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We present here a theory of intrinsic London superconductors in the vicinity of the transition point
where the transition from the mixed state to the normal state takes place. The equations for local super-
conductors Pi.e., for tt(r) j for impurity-free metal, deduced previously by Gor'kov, are explicitly solved by
using the variational function of Abrikosov. Use is made of the results due to Gor'kov concerning the upper
critical Geld of pure superconductors. It is shown that the mixed state in the immediate subcritical region
is expressed in terms of KI and K2, which coincide at the critical temperature with K, the Ginzburg-Landau
parameter. The upper critical Geld is expressed in terms of KI, while the slope of the magnetization curve
is given in term of K&. The explicit calculation of KI and K2 shows that K2 increases more rapidly than KI as
temperature decreases, and diverges at low temperature.

Gor'kov, ' by using a homogeneous integral equation
for the ordering parameter A(r). In the region where the
external Geld Ho is slightly smaller than the upper
critical Geld H, 2, it is expected that the ordering param-
eter might still be small. The basic equations required
to describe this situation have already been obtained
by Gor'kov' and our task reduces to solving this set
of equations explicitly by a variational method. We
find that, as far as we approximate nonlocal kernels by
local ones (see Sec. III), Ahrikosov's structure in the
immediate subcritical region is completely described in
terms of two parameters tet(T) and zcs (T) which coincide
at the critical temperature with z, the Ginzburg-Landau
parameter. The upper critical field H, 2 and the mag-
netization M are expressed in terms of a~ and ~2 as

I. INTRODUCTION

'HE concept of negative surface energy introduced
by Ginzburg and Landau' seems to be most

useful in accounting for the anomalous magnetic prop-
erties of so-called London superconductors. Abrikosov'
has shown in his remarkable study of the Ginzburg-
Landau equations the existence of Aux-line structure in
superconductors having f(:, the Ginzburg-Landau param-
eter, larger than 1/K2 in strong magnetic fields.

Unfortunately it turns out that the Ginzburg-Landau
theory holds only in a small temperature region close
to the critical temperature, ' and hence it is worthwhile
to examine if Abrikosov's picture is valid at lower
temperature.

Previously one of the present authors' showed that
Abrikosov's theory holds quite generally, independently
of temperature, in the case of superconducting alloys
where the electron mean free path is very short.

The purpose of the present paper is to study the
magnetic properties of the mixed state in the immediate
subcritical region, by restricting ourselves to the case of
intrinsic London superconductors (where the electron
mean free path is infinite). Although such superconduc-

tors are very scarce in nature, it is still of interest to
study these ideal cases which, together with the previous
results for alloys, might throw light on the general

properties of London superconductors.
The upper critical field below which the normal state

becomes unstable has been reviousl obtained b

EE,s(T) =xi(T)V2EI, (T)

—4zrM = (EE,s—EEs)/(L2zcs'(T) —1jP}, P = ]..16,

respectively, where H, is the thermodynamic critical
field and Ho the external Geld.

Explicit calculation of I~:I and f~:2 shows that the relation
zcs(T)kzct(T)~zc holds in the present case, and zcs(T)
diverges as flu(c/T)$'" at lower temperatures T, which
behavior is quite in contrast with the case of alloys.

In the following we use the unit system A= i&=C= 1.

II. EQUATIONS FOR LOCAL
SUPERCONDUCTORS

p y
In this section we would like to give a general back-

ground for subsequent discussions. We shall present
On leave of absence from Research Institute for Mathematical the basic equations for local superconductors on the one
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where'
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Asymptotically we have
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Using the above expressions, we can readily derive the
expressions for the magnetic induction as well as the
free energy.

B=H=H0 (H 2
—Ho)/(2K22(T) —1)p (40)

A recent calculation of H, 2 by Helfand and Werth-
amer' shows that the temperature dependence of ~~

changes gradually and monotonically from its value a,t
l= ~ to that at 3=0 as the electronic mean free path de-
creases. The present calculation suggests that the tem-
perature dependence of ff.2 might be much more sensitive
to the impurity concentration (or the electronic mean
free path) than that of i~i. In this respect, detailed meas-
urements of the slope of the magnetization curve at the
transition point are quite desirable.

We shall conclude this section with a brief discussion
of the validity of the general Ginzburg-I andau approach
(i.e., the possibility of expanding the free energy in
powers of the square of the order parameter 6).

Assuming tha. t such an expansion is possible, we
obtain formally
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for T.o
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It is interesting to note that ~2 increases rapidly
as the temperature decreases, and it diverges as
Lin(T, O/T)$U2 at T= O'K. Interpolating the value
K2 to intermediate temperatures we expect Kp

~ K] to
hold always. Incidently McConville and Serin' dis-
covered a rapid increase of f~:2 in their recent measure-
ment of the jump of the specific heat along the transition
line in pure niobium samples.

' E. H. Kleiner, L. M. Roth, and S. H. Antler, Phys. Rev. 133,
A1226 (1964).

9 T. McConville and B.Serin, Phys. Rev. Letters 13, 365 (1964).

/

IV. CONCLUDING REMARKS

In the above sections we have seen, restricting our-
selves to the immediate subcritical region where the
ordering parameter is still small, that Abrikosov's
theory has a rather wide applicable region if one
introduces two parameters f(:~ and f(:2 instead of a single
~. In the derivation of the final results Eqs. (40) and
(41), we have systematically approximated nonlocal
integral kernels by local ones. The errors involved in
such approximations are found to be a, few percent,
independently of temperatures.

The most interesting result of the present study is
that f(.2 is always larger than K~. This situation is in
contrast to one we met in the case of alloys, where we
have ~~&a2. The following asymptotic expressions for
the case of alloys are compared with Eqs. (21) and (44).

~i ——~(1+0, 130),
gg= lc(1—0 398), fol' T o T«T o. (45)—

where a, b, and c are the functions of the tempera, ture
and the external field.

In the case of Abrikosov's mixed state in pure super-
conductors we have

~= (mpo/(2~)')(ei'/(27rT)')(H. p
—Ho)g(p), (47)

1 mp, 1 4mlV 3ea
a(~) I

—fi(~) (48)
4 (2') (27rT) 3m 2mT

As we have already seen, b (or pfi(p)) diverges as
ln(T.O/T) at lower temperatures. The close examjnatjon
of t,

. shows that g diverges even more badly. Therefore,
in order to obtain a reliable expression for AF at
extremely low temperatures, we have to sum an
infinite series of diverging terms. Such a summation is
in fact possible and we find at T=O

»= ~&
I
~ I'&-+f ' »(constT o/& I

~ I'&-"')(I ~ I'&- (49)

Roughly speaking, the above expression is obtained
from Eq. (40) by simply replacing ln(T, o/T) in the
coefficient b by ln(T, O/(I hl'), 'i'). The above equation
indicates that the formal expansion of Eq. (40) becomes
invalid at lower temperatures. On the other hand, in
the case of alloys we have seen that the expansion (40)
is always possible if

I
hl' is small at all temperatures.

This different situation for the ca,se of alloys rejects the
existence of the gapless region in fields close to the
upper critical field where the excita, tion spectrum of
quasiparticles is strongly modified. ' '

As far as real superconductors are concerned, the
electron has a finite lifetime r and we expect that at
extremely low temperatures where rT((1, the factor
ln(T, O/T) may be replaced by in(rT, p) aild Kg(T)
remains finite even at T=O'K.

The recent measurement of the jump of the specific
heat along the transition line in pure niobium samples'
seems in qualitative agreement with the present theory.

"P. G. deGennes, Phys. Condensed Matter 3, 79 (1964).
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Ke should, however, point out that there is a serious
disagreement concerning the temperature dependence
of the uper critical field, ' " of which the origin is not
clear.

In summary we conclude that Abrikosov's picture
holds quite generally, independently of the temperature

and the electronic mean free path, if we use two param-
eters. Deviation from the original Abrikosov theory is
most easily seen in the temperature dependence of
xs(T) Lor (BM/BH)

~
rr, Ir„], which behaves quite

differently depending on whether the electronic mean
free path is short or long.

APPENDIX

In the following we shall calculate explicitly the quantities corresponding to the diagrams given in Fig. 1. %e
use the Green's function given by

G (r r') cia(r, r')

where

(= (Ps-Po') j2m, .=2.T(ri+-;),

p(r, r') = -',

ebs�(x+x')

(y —y') .

Ke assume here that the magnetic field is uniform and directed along the s axis.

A. The Calculation of the Diagram (a)

IC= T Q dr" G„(r',r)G „(r',r)lV(r')

=TP d'r'
d3p q.

d3- iq ~ (r—r'}+ieHO(x+x'} (y—y'}
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mps= T P -- dQ d'r'
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where we have integrated over & after replacing d'y by mpod(dQ.

Taking the polar axis in the direction of x

(i.e., v il=tt(q, coso+q„sin0 cosg+q, sin0 sing)),

we can carry out further integrations. We have finally a simple expression for the case where D(x',y') depends
only on x';

FIG. 1. (a) The diagram corresponding to the coefficient of
6 in Eq. (1). (b) The diagram corresponding to the expression of
the current density. (c) The diagram corresponding to the
coeKcient of ~A('6 in Eq. (1).

(b)

"E.S. Rosenblum, S.
'

H. Antler, and K. H. Gooen, Rev. Mod. Phys. 36, 7'/ (1963).
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B. The Calculation of Diagia ram (b)
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sinh((2zrT/z)z) I »—» I )
~~eiaeH 0 h

'
h((2 T/ )I*,—

(A9)

(A10)

and

kzz

Hpi

kzzz i' k(zz —zzz) k

(2eHpl2eH i eH,

8((z) = 1 for a)0,
=0 for a(0. (A11)

of continuity Bj,/ +())xj„8 y/By =0.sf the equation of con inuex ressions satyrs yee that the above expr
( 10) f hEquations (A9) and A a

T'eiP ik(n m)y-
nr fllr

leicxeHph2dxp P„(x+»)P„(x—» e

(A12)"I I+IslnhI
I
xl+xz

E zs

nr tnr g/ g einHph2'dxp P.(x+xl)P (x—xp e

where

I'I+I
'

x (A13)slnhI
I xl+xp

'E ps

Ke finally obtain

H 2xp(x —kzzz/2pHp)}.lz — '+2xl (x—kzz/2eHp 2xp x—AP' ——(Xlp —Xz (A14)

x kzzz/2eHp) for i =x, y,x)B,(x+Jdm/2eHp, x+kz)z e pJ, „=eiik ( m) yyrr(X)p (X

E . 27).where 8; is given in Eq.

(A15)



A 876 K. MAKI AN D T. TSU ZUK I

C. The Calculation of Diagram (c)

rz rz 4 4, r rz G„rp, r4)G „(r~,r4)&&&"(r&)h(rz)ht(rp)h(r4). A16d'rzd'rzd'rzd'r4G„(rz, rz)G „(rz,rz)G„rp, r4 G „r~,r4

Substituting in the above expression

D(x)= P C„e""p&P„(x)
)I=—00

tion to that given in the prece gin subsectionswe obtain after a similar calculation o a

' ')T 2 C-'C-'C.+vC--'~. ,-+., -,--.,R= (mpp/(2&r)'v )i
rz

&
m

& p
(A17)

~'It/
& N2 &

'Il3
& A4 dxz dxz dxp dx4 8(1&3 I 2&4)

where

()4 ()k()N() ( )X.
sir&h((2&r T/vs)

l
x&+xp —xz —x4

l )

8(1,3; 2,4)=1, for xg, xp)xz, x4

Ol X)) Xg 'l 2) - 4 )

otherwise;

—cos8 n= tar&8 cos@, dQ=d cos8 dP

2eH p) 2eHp

2—
l

(n&'+n ' —nzz —n4z).
2eIEp) 2eFIp)

(A19)

n be further carried out and we haveThe above integration can be ur

= (v'/(2zr T)')e c&"*&s(nz&nz,np&n4),~n, , n, , n, ,n4=

where
N 22 2 2

~It
2

~ @1 g&. 2C n )=(k'/4eHp)(nzz+nzz+n, +n, ——,', n,

= (k'/4eFIp)L(n& —n,)'+ (n, n, —

(A20)

(A21)

( && z& p& 4)
2m' e sinh (t/s)

—e—&"""" & coshL(p)'t'tZ(u, v,n; n,)],
—tt 2

(A22)

A u v n = —, — ' ')—-'in((1 —u)' —v')+-,'(1+n')),A u, v, n) = (-', ((1—u)'+v' ——,zn (A23)

(H )'")((1— )(1- )(.—.)+ 1+in)v (nz np) }. —a(u, v,n; n;) =(k/2 e,

approximation we h

k2

, p ~ ~z )&ex — — t'(n —nz)'+ (n nz+2P)'j-f ( ) P C tC zC,+„C „)&exp — — n —nz

2zr)' (2&rT)' 2(eHp)"'

= ~ p 2~)')(2~T) '(V'~) 'f~(p)&l~(r) I')-, (A25)

where

f, (p) = 2 (eHp)'"s (0,0,0,0)

~s 0000).ood approximation to plit s nz&nz&np&n4) s(—ver weakly and it is a gooAs we shall show below, s depends on e, very
~ ~ ~

aveIn this

imation. As the general discussion
'

niscom licated,o1 nil th bo a oi to. sFinally we shall estimate the. |;JTgr invo ve in e
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we consider only asymptotic behaviors. Using the technique we used in subsection (b) we find

1 62 1054i
s(n, ,zzs, zzs, iz~) = — 7t (3) —f—(5)p+ 0 (7)p'

2zr(eH, )'i' 3

127
i (7)p' ((zzi —zzs)'+ (zzz —zz4)')+21 (zzi —zzs)'(nz —zz4)'

60 4eH, &«»s
for p((1, (A27)

1 4; in(24~p) [in(1+v2)]'
2zr(eHs)"'

1 ln(1+&2)——+ —(ln(1+v2))z —((nr —zzs) + ('izz —«) )
2 2&2 4eBO

1 k2

4p i lii(24"rp) 0.77—0.04 —
L (zzi —zz,)'+ (izz —zz4)'j, for p))1 .

2zr (eH s) "' 4eHO
(A28)

Thus we see that in both limiting cases the effect of nonlocality of the kernel E& D.e., the term containing the
additional factor (zzr —zzs) and/or (zzs —N4) in coe%cient of e i"'fi] is quite negligible. This fact suggests that it is
a plausible approximation to replace nonlocal kernels by equivalent local ones, as we have done in the derivation
of Eq. (35).
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TheIll1al Expansion and Other Anharmonic Properties of Crystals*
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The temperature dependences of the thermodynamic functions, as derived from lattice dynamics, are
examined for the limit of low temperature and also for high temperatures (those above a high characteristic
temperature). Particular attention is given to the effects of anharmonic terms in the lattice potential
energy. Detailed calculations are reported for central-potential models for fcc, bcc, and hcp lattices. In
particular, the normal-mode frequencies and Gruneisen parameters were calculated for a large number of
points in the Brillouin zone as a function of volume; and the specific heat, compressibility, thermal-expansion
coeKcient, and macroscopic Gruneisen parameter were calculated as functions of temperature and volume.
At fixed volume the isothermal compressibility shows little temperature dependence and the explicit an-
harmonic contribution is small; at zero pressure the compressibility increases with increasing temperature
and the explicit anharmonic contribution is again small. The thermal-expansion coefhcient exhibits similar
behavior at high temperatures. The anharmonic specific heat is proportional to temperature at high tem-
peratures, and also depends strongly on the volume. The effective Debye temperatures and the macroscopic
Gruneisen parameters exhibit a wide variety of temperature and volume dependences. Approximations are
developed for quantities which determine the behavior of thermodynamic functions at low and high tempera-
tures, and approximate relations between several anharmonic properties are found. These approximations
are tested by comparison with accurate calculations for the central-potential models.

I. INTRODUCTION

'HE purpose of the present paper is to report the
results of a study of the thermodynamic proper-

ties of crystal lattices. The study is based on the
lattice-dynamics free energy, and particular attention is
given to the sects of the anharmonic terms in the
lattice potential energy. Detailed calculations of thermo-
dynamic functions for models based on central-potential
interactions among the ions have been carried out for

*This work was supported by the U. S. Atomic Energy Com-
Dllsslon.

fcc, bcc, and hcp lattices. Even though the central-
potential models are probably inadequate for an accur-
ate description of most real materials, it is believed that
the qualitative behavior of these models is representa-
tive of real crystals.

In order to study the statistical thermodynamics of a
system, the first step is to define a mechanical problem
of motion for the system. If the thermodynamic proper-
ties are to be studied as a function of configuration, then
it is necessary to formulate the mechanical problem in
such a way as to allow the conhguration to be varied.
Indeed, this is necessary in principle in order to define a


