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We present here a theory of intrinsic London superconductors in the vicinity of the transition point
where the transition from the mixed state to the normal state takes place. The equations for local super-
conductors [i.e., for A(r)] for impurity-free metal, deduced previously by Gor’kov, are explicitly solved by
using the variational function of Abrikosov. Use is made of the results due to Gor'kov concerning the upper
critical field of pure superconductors. It is shown that the mixed state in the immediate subcritical region
is expressed in terms of k1 and ks, which coincide at the critical temperature with «, the Ginzburg-Landau
parameter. The upper critical field is expressed in terms of i, while the slope of the magnetization curve
is given in term of k2. The explicit calculation of x; and xe shows that x; increases more rapidly than ; as
temperature decreases, and diverges at low temperature.

I. INTRODUCTION

HE concept of negative surface energy introduced
by Ginzburg and Landau! seems to be most
useful in accounting for the anomalous magnetic prop-
erties of so-called London superconductors. Abrikosov?
has shown in his remarkable study of the Ginzburg-
Landau equations the existence of flux-line structure in
superconductors having , the Ginzburg-Landau param-
eter, larger than 1/V2 in strong magnetic fields.

Unfortunately it turns out that the Ginzburg-Landau
theory holds only in a small temperature region close
to the critical temperature,® and hence it is worthwhile
to examine if Abrikosov’s picture is valid at lower
temperature.

Previously one of the present authors* showed that
Abrikosov’s theory holds quite generally, independently
of temperature, in the case of superconducting alloys
where the electron mean free path is very short.

The purpose of the present paper is to study the
magnetic properties of the mixed state in the immediate
subcritical region, by restricting ourselves to the case of
intrinsic London superconductors (where the electron
mean free path is infinite). Although such superconduc-
tors are very scarce in nature, it is still of interest to
study these ideal cases which, together with the previous
results for alloys, might throw light on the general
properties of London superconductors.

The upper critical field below which the normal state
becomes unstable has been previously obtained by

* On leave of absence from Research Institute for Mathematical
Sciences, Kyoto University, Kyoto, Japan.
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Gor’kov,? by using a homogeneous integral equation
for the ordering parameter A(r). In the region where the
external field Hy is slightly smaller than the upper
critical field H o, it is expected that the ordering param-
eter might still be small. The basic equations required
to describe this situation have already been obtained
by Gor’kov® and our task reduces to solving this set
of equations explicitly by a variational method. We
find that, as far as we approximate nonlocal kernels by
local ones (see Sec. III), Abrikosov’s structure in the
immediate subcritical region is completely described in
terms of two parameters (") and x2(7) which coincide
at the critical temperature with «, the Ginzburg-Landau
parameter. The upper critical field H., and the mag-
netization M are expressed in terms of x; and «s as

I o(T)=x:(T)V2ZH ,(T)

and
—47!'M——— (f]cz_lfo)/{[ZCgZ(T)— 1]6} y B= 116 5

respectively, where H, is the thermodynamic critical
field and H, the external field.

Explicit calculation of k; and ks shows that the relation
k2(T)Zx1(T) =« holds in the present case, and «2(T)
diverges as [In(¢c/T)]"? at lower temperatures T, which
behavior is quite in contrast with the case of alloys.

In the following we use the unit system #=kp=C=1.

II. EQUATIONS FOR LOCAL
SUPERCONDUCTORS

In this section we would like to give a general back-
ground for subsequent discussions. We shall present
the basic equations for local superconductors on the one
hand and recapitulate in detail the calculation of the
upper critical field due to Gor’kov on the other hand.
In the following we use the same notation as used by
Gor’kov?® unless otherwise stated explicitly.

5L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 37, 835 (1959)
[English transl.: Soviet Phys.—JETP 10, 593 (1960)].

A 868



MAGNETIC PROPERTIES OF LONDON SUPERCONDUCTORS

When the ordering parameter A(r) is small (i.e.,
AT K1, T, is the critical temperature), which is
usually the case if magnetic fields are sufficiently large,
we obtain the following equation3:

M= g T Y / Gt DG (DA &

—lng%/f/Gm(s,r)G_w(s,l)Gw(m,l)

XG_,(m,r)AT(s)A(D)AT (m) ds? &*l @*m,
w=2rT(n+1), ¢y

where |g| is the coupling constant between electron
paris, T is the temperature, and the summation is
taken over all integers.

The ordering parameter Af(r) is defined by

AT (1’) = igl <T1¢TT (l‘,t)l,bﬁ (r:t»:

where (T,---) means the average of the time-ordered
product over Gibbs’ ensemble. The Green’s function is
given by

G,(r,x)=¢ier GO (1,r),

where G, 0(r,r’) is the Green’s function of the electron in
the normal metal and its Fourier transform is given by
(twn,— £yt with g= (p*—p®)/2m. The effect of the
magnetic field is taken account of in the phase factor
o(r,r)=e Sv* A(l)-dl, where A is the vector potential
and the integral is taken along a straight path connect-
ing rand r'.
Similarly the current density is given as

=TT TS / /Gwa',s)cu,(l,s)
m n

XG-o L) ATDA(S) B ds|arr. (2)

The above set of equations has been previously
obtained by Gor’kov?® in his microscopic derivation of
the Ginzburg-Landau theory.

For the following discussions it is more convenient
to rewrite Eq. (1) into

ln( 7;D)Af ()= f Ko(r,r)AT () &

—/[/Kl(r,s,m,l)AT(s)A(m)AT(l) dBsdmdl, (3)

where we made use of the identity

mpo YWD
1=~—|g|1n( ) ,
272 7T

po is the Fermi momentum, and wp is the cutoff fre-
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quency. T is the critical temperature and Iny=C the
Euler constant.
Two integral kernels are given by
(mpo/20)Ko(x,t)=T X0 Go(r'r)G_o(r',r)  (4)
and
(WPO/ZWQ)KI (r,s,l,m)
=T 35 Go(8,1)Go(5,]) - G (m,)G_s(m,1) 6)
respectively.
As is well known, Gor’kov® has shown that there is
another critical field besides the thermodynamic
critical field corresponding to the limiting field below

which the normal state becomes unstable, and he
calculated this field by using the following equation:

YWD
ln(
7rTc0
which is the linear part of Eq. (3). After a number of

integrations he arrived at the following integral equa-
tions (see also Sec. A of the Appendix):

)A* (r)= /Ko(r,r')AT )%, (6)

E’YA()oa (eH )]/2
A(x)ln( );—_ / Hy(xax)A(x)dx",
v(eHQ)W 7
where ")
Hr(&/ (el o), &'/ (el o)'?)
B 2aT * du Jo((£— ") (u—1)'12)
- v(ell )"/? /1 wsinh[ QuaTu|s—¢'|/v(ell4)'2)]
><0( [E—¢&[—0), ,
6(a)=1, for >0 (8)
= 0 for ¢<0,

8 (>v(eHo)"?/wp) is introduced so as to simulate the
cutoff of the interaction in momentum space, v is the
Fermi velocity, and Agp=wTc/vy is the ordering
parameter at 7=0°K. In deriving the above equation
we assume that the external field H, is uniform and
directed along the z axis and A depends only on x. The
exponential e and the charge e should not be confused
here. It is easy to see that the latter appears always in
dimensionless combinations such as v(eHo)V?/xT and
(eH o) %x.

In the light of a recent formulation by Helfand and
Werthamer,® we know that the eigenfunction of Eq. (7)
should be e~*Ho=* (more generally speaking, Hermitian
functions with argument (2¢H,)Y*x). We first rewrite
Eq. (7) in the form

eyAgod (e )2 > =
ln( ) =— / / dx dx’ At (x)
v(eH o)'/2 2 o o0

><HT(ac,x')A(s\f')//oo [A(x)|2dx. (9)

6 E. Helfand and N. R. Werthamer, Phys. Rev. Letters 13,
686 (1964).
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Substituting A (x)=e¢#o* into Eq. (9) we have
C’YA(ma
ln( )
v(eH o)!/?
H 1/2 0 0
T (e 0) / / dx dx' e—eHo(a2+a'2)
2 o0 0

X Hrp(x,2) / / dx ¢-2eH0s?
172\ W 2T [edu
:_ﬂ(__) / dE/ dg e~ E+ED
2\7 v(eH)'? /)1 u

o it Ll i A B
sinh[ (2nTu/o(eHo)?) | e— 1]
The above expression reduces further to
e’YAooa
ln( )
v(eH0)1/2
0 « du e—}(u2+1)§2[0(% (uz_ 1)§-2)
=—p_1’2f dﬁ' - ) (11>
P 1 % sinh (p~2¢u)

where p= (v(ef)"2/2xT)? and we have made use of
identity

w0 A\ 12 B2
/ e J1(bx) dv= (~—> e‘bz/'s“[(](—) . (12)
e a 8a

Using the relation

2(p)'?
o2 3
in ( ) / /1 w sinh (5=20u) 19

we finally obtain an implicit equation for the field H,
at which the nucleation of superconducting correlation
begins:

In(7/Te0)+fo(0)=0, (14)
where
1 oodu
o= [ s =
0 1 u
— e DT (L (g2 1)¢2
1—e o ( )f)’ (15)

sinh (o 1/2¢u)

and To="Ao0/ is the critical temperature. The asymp-
totic forms of fo(p) are given as (see Sec. A of the
Appendix)

Jolo)= (1/6)t B)o— (31/10)¢ (S)st-+ (281/28)¢ (1),
for p<1 (16)
=InQe 1 (2yp)2)+72(¢’ (2)

+L5(2)/2Jm(2/m*vp))p™
The upper critical field is obtained from the above

p>1. (A7)

for
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expressions :
1
H(T)=— (27T co)?
er? 7¢(3)
31 6 \* 3
Lol 24
10 7¢(3) 2
0=1—T/Ty, for To—T<KT, (18)
1 ’YA()()262 'yS
ch(T)=—(~ ){1——[;'(2>+§‘<2>
e\ 2 e’
2T T \?
() 2@
™ TcO TcO
for T<Te. (19)
Defining «1 by x1(7)=H o(T)/V2H .(T), we have
k1=1.25{1+0.65(T/ T s0) In(const (T/T.v))} ,
for T<T., (20)
=x(14-0.410), for T, —T<KT., (21)
where
k= 3aT qom/e) Qrm/T¢ (3) po®)!/?
and we made use of the expressions
,YQ
IIC(T) = (2471?0/#)1/2A00|:1——,;(T/Tco)z:l ,
for T<<T. (22)
Tmpo\ /2 31¢(5)
- (___) 4Tc00[1——<1— >e] ,
75 (3) 49¢ (3)?
for To—T<TH. (23)

The above results have been previously obtained by
Gor’kov®. He proposed an interpolation formula of the
form

VIky (1) ={1.77—0.43(T/ To0)*+0.07(T/To0)"} ,

which is currently used in the analysis of the experi-
mental data.

(24)

III. ABRIKOSOV’S MIXED STATE

In the preceding section we have obtained an implicit
equation for the upper critical field H.» by assuming
A(r)=e¢°Ho=* Tt should be noted that Eq. (6) has
degenerate solutions

A(r)y=exp{iky—eH [ x— (k/2eH )]’}

for arbitrary k.

When the external magne’uc field is slightly smaller
than H,s and the ordering parameter is still small, it is
quite natural to look for the solution of Egs. (2) and
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(3) by assuming

AN=3 Coln(x,9);
e (25)

¥ (x,y) = exp{ikny—eH [ x— (kn/2eH,) I} ,
where C, and % are constants.

Substituting Eq. (25) into Eq. (2) and after a rather
lengthy calculation we find (see Sec. B of the Appendix)

()= — . T CuCalpad
.;‘ x,y)= nljbn m ¥'m
] m(27rT)2 n,n
kn km
Xt s4——), (20
2€H0 26H0

where i=x, y

3 2xT\3 [dQ = 0
Bz(d,b) = —'—<—-““) [ - / dx1/ dxs
dr\ v z Jo 0

XA (.’XZ],?Cg; ayb) 1)

3 /27T\?3 aQ r i
By(a,b)=—<~—~) /10[""[ dx1/ dxg
4\ v 2z Jo 0

x4 (xhx2; d,b) )
A (x1,22; a,0) = exp{—eH o[ (1—ia) (x2+2x1a)

xl:sinh(ZTTTIxx+le )T , (28)

N=p¢/3n? is the density of electrons and z=cos#,
a=tand cos¢, and dQ=d cosf d¢.

Itis not difficult to show that j; defined above satisfies
the equation of continuity (see Sec. B of the Appendix)
and we can integrate the Maxwell equation v X H=14rj.
The magnetic field is given as

27

eN
H(r)=Hy—— > CnCulpn®
m (2w T)? n,m
kn km
><c<x+ ot ) , (9)
26H0 2€H0
where
kn km
C (x+ , X+ )
Z(ZHO ZEHQ
= kn km
=/ ]31,<x'+ , %+ )dx' . (30)
— 26H0 2€H0

The above expression for the magnetic field is much
simplified if we neglect small nonlocal effects, which
amounts to the approximation

kn km
, X
2€H0 ZeH(;

C(x—l— >_%C(0,0) . 31)
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In this approximation we have
HO=H— o) a0F, @)
t)=H,— p)|A(r)|?, 32
TR
where
1 afo(p)
g(p)=—C(0,0)= (33)
6 dp

and fo(p) has been already defined in Eq. (15).

We can further carry out the similar calculation as
given by Abrikosov.? First we note that in the presence
of the magnetic field H (r), the following integral

I=<A(r){ln<:;:>5'(r)— / K0<f’f'>‘“<")d3"]>

av

reduces to
T v?eH (1)
= —t 1, U
I <A(r)[lnTco—|—f ( (sz)Z):lA (r)>w
ev?

(2,,]‘)2 (ch—Ho)g(P)< I A |2>av

=N <3ev 2 )
6m (xT)? g}g(p)><m( Vv, (34)

thanks to a general relation” between the change of the
eigenvalue and the expectation value of the change of
the integral operator. Neglecting a small nonlocal
effect associated with the integral /./ /) d%r d%s d°l d*m
X Ki(r,8,Lm)A(r)AT(s)A()AT(m), we finally obtain
(see Appendix C)

ev? 1
— H:.—H, 29“’ o7
. Ol s
47N 7 3ev 2 .
where

1 rdQ > P£dt
-t [ 2 [1
7w/ 28 Jy sinh(¢/2)
1 u
X/ du/ dv e~PBAGuie) - (36)
0 0
and

A(u,v;0) =[5 (A—u)+v?) —iaz((1—u)?—1?)
+1(1+ed)]. (37)
7 This relation is well known in quantum mechanics. If K(a)

is an Hermite operator depending on a parameter o and | &)
is its eigenvector (i.e., K(a)|k,a)=kq|k,a)) we have the following

relation:
<k:a I K (a+6a) I k:“) = (kxa ] ka+ﬁﬂ Ik)a>;
for an infinitesimally small change of a.
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Asymptotically we have
f1(p)="T¢(3)— (62/3)¢ (S)p+ (10541/120)5 (),
for pk1 (38)
=4 (In(14V2))? In(24p)+const}+0(o7?),
for p>1. (39)

Using the above expressions, we can readily derive the
expressions for the magnetic induction as well as the
free energy.

B=ﬁ=Ho"— (Hvz—Ho)/[2K22(T)"‘1:|B (40)
and
1 (Hco—B)?
Al'= ~——[B2~~R— ~:| , (41)
& (2e2—1)B+1
where?
B=(|AlDav/ (| A[Dav)?=1.159
and (42)
k2(T)=[3m f1(p)/ 87N J*[ (3ev/2x T)g (o) 1™
Asymptotic expressions for ks are
ko=3xke(7¢ (3)/2y)In (1+V2) (In (T o/ T))V?
=1.22%(n(T /D)2, for T<KTe (43)
=x(1+42.366), for Too—T<KTo. (44)

It is interesting to note that «; increases rapidly
as the temperature decreases, and it diverges as
[n(Tw/T)J¥2 at T=0°K. Interpolating the value
ke to intermediate temperatures we expect k2=«; to
hold always. Incidently McConville and Serin® dis-
covered a rapid increase of «; in their recent measure-
ment of the jump of the specific heat along the transition
line in pure niobium samples.

IV. CONCLUDING REMARKS

In the above sections we have seen, restricting our-
selves to the immediate subcritical region where the
ordering parameter is still small, that Abrikosov’s
theory has a rather wide applicable region if one
introduces two parameters x; and «, instead of a single
k. In the derivation of the final results Egs. (40) and
(41), we have systematically approximated nonlocal
integral kernels by local ones. The errors involved in
such approximations are found to be a few percent,
independently of temperatures.

The most interesting result of the present study is
that ko is always larger than «;. This situation is in
contrast to one we met in the case of alloys, where we
have k1=«ks. The following asymptotic expressions for
the case of alloys are compared with Egs. (21) and (44).

1=« (140, 136)

K2=K(1—0, 390) y for Tco"‘ T<KLT .- (4:5)

8 E. H. Kleiner, L. M. Roth, and S. H. Antler, Phys. Rev. 133,
A1226 (1964).
9 T. McConville and B. Serin, Phys. Rev. Letters 13, 365 (1964).
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A recent calculation of /. by Helfand and Werth-
amer® shows that the temperature dependence of «;
changes gradually and monotonically from its value at
= o to that at /=0 as the electronic mean free path de-
creases. The present calculation suggests that the tem-
perature dependence of k, might be much more sensitive
to the impurity concentration (or the electronic mean
free path) than that of ;. In this respect, detailed meas-
urements of the slope of the magnetization curve at the
transition point are quite desirable.

We shall conclude this section with a brief discussion
of the validity of the general Ginzburg-Landau approach
(i.e., the possibility of expanding the free energy in
powers of the square of the order parameter A).

Assuming that such an expansion is possible, we
obtain formally

AF=a([A[?)ar (| A Davte{| A] Dav,

where @, b, and ¢ are the functions of the temperature
and the external field.

In the case of Abrikosov’s mixed state in pure super-
conductors we have

a= (mpo/ 2m)*)(ev?/ (2 T)*) (H 2~ Ho)g (p) ,
3 1 mpo 1 41rN/ 3ev
—4 (2r)? (27rT)2{ 3m \27rT

(46)

(47)

A@f—ﬁ@ﬁ. (1)

As we have already seen, & (or pfi(p)) diverges as
In(T .0/ T) at lower temperatures. The close examination
of ¢ shows that ¢ diverges even more badly. Therefore,
in order to obtain a reliable expression for AF at
extremely low temperatures, we have to sum an
infinite series of diverging terms. Such a summation is
in fact possible and we find at 7=0

AF= (| A]*)avtb" In(const Teo/(| A[Dar2){| A| Dav. (49)

Roughly speaking, the above expression is obtained
from Eq. (40) by simply replacing In(7.o/7) in the
coefficient b by In(T.o/(| A|»av'/?). The above equation
indicates that the formal expansion of Eq. (40) becomes
invalid at lower temperatures. On the other hand, in
the case of alloys we have seen that the expansion (40)
is always possible if |A|? is small at all temperatures.
This different situation for the case of alloys reflects the
existence of the gapless region in fields close to the
upper critical field where the excitation spectrum of
quasiparticles is strongly modified.*1

As far as real superconductors are concerned, the
electron has a finite lifetime 7 and we expect that at
extremely low temperatures where 77<<1, the factor
In(Tw/T) may be replaced by In(v7.) and «o(T)
remains finite even at 7’=0°K.

The recent measurement of the jump of the specific
heat along the transition line in pure niobium samples®
seems in qualitative agreement with the present theory.

1 P. G. deGennes, Phys. Condensed Matter 3, 79 (1964).
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We should, however, point out that there is a serious
disagreement concerning the temperature dependence
of the uper critical field,** of which the origin is not
clear.

In summary we conclude that Abrikosov’s picture
holds quite generally, independently of the temperature
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and the electronic mean free path, if we use two param-
eters. Deviation from the original Abrikosov theory is
most easily seen in the temperature dependence of
k2(T) [or (0M/0H)|my=m,], which behaves quite
differently depending on whether the electronic mean
free path is short or long.

APPENDIX

In the following we shall calculate explicitly the quantities corresponding to the diagrams given in Fig. 1. We

use the Green’s function given by

aép
Guli') = eietea? [ gron
(2m)? tw—§
where
E= (0= p)/2m, w=2mT (D),
and

o (1) =3eHo(x+a") (y—y") .

We assume here that the magnetic field is uniform and directed along the z axis.

A. The Calculation of the Diagram (a)

K=TY /dr’3 Go(t' 1)G_o,(x' 1) AT ()

d3q 14 (=1’ )+ieH o (a+2') (y—y”)

vz faef 05 ]
= 3y
n (2m)?

A
(27)* (iw—§) (iwtE+v-q)

dsq e14 - (r—1’)+ieHo(v+2’) (y—y’)

(#"y")

ry 2P /dQ/d /
= 3y’
n (27)?

(2m)?

Ay, (A1)

2iw+v-q

where we have integrated over { after replacing d®p by mpedsdS.

Taking the polar axis in the direction of «

(i.e.,

v- q=1v(q, cosf-}qy sinf cosp-g. sind sing)),

we can carry out further integrations. We have finally a simple expression for the case where A(«',y") depends

/.
only on #’;

INI(8)

Fic. 1. (a) The diagram corresponding to the coefficient of
A in Eq. (1). (b) The diagram corresponding to the expression of
the current density. (¢) The diagram corresponding to the
coefficient of |A|?A in Eq. (1).

IN()) AR2)

Al4) 23)

()

11 E. S. Rosenblum, S. H. Antler, and K. H. Gooen, Rev. Mod. Phys. 36, 77 (1963).
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a3 igz (v—a”) - y—eH,
K= TZ / d cos&/ d¢/ / 4° 2@ et (ot )) A(x")
n (27)2J 1 —w (2x) 2iw+veq

/ d COSB/ d¢'/ dx'e— @) e~z ’)/cosﬂ]+1eHo(:02—x’2)tanecos¢A(x)
-1

n (21)?
27rmpo du Jo(eH o (x*— &%) (u?—1)42)
(27)? / /;x, sinh((2xTu/v) | x—='|)

(A2)

where %= (cosf).
Thus Eq. (6) reduces to

* du fo(eHo(xz—x'z)( —1)12) , ,
ln( CO)A(x) 7rT/ /w TR L 0(jx—a'| —8)A(x). (A3)

In the above expression we have introduced a cutoff § in the interaction range in order to avoid a spurious
divergence of the integral. The cutoff distance 6 is determined so as to simulate the cutoff in the frequency of the
ordinary pair interaction. Comparing the two sides of Eq. (A3) at T="T, we find wp=1v/eys.

Now let us turn to the evaluation of the asymptotic expression of fo(p).

(a) p<KI.In this limit fo(p) is rewritten as

® du 1— e 002 (4 (2~ 1)p¢?)
wo- [ af = . (A2
sinh ({u)
Expanding the integral in powers of p, we obtain
To(p) ! 3) ? (5)p* = (Me?
p)==B)p——)p*+——(7)p’. AS
e T 0 T g (4)

(b) p>>1. (A4) is transformed as

0 0 d 0 0 d P
fop)= lim { f s / —.*u—— / g / Z ey oG (P = Dpi)[E 1+ 202 3 (— D) ((nr)+ (s“u)Q)‘lj} ;
=0 [/, usinh(fu) Je 1 u? 1

1

Ine+1) d i
N {—(ne—l— ,/; u27r/ ¢l (e’yp(u2+l (u?— 1)cos¢))

80 [ ars[ averen o [
1 0 0 (nm)*+ (cu)?
2(2yp)"? ®
=ln( ) 23 (1) n/ dt/ dg S“/ du gD PPt A T (L (32— 1) pg2) ,
(4 1
2 2 1/2 0 00 0 2__1 2 2_1 2y —1/2
=ln(—( 2 )—-Z(— 1)”/ dt e““”')zf du{(u p+u2t) —(u p) } )
e 1 0 1 4 4
2(2 1/2 © 0 —t(nw)2 —{-Zt)”?‘—l—
=1n(—(7—p)—> ~L (-1 f i In (<p \/p), (A6)
e o (2002 \(p+20172—/p

where we have made use of the identity

/ dx eIy (bx)= (a®~b*)""?, Rea>Reb.
i

The last expression can be expanded in powers of o~ and g~ Inp.
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B. The Calculation of Diagram (b)

ie
J=—(V:=v)T Z//d3r1 @3y G (', 12) G (11,12) Gy, (11,1) AT (1) A(12) | v =1
m n

e dsp daql d3q2 gia1- (r—r1)—ige- (r—r2)—ieHoA1
=—T3 /dzrlfd:"rz/ / p- - A (r)A(rs)
m @r)3) @2n)3J (2r)? (iw—§) (fwt+E—v-qi) (fwt+E+V-q2)

e mpﬂ ,13(11 d3q2 eta1- (r—r1)—iqa- (r—r2)—ieHoA1
1y faafan, Jou[ 2 [ , AN A (e, (A7)
m (27)? 2m)E ) (2r)3  (2Ziw—v-qu)(2ie+v-qs )

where
Ar= (wrt52) (y2— y0) +3L(y—y1) (5—%2) + (9 —y2) (11— 2) .
Substituting A(r) =", Cne®™, (x), where ¥ (x) =exp[ —eH(x—kn/2eH )], we obtain

FJi=[eN/mQaT)*] Y CoCon'Tnymi, (A8)
szO dQ e 0 giacHodyy (xl)l//m(x2)
]n.m,:c= T2eik(n—7IL)1// J— / de/ dx23((xl——x) (x—x2)) , (Ag)
N A J _y o sinh((2rT/vz) | x1—%2|)
2m aQ e 0 taei@eHoAny, (21 m(2)
Tnmy= POTZeik(n—~m)y/ —-/ de/ daof (01— x) (x—x2))— i s (A10)
N dr J_, o sinh((27T/v2) | x1—x2|)

where z=cosf, a=tanf cosp, d2=d cosf d¢,

kn \? km \* k(n—m) kE \?
o o e (o]
2eH 2eH eH, 2eH,

6(@)=1 for a>0,
=0 for a<0. (A11)

It is easy to see that the above expressions satisfy the equation of continuity 97./0x497,/9y=0.
Equations (A9) and (A10) are further simplified as

2mpo aQ e 0
Jn,ma= T2eik(n—my / — / dzy / dxz{\#n(x+x1)¢m(x—x2)eiaeHoAz' /
N 4w Jo 0

sinh(g—ﬂlxﬁ—ml)-l—(xl——) _xl)} . (A12)

2 X9 —> — X2

and

and

2mpy o o e A
Jonmy= Trei*tr—my / —ia / da; / dx2{tl/n(x-{—xl)xl/m(x—xz)emHOAZ’ /
0 0

N 4
2xT 1 — X
sinh( {x1+x2|>-|—<x * )} , (A13)

vz Fp—> — Xy
where
Ao = {12 — 22242061 (v— kn/ 2eH o)+ 20 (x— km/2pH ) } . (A14)
We finally obtain
T n,mi=e* =m0 (W m (%) Bx+kn/2eH,, x+km/2¢Hy) for i=uz,y, (A15)

where B; is given in Eq. (27).
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C. The Calculation of Diagram (c)
R=T Z //// d3r1 d3r2 d3f3 d3f4 Gw(l‘l,rz)G_w(I‘g,l’2)Gw(1'3,1'4)G_w(1'1,1'4)A1‘(l’l)A(l‘z)Af(l‘;;)A(L;) . (Alé)

Substituting in the above expression

A@= 3 Cerup, ()

n=—c0
we obtain after a similar calculation to that given in the preceding subsections

R=(mpo/ 2m)2)T 2 CilCulCripConpSn,ntp,mmps (A17)

n,m,p

dQ
m nz,ng,n4 / ////dxl dx2 dx‘; dJC4 0(1 2,4)

X
sinh((27T/v2) | 14 x5— xa—x4])

eiaeHoAs

129 (x1>¢nz (x2)‘pna (%5)¥ns (:\54) ’ (A18)

where
0(1,3;24)=1, for a1, x>, 44
or Xy, a3<xe, Xy,
=0 otherwise;
z=cosl, a=tanf cos¢, dQ2=d cosb d¢
and

kni \? kng \? kng \? kng \? k \?
A3= (xl———w) +(x3“ ) _(xz"'“““‘_> —(aa;——-~-—> —'(—*“> (%12"}‘%32'—%22—7442) . (Alg)
26}]0 26}10 26}70 26[]0 26[]0

The above integration can be further carried out and we have

Sningngng= 03/ QuT))e=C s (ny,ma,ms,na) , (A20)

where

C (n;)= (k2/4eH o) {ni®+n2+n2+nl— % (nitnatns+ni)?}
= (k2/4EHo)[:(n1“ﬂs)2+ (na—n4)?], (A21)
2dt “ dy
s(nymansng) =— / / / / —epEAG.0) cosh[ (p)V2UZ (u,2,05 1) ], (A22)
27 (eH o) V2 o sinh(t/3)
Auy,0) = {F((1—u)*+1)—Fia((1—u)*—v)+1 (147}, (A23)
and

2 (u,,a; 1:) = (B/2(eH o)) { (1—ic) 1 —u) (n1—n3)+ (1+ia)v(na—n3)} . (A24)

As we shall show below, s depends on #; very weakly and it is a good approximation to put s (n,72,7s,74)~25 (0,0,0,0).
In this approximation we have

2P0 k2
_ e ] A6) S cnfcmfc,,,+pcm.p><exp{~ CO—my+ (n—m+21>)2]}
(27!')2 (27I'T)2 2(6H0)1/2 n,m,p 4eH
= (mpo/ 2m)?) 2xT)2 (/7)) f1(p){| A(X) |Dav (A25)
where
£1(p)=2(eHo)1"5(0,0,0,0) (A26)

and given in Eq. (30).
Finally we shall estimate the error involved in the above approximation. As the general discussion is complicated,
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we consider only asymptotic behaviors. Using the technique we used in subsection (b) we find

62 10541
s(na,mamsmy) =——~—{7§(3) ——(5)p+ $(N)p?
27 (eH o)/? 3 120
127 k?
-~§<7>p2[
60 4eH

1
:ZTW@—] In(247p) {[ln(l—i—\/l?)]2
e
2

4~ In (24~p) {0.77—0.04

k2

_21r(eH0)1/2 el o

In(14v2)

[(Wl_ns)z-l"(nr‘m)ﬂ}, for p»>1.

kZ

((111——1'53)2-{—(ng—n4)2)+2(;*)2(111——%3)2(%2—1%4)2]}, for p<k1, (A27)

€11 ¢

k2
- (111(1-;_\/?))2];—((%1—%3)2%— (m—m>2)}

ell

(A28)

Thus we see that in both limiting cases the effect of nonlocality of the kernel K; [i.e., the term containing the
additional factor (#;—#s3) and/or (ne—#,4) in coefficient of ¢~¢(»9)7] is quite negligible. This fact suggests that it is
a plausible approximation to replace nonlocal kernels by equivalent local ones, as we have done in the derivation

of Eq. (35).
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The temperature dependences of the thermodynamic functions, as derived from lattice dynamics, are
examined for the limit of low temperature and also for high temperatures (those above a high characteristic
temperature). Particular attention is given to the effects of anharmonic terms in the lattice potential
energy. Detailed calculations are reported for central-potential models for fcc, bec, and hep lattices. In
particular, the normal-mode frequencies and Griineisen parameters were calculated for a large number of
points in the Brillouin zone as a function of volume; and the specific heat, compressibility, thermal-expansion
coefficient, and macroscopic Griineisen parameter were calculated as functions of temperature and volume.
At fixed volume the isothermal compressibility shows little temperature dependence and the explicit an-
harmonic contribution is small; at zero pressure the compressibility increases with increasing temperature
and the explicit anharmonic contribution is again small. The thermal-expansion coefficient exhibits similar
behavior at high temperatures. The anharmonic specific heat is proportional to temperature at high tem-
peratures, and also depends strongly on the volume. The effective Debye temperatures and the macroscopic
Griineisen parameters exhibit a wide variety of temperature and volume dependences. Approximations are
developed for quantities which determine the behavior of thermodynamic functions at low and high tempera-
tures, and approximate relations between several anharmonic properties are found. These approximations

are tested by comparison with accurate calculations for the central-potential models.

I. INTRODUCTION

HE purpose of the present paper is to report the
results of a study of the thermodynamic proper-

ties of crystal lattices. The study is based on the
lattice-dynamics free energy, and particular attention is
given to the effects of the anharmonic terms in the
lattice potential energy. Detailed calculations of thermo-
dynamic functions for models based on central-potential
interactions among the ions have been carried out for

* This work was supported by the U. S. Atomic Energy Com-
mission.

fce, bee, and hep lattices. Even though the central-
potential models are probably inadequate for an accur-
ate description of most real materials, it is believed that
the qualitative behavior of these models is representa-
tive of real crystals.

In order to study the statistical thermodynamics of a
system, the first step is to define a mechanical problem
of motion for the system. If the thermodynamic proper-
ties are to be studied as a function of configuration, then
it is necessary to formulate the mechanical problem in
such a way as to allow the configuration to be varied.
Indeed, this is necessary in principle in order to define a



