
different models. The large values of' el'/grIp for bcc at
high T are due to the low values of HIIO, which are in
turn due to the small values of some of the velocities c,.
In general, but not always, the longer range central
potentials give rise to more complicated behavior at

2.0
c' 0 bcc LJ (6,4)

sidered, but is approximately proportional to K. This be-
havior results in part from the fact that the ratio of the
vibrational part of FII to the static part is proportional
to K at any T, just as at T=0.4 As is well known, the an-
harmonic specific heat is proportional to T at high tem-
peratures; more particularly, for the present models it is
proportional to KT. Although the anharmonic specific
heat is negative for fcc and hcp for the central poten-
tials studied here, it may be expected to be of either sign.

for real materials. The difference between CII(a =0) and
CH(o=o~) is quite small, and vanishes for T=O and
T= 00; this behavior is to be expected. When an-
harmonicity is included, however, the diRerence be-
tween C(o.=O) and C(0 =0.~) becomes observable on the
graphs for T=-1 and increases as T increases. The com-

pressibility shows little temperature dependence at
0-= 0, and in particular the explicit anharmonic contribu-
tion is quite small. On the other hand, at r = (T~, the com-
pressibility increases considerably with increasing T,
the explicit anharmonic contribution being still small.
The behavior of the thermal-expansion coeKcient is
similar. PIr for o =0 shows little temperature dependence
for T) 1, while for 0 =a~, PIE continues to increase con-
siderably as T increases above 1; the explicit anharmonic
contribution is small in each case.

cr(

0.035

0.030-

0.025-

H I.B

eHO

l.6

I.4

c R (I)

cc R (2)

0.020-

O.OI5-

1.2

I.O

cp LJ (6, 4)

cc LJ (I2, 6)

0.010—
0.80.0

J J I ~ I

O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9
T

0.005-

0.000
0.0 0.4 0.8 1.2 I.6 2.0 —2.4 2.8 3.2 3.6 4.0

T

FIG. 10. Graphs of 0.
& as functions of reduced temperature for fcc

LJ(6,4) with II:=0.0025 and for fcc LJ(12,6) with ~=0.0010.

FIG. 11. Effective Debye temperatures for the harmonic
specihc heat at o =0, plotted as 8~/8IIO, as functions of reduced
temperature.

' Tables of the Debye function were kindly provided by Profes-
sor John R. Neighbours, U. S. Naval Postgraduate School,
Monterey, California.
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1.61-
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1.2-

0.94

0.8 I I t

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
T

FIG. 12. Effective Debye temperature, plotted as 9/0&o, as a
function of reduced temperature for fcc LJ(6,4) with &=0.0025.
811 is the Debye temperature for the harmonic specific heat and 0
is the Debye temperature for the harmonic plus anharmonic
specific heat.

0.92 f I I I l l

00 0.4 $.8 1.2 1.6 2.0 2.4 2.8 3.R 3.6 4.0
T

1'1G. 14. Macroscopic Griineisen parameter, plotted as y/pjjp,
as a function of reduced temperature for fcc LJ(12,6) with
a=0.0010. yII is the quasiharmonic Gruneisen parameter and y
includes explicit anharmonic eGects; 0 =0 represents fixed volume
and g =ai represents zero pressure.

low V'. The detailed behavior for I'&0.05 was not de-
termined in the present work; it may be more compli-
cated than the graphs indicate. Horton and Leech'~
have recently calculated 8~r/8rrp for fcc for some
Lennard-Jones potentials; the fcc LJ(12,6) curve of
Fig. 11 is similar in shape to the curves which these
authors have presented.

The negative anharmonic specific heat gives rise to a
large increase in 8/8rrp with increasing T, as shown in
Fig. 12; for a positive anharmonic specific heat, 8/8rrp
would decrease with increasing T.

Macroscoyic Gruneisen Parameter

Some curves of err/prrp are shown in Fig. 13. The be-
havior is complicated, with large variations among the
models. Barronia has pointed out that, for fixed volume,
any variation in pII should occur at temperatures of the
order of 0.28IIO.

The explicit anharmonic corrections to yz have been

calculated for the fcc and hcp models at o-=0 and at
o-= o-&. For these models it was found that pz always de-
creases from the value y~„with increasing tempera-
ture, as shown in Fig. 14 for a particular model. This
effect is complicated, even at o =0. According to (2.24),
the temperature variation of yy is determined by the
signs and relative magnitudes of Ps and Ps. From Table
II it is seen that Ps, Ps are both positive and Ps) Ps, this
leads to a decrease in yy at o =0. There is a larger rela-
tive decrease in yz with increasing T at o.= o-~. For real
materials, however, yy might be expected to increase or
decrease with increasing temperature.

In Table II the volume derivative of yII„ is listed, as
evaluated at o =0; this derivative is positive in all cases.
A characteristic of all the present models is that, as 0
increases, y~„passes through a maximum at a small
value of o. and then decreases; this is illustrated in Fig.
15. Note that the curve of err/yrrp at o.=or, shown in

Fig. 14, simply rejects the variation of p&„with r.

1.10

1.05

!.001

+HO
0.95-

0.90-

0.85-

0.80-

o'o
fcc LJ (12, 10)

fcc LJ (12, 6)

c R (I)

c LJ (6, 4)

I"iG. 15.High-tem-
perature limitggoi
the quasiharmonic
Gruneisen parameter
as a function of cr,
for some models.

3.1

2.9

2.7—

2.5—

2.1—

1.9-

hcp L

075 —----. - . I . .. ...-—— I .. .. . . . . t
0,0 O. I 0.2 0.3 0.4 0.5 0.6

T

t. .—.—- .-1. .—.. . L.. . .ff-.
0.7 0.8 0.9 m

i'to. t3. Quasiharmonic Griineisen parameters at p. =O, plotted
as y~/yqrp, as functions of reduced temperature.

' G. K. norton and J. W. Leech, Proc. Phys. Soc. {London)
82, 816 (1963).
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In consideration of Fig. 15, it is expected that for real
materials the volume derivative of y~ may be of
either sign.

A„p p
——A„p,„pt IorpI4Irg~p~Iop~IorpI r~/orpI4+ (5 2)

with similar expansions for 8 and C coefficients. These
expansions may then be used to obtain the volume
derivatives of the potential energy coeKcients, evalu-
ated in the initial configuration.

If (1.5) is diGerentiated with respect to volume, and
the resulting expression for (do&i„/d V) is substituted into
(2.25), the following equation is obtained for pre„.

~ -= —(6»)-' Z. 2„("-'),,
X LV(dai, /d V) p p $, (5.3)

where use has been made of the eigenvector expansion
for the inverse dynamical matrix':

P, o i, , „rto, ,(oij„) '=M, (ai,
—')„,. (5.4)

Now a reasonably accurate approximation to the an-
harmonic free energy at high temperature has pre-
viously been obtained by replacing the inverse dynami-
cal matrix by a diagonal matrix, according to'

(» ').p =fl '~.' (5 5)

fl=(3NJ) —'P~ P, as,„. (5.6)

If (5.5) is used to replace (ai, ')» in (5.3), and
U(dai, /d V)». is found with the aid of (5.2), remember-
ing that k r; is invariant under a uniform volume
change, the approximation for yII becomes

V. APPROXIMATIONS

Approximations to Accurate Expressions

It is of value to develop approximations which will
allow the thermodynamic functions to be estimated with
a small amount of labor. Approximations for some of the
low- and high-temperature quantities are developed and
tested in this section,

Consider an arbitrary initial configuration of the
lattice, denoted by a tilde, with equilibrium positions
r„;.A uniform volume change is represented by moving
the ions to new positions r„,, where

r„;= (1+$)r„, , f is small. (5.1)

The potential energy coeKcients can be expressed as
Maclaurin series in P':

The general treatment of the low-temperature limit-

ing quantities is extremely complicated except for the
case of primitive lattices. For a primitive lattice the
values of y„de6ned by (2.9), may be expected to show
little variation from the mean; therefore, (2.8) is

approximated here for primitive lattices by replacing
each p, by the average, denoted by F.

I = (12 )-i P, dn ~,(g,y) (S.10)

Furthermore, I' is approximated by a procedure analo-

gous to the derivation of (5.7) above; the results are

I't= —is+(108K) ' P„,;, Bo;,„;,„;r„'r„;, (5.11)

fl.=(12 )- P, dn P,(e,d)$...

= —(1/18)Q„„Ap;,„;r„'. (S.12)

Here A. is the average of the diagonal elements of the
long-wavelength matrix X(0,@). The approximation for
y~o then becomes

(5 13)Vao"= s+I' .

Approximate expressions for the anharmonic free energy
at low temperatures for primitive lattices are given, in
terms of 8 and C coeflicients, by Eqs. (3.15) and (3.16)
of Ref. 3.

For lattices with one or two ions per unit cell with all
masses the same and with two-body central potentials,
the approximations are simplified. The usual notation
is used' 4: d'o„ is the derivative of the central potential,
with respect to r', evaluated at r'= r.'; d "o.is the second
derivative, and so forth. Some exact expressions, valid
for any 0-, are as follows:

with respect to volume to give the result

(d lnyIr„t/d ln U) = (2ylr„t+ s)—(54JQylr„t) '

XZ. , pp p" Cop, op, p, p"r p& p-. (5.8)

Approximate expressions for the anharmonic contribu-
tions to the free energy at high temperatures are given,
in terms of 8 and C coefficients, by Eqs. (4.3) and (4.4)
of Ref. 2.

When all masses are the same, Q of (5.6) is the same
as Qs of (3.18). The above method of approximating

then leads to the result

yH t= —(dlnga /d lnU), when all M;=BE. (5.9)

'rlr„———(18JQ) 'P„,pp &op pp „pr p . (5.7)
dU/do =NJ Q, r, 'P'p„ (5.14)

Throughout this section a dagger denotes an approxima-
tion. Since (5.7) has been obtained for an arbitrary ini-
tial con6guration, the expression may be differentiated

'8See, for example, R. E. Peierls, Quantum Theory of Solids
(Clarendon Press, Oxford, England, 1955).

d'U/do'=NJ P„Pr„'rtp'p„+2r„4y"p„], (5.15)

d'U/do'= NJ +„L6r„'P"p„+4r,P"'o.] (5.16)

Q=Q, =+„L2 d'o„+( 4/3)r. @s" o$, (5 17)

~= (1/9)P„Pr„od',.+2r„4y".„j, (5.18)
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where A is for primitive lattices only. The approxima-
tions are summarized below.

TxnLE IV. Errors in the approximations (5.19)—(5.21), evalu-
ated at o.=0. The errors are expressed according to the definition
(5.25).

yIr„"= —(2/9Q) P „[Sr„'P"p„+2r„'P'"p„], (5.19)

d lnyIr„t/d lnU) = (2yrr„"+ rs) —(2/27QyH„t)

X+„L5rsg"o„+16r„4$"',„+4r„op',„7, (5.20)

yrrot= —(1/27k)Z L5r 4p"o +2r p4'"o 7, (5 21)

Gpt = —(4$JK'/Qo) Q „L15r„'(P"p„)
'

+»"'e"o.e'"o,+4 '(~"'.)'7, (5.22)

G.t = (red'/n') P. L15y"„
+20r„'y"'p„+4r„4y'»p 7 (5 23)

where

Model

fcc LJ(12,10)
fcc LJ(12,8)
fcc LJ(12,6)
fcc LJ(12,4)
fcc LJ(10,8)
fcc LJ(10,'6)
fcc LJ(8,6)
fcc LJ(6,4)
bcc LJ(6,4)
bcc R(1)
bcc R(2)
bcc R(3)

—0.020—0,020—0.017—0.009—0.020—0.018—0.017—0,008
0.002—0.141—0.050—0.006

—0.035—0.044—0.071—0.071—0.054—0.059—0.061—0.065
0.058
0.138
0.080
0.088

—0.105—0.111—0.115—0.114—0.121—0.127—0.141—0.171
0.085—0.555—0.177
0.131

& {d lnvrr„/rz ln V) &vrrp

Gt = Got+ G4t. (5.24)

In extending the original approximations for G3 and G4
to all neighbors and all lattices with one or two ions per
unit cell, the small contribution from the (Bp; p;,p;")'
terms, Eq. (4.5) of Ref. 2, has been dropped.

As mentioned in Sec. III above, the expressions (5.22)
and (5.23) were used to calculate (approximately) the
volume derivatives of G. The results are given in Table
III for fcc; the values for hcp are identical to the num-
ber of 6gures given. The various derivatives of G3~ and
G4t are not listed in Table III. For each potential, it was
found that (U/Got)(dGot/dV) =(V/G4t)(dG4t/dV), and
similarly for second derivatives. As a result, the deriva-
tives of Gt listed in Table III are believed to represent
derivatives of G as accurately as Gt represents G.'

The expressions (5.14)—(5.23) are easily transformed
to simple forms involving the lattice sums which are
tabulated in an Appendix of Ref. 4. With the aid of these
sums the approximations were evaluated at 0 =0 for the
models. Note that (dU/do. )=0 at o =0. The results of
comparing the approximations with the accurate values
are given in Table IV in the form of the errors 8Q, where
for any quantity Q whose approximation is Qt,

~e=(e—e')/e (5.25)

The hcp results are not listed since for high-temperature
quantities the approximations and errors are essentially
the same as for fcc, while the low-temperature approxi-
mations have not been treated for hcp. The approxima-
tions are in general quite satisfactory, except for the case

TABLE III. Volume derivatives of the approximate coeKcient
of the anharmonic free energy at high temperature, evaluated at
0.=0. For each potential, the values for hcp are the same as for fcc.

of bcc R(1), where the error in each quantity is much
larger than for any other model. The unusual properties
of this model are evident throughout the present work,
and appear to be due to the fact that this potential
varies much less with distance out to the third neighbors
than do the other potentials for the bcc and other
lattices.

The further approximation of taking only the nearest-
neighbor contributions to the sums in (5.14)—(5.23) has
also been investigated. This procedure nearly always
increases the error of the approximation, and by a large
amount in all cases but the very short-range potentials.

Relations Between Anharmonic Proyerties

With the aid of (5.14)—(5.23) it is possible to find
simple approximate relations between different an-
harmonic properties. This has been carried out with
the consistent use of further approximations of the type

Zv ru 4 ou Zv rv P ov ~ (5.26)

Note that this relation is correct for the nearest-
neighbor contributions. The only difFiculty arises for
the quantity Gpt, the expression (5.22) is handled by re-
writing the last term according

Z. "'(e"'o,)'=s-'LE, r.'e"'o,7', (5.27)

where s is the number of nearest neighbors. This ap-
proximation is correct for the nearest-neighbor contri-
butions. The first two terms in (5.22), involving
(p"p„)' and p' p„p p„are small; these terms are neglected
since this procedure, coupled with the use of (5.27), is
found empirically to give a good approximation.

With the aid of (5.26), it is found for o.=0
Model

fcc LJ(12,10)
fcc LJ(12,8)
fcc LJ(12,6)
fcc LJ(12,4)
fcc LJ(10,8)
fcc LJ(10,6)
fcc LJ(8,6)
fcc LJ(6,4)

(t /Gt) («t/«)
8.52
7.50
6.33
4.88
6.55
5.58
4.77
2.75

(V'/Gt) (&'Gt/& V')

80.1
60.8
41.3
21.7
47.5
31.4
22.2
5.61

0= (6V /ep'kp) . (5.28)

This is not a good approximation for the present models,
the error varying from very small for the short-range
potentials to 30'Po for the long-range potentials.
Nevertheless, the consistent use of (5.28) to eliminate 0
does not seriously affect the 6nal approximations. The
relations between anharmonic properties were trans-
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TAsLx V. Errors in the approximations (5.29)—(5.51), evaluated
at 0=0. The errors are expressed according to the defintion
(5.25) and discussion in the text.

Model 6 (d 1nko/d ln U) SPrri & (Car/&&&)

fcc LJ(12,10)
fcc LJ(12,8)
fcc LJ(12,6)
fcc LJ(12,4)
fcc LJ(10,8)
fcc LJ(10,6)
fcc LJ(8,6)
fcc LJ(6,4)
bcc LJ(6,4)

0.006
0.014
0.027
0.051
0.023
0.038
0.052
0.100
0.096

—0.061—0.058—0.045—0.012—0.058—0.045—0.042
0.002
0.229

—0.190—0.19].—0.194—0.190—0.188—0.185—0.201—0.617

b= (Vgt/Kkp) .

In obtaining (5.30), a preliminary result was

QIIO QHoo j

(5.32)

(5.33)

this has been derived for primitive lattices only and is a
fair approximation for the present models.

The errors in (5.29)—(5.31) may be represented
according to the de6nition (5.25), where the right-hand
side is considered an approximation to the quantity on
the left. These errors are listed in Table V for the pres-
ent models at 0-=0. In view of their simplicity, the
approximations are considered satisfactory.

VI. DISCUSSION

The present paper, as well as previous work, ' 4 re-
ports the results of extensive numerical calculations of
thermodynamic properties of crystals. These calcula-
tions are based on the lattice-dynamics free energy, for
models with prescribed interactions among the ions.
Direct summation over a portion of the Brillouin zone,
with the use of weighting factors, is a much more practi-
cal method of carrying out such calculations than is the
more customary method of calculating the frequency-
distribution function, transforming Srillouin zone sums
to frequency integrals, and then integrating over fre-
quencies. In addition, the Hellmann-I'eynman theo-
rem provides a convenient method of obtaining the
first derivatives of the eigenvalues with respect to
con6guration.

Since the accurate calculation of thermodynamic

formed so as to contain ea,sily measured quantities and
applied a,t o-=0. After a lot of algebra, the results are

(d inks/d ln V) = -', (b+-,'), (5.29)

(5.30)

Car/NJK= f (3Pt/sb)(b+s)'
2Pt(b 4—(rf 1nPt/—d lnV)+4t]) 2", (5.31)

where

functions for a specified model is generally tedious, it is
desirable to be able to estimate such quantities. The
accurate calculations of the present and previous work
may serve as references for checking such approxima-
tions as may be developed. In addition, the approxima-
tions which have been developed may serve to estimate
anharmonic-thermodynamic functions for models in
which the interactions among the ions are specified.

The thermodynamic properties of the central-potential
models exhibit certain qualitative features which may
be expected to describe many real materials. The har-
monic contribution to the specific heat approaches a
constant value at high temperatures for fixed volume
(o.=0) or for zero pressure (o.=or). On the other hand,
the explicit anharmonic contribution at high tempera-
ture, which is proportional to T at 0.=0, is not negligible
in general, and may have a strong volume dependence.
At 0-= 0 the isothermal compressibility has only a small
temperature dependence and the explicit anharmonic
contribution is small, while at 0 = 0-& the compressibility
increases considerably with increasing temperature,
again with the anharmonic contribution being small.
At fr=0 the quasiharmonic thermal-expansion coefBci-
ent has only a small temperature dependence at high
temperatures, and the explicit anharmonic contribu-
tion is small. On the other hand, at cr=o-j the thermal-
expansion coeKcient increases considerably with in-
cieasing temperature at high temperature, while the
explicit anharmonic contribution is again small. This
temperature dependence of k and P at o=0 and at
o-=o-~ rejects the large volume dependence, and small
explicit temperature dependence, of these quantities.
At f7=0 the quasiharmonic Gruneisen parameter ap-
proaches a constant value at high temperatures; the de-
parture from this high temperature limit at 0 =0~, and
the explicit anharmonic corrections at 0-=0 and 0-=0~,
are complicated and are not negligible in general.

The approximate relations between anharmonic prop-
erties, as given by (5.29)—(5.31), might be of value in
estimating an anharmonic property of a material with
the aid of other properties of the material. In view of
the derivation of these relations, they may be expected
to apply only to elements in the crystalline state, and
then only qualitatively.

An extensive study of the available data for many
materials is presently being carried out. This study in-
cludes the reduction of C, P, and k, as measured at zero
pressure, to a fixed volume. Preliminary results indicate
that the temperature dependence of these thermody-
namic quantities, at fixed volume and at zero pressure,
agrees qualitatively with behavior summarized above
for the present calculations, at 0-=0 and at 0=0.~, re-
spectively. In addition, the relations (5.29)—(5.31)appear
to hold qualitatively for the elements.


