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The mean-square displacements of atoms in a face-centered cubic crystal have been calculated as a
function of distance from a free surface using the harmonic approximation in the high-temperature limit.
The procedure is based on the inversion of the dynamical matrix. Calculations have been made for the (100),
(110), and (111) surfaces using a nearest-neighbor central-force model for crystals up to 30 layers thick.
The force constants for surface atoms are assumed to be the same as those in the interior. The mean-square
displacements increase monotonically from the middle of the crystal to the surface. Anisotropy of the mean-
square displacement components is found for the surface atoms in each plane considered. The theoretical
results are compared with recent low-energy electron-diffraction data on nickel single crystals.

I. INTRODUCTION

~ 'HE development of the low-energy electron-
diffraction technique during the last few years

has made possible experimental investigations of the
con6gurations and motions of atoms on the surfaces
of crystals. Of particular interest is the work of MacRae
and Germer' on nickel single crystals. They showed
that the effective Debye temperature for the scattering
of low-energy electrons, which are scattered mainly by
the surface atoms, is significantly lower than that of
more penetrating high-energy electrons. These results
indicate that the mean-square displacements of surface
atoms are larger than those of interior atoms.

A calculation of the mean-square displacements of
atoms near a free surface of a simple cubic lattice has
been made by Rich' who assumed nearest-neighbor
interactions with equal force constants for the central
and noncentral components. Rich found that the mean-
square displacement of a surface atom is larger than
that of an interior atom by about 15% at very low
temperatures and by about 30% near the Debye
temperature. This result is consistent with the idea
that a surface atom is less tightly bound than an
interior atom. Rich also found that an atom in the
fifth atomic layer from the surface behaves essentially
the same as an atom in an infinite lattice. The nearest-
neighbor model has also been treated by Celg and by
Corciovei and Berinde. 4

Maradudin and Melngailis' have studied an isotropic
simple-cubic lattice with nearest- and next-nearest-
neighbor central forces. In addition to the features
exhibited by the calculations of Rich, their results
indicate that at the surface the mean-square values of

*A preliminary report of this work was presented at the Chicago
Meeting of the American Physical Society, 23-24 October 1964.

' A. U. MacRae and L. H. Germer, Phys. Rev. Letters 8, 489
(1962).

2 M. Rich, Phys. Letters 4, 153 (1963).' J. Cely, Phys. Status Solidi 4, 521 (1964).
4 A. Corciovei and A. Berinde, J. Phys. Radium 24, 89 (1963}.' A. A. Maradudin and J. Melngailis, Phys. Rev. 133, A1188

(1964).

displacements parallel and perpendicular to the surface
are different. This anisotropy at the surface has also
been found by Corciovei and Berinde. 4

Recently, MacRae' has reported experimental results
for the (110) plane of nickel which indicate an anisot-
ropy between the perpendicular displacements in the
[110j direction and the parallel displacements in the
[110j direction. MacRae also observed an anisotropy
between the parallel displacements in the [110] and
[001) directions.

In the present paper, calculations are reported for
the mean-square displacement components of atoms
at the (100), (110),and (111)surfaces of a face-centered
cubic crystal with nearest-neighbor central forces. The
results are obtained in the classical harmonic approxi-
mation. Specihc application is made to nickel, and a
comparison with the experimental results of MacRae
is given.

II. GENERAL FORMULATION

The intensity of x rays or electrons which have
undergone single scattering by the atoms in a crystal
is proportional to the quantity'~

)p„~ f ei( '— l ~ re(z (1)
where

f —f~0e ere —
(2)

K and E' are the wave vectors of the incident and
scattered radiation, o.g, is a transmission factor, and r~
is the position vector of the hth atom at equilibrium.
In Eq. (2), feo is the atomic scattering factor and e ~",
which is the square root of the Debye-%aller factor,
takes into account the thermal motion of the atom. The
quantity MI, is related to the atomic displacement from
equilibrium u& by

Mt, ———,
' p(E' —E),(K' —E),(Nt, ttk, ), (3)

6 A. U. MacRae, in International Conference on the Physics and
Chemistry of Solid Snrfaoes, Brourn University, 1964 (North-Hol-
land Publishing Company, Amsterdam, 1964); Surface Sci. 2, 522
(1964).' M. Born, Rept. Progr. Phys. 9, 294 (1942}.
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where m/, is the mass of atom k and the o.g„., /, ; are the
Hooke's-law force constants. If one makes the trans-
formation

the equations of motion can be written as

&»= —2 Da~api ~', , (9)

where i and j refer to the x, y, and z Cartesian co-
ordinates and the angular brackets signify a thermal
average over a canonical ensemble.

For elastic scattering, we may write K= (2'/P) s and
K'= (2~/X)s', where X is the wavelength of the radia-
tion and s and s' are unit vectors in the directions of
E and E', respectively. If we denote the angle between
s' and s' —s by P, then Eq. (3) can be rewritten as

Mi, (8s'——/)2) cosg((Nip, )'), (4)

where N/, g, is the component of u/, in the direction of
s —s.

A particularly simple case occurs when the vectors s
and s' make the same glancing angle q with the sf atter-
ing plane of interest. Then f=(m/2) —p, the vector
s' —s is perpendicular to the scattering plane, and

Mi. ——(8~'/X') sin'q((ui, )') (3)

where N/, & is the component of u/, perpendicular to the
scattering plane.

If the Debye continuum theory for an isotropic elastic
medium is used in the high-temperature limit, the mean
square of the ith component of displacement can be
expressed as

(Ni, p) =3k'T/4n'mk O~D2 (6)

where O'D is the Debye temperature. For the actual
lattice dynamical case, Eq. (6) serves to define an
effective Debye temperature in terms of the mean-
square displacement. If one eliminates ((N&z.)') from
Eqs. (4) and (6) and substitutes the result for Mq
into Eq. (2), one can obtain from Eq. (1) an expression
relating the scattered intensity to the Debye tempera-
ture O~z. By applying this expression to experimental
data on the temperature dependence of the peak
intensity of a diffraction spot, one can obtain experi-
mental values for the effective Debye temperature.
High-energy electrons which penetrate deeply into a
crystal should give a Debye temperature characteristic
of the mean-square displacements of interior atoms,
whereas sufficiently low-energy electrons which are
scattered primarily by the surface layer should give a
Debye temperature characteristic of surface atoms.

Ql'e now turn to the problem of calculating the
mean-square displacements in terms of the forces of
interaction between the atoms of a crystal. The dis-
placements u& are assumed to satisfy the harmonic
equations of motion

where the D&;,&; are the elements of the dynamical
matrix and are related to the force constants a&;,&; by

(10)

It should be noted that the equations of motion given
by either Eqs. (7) or (9) are quite general and apply to
crystals with free surfaces, impurities, etc.

The calculation of the mean-square displacement
matrix (Nz,m») which appears in Eq. (3) can be carried
out as indicated by Born. v The results can be expressed

by the formula

)=Z.(.'(p) '(p)/ )(./ .'), (11)

where ei, (p) is the kith component of the pth eigen-
vector of the dynamical matrix, co„2 is the corresponding
eigenvalue and e~ is the mean energy of the pth normal
mode oscillator. If one uses a theorem of matrices
discussed by Born, ~ Eq. (11) can be transformed into
the form

(Ni, Ni, )= (k/. 2m', )LD '" coth(hD"/2kT)7i; &;, (12)

where D is the dynamical matrix defined by Eq. (10).
In this paper we are particularly concerned with the

high-temperature limit k T& hor L,, where co~ is the largest
normal-mode frequency. Equations (11) and (12) can
then be approximated by the following equations,
respectively:

(lie»)= (kT/mi)p„(ei, ;(p)e»(p)/co~') (13)

(ui„~»)= (kT/mi) $D-'7i, ;,». (14)

For any crystal of reasonable size, the dimensions of
D are enormous and provide a formidable barrier to
computation. We therefore simplify the situation by
considering crystals in the form of parallelepipeds in
which free boundary conditions are imposed on one
pair of opposite faces and cyclic boundary conditions
are imposed on the other two pairs of opposite faces.
The shape of the parallelepipeds depends on which free
surface is being considered.

In order to facilitate the enumeration of the normal
modes, the parallelepipeds were made up of a number
of independent, interpenetrating face-centered cubic
lattices so that the resulting lattice gave the appearance
of either a simple cubic lattice or a deformed simple cubic
lattice. The numbers of such independent fcc lattices
were two for the (100) surface, one for the (111)surface,
and four for the (110) surface. The pairs of linearly
independent primitive translation vectors in planes
parallel to the surface were taken to be $(a/2'i', 0,0),
(0&a/2'i &0)7 for the (100) surface, L(a/2'i', O,a/2'i'),
(a/2'i' a/2"'0)7 for the (111) surface, and $(—a/2'i'
a/2"' 0), (0&O,a/2'i')7 for the (110) surface, where a is
the nearest-neighbor distance of the face-centered cubic
lattice. In each case the crystal lattice is built up
by successive translations of the surface plane with
the vectors (0,0,a/2'"), (O,a/2'~', a/2'~'), and (a/2@',
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a/2@', 0)$ for the (100), (111), and (110) surfaces,
respectively. The displacement components of the
atoms for the (100) and (110) surfaces were specified
relative to Cartesian axes parallel to the appropriate
translation vectors given above. For the (111)surface,
however, the displacement components were specified
in terms of the unit vectors (1/3'i' —1/3'i' —1/3'i')
(1/2'~', 1/2'i'&0) and (1/6'i' —1/6'i' 2/6"').

In carrying out numerical calculations of D ', it is
convenient to consider only real matrices for D. For
the (100), (110), and (111) faces of monatomic face-
centered cubic crystals the displacements NI„=—u& „, in
a given normal mode can be chosen to have the form

ui .;= (mo) '"(p T.(qi q2)&,;(qi,q2, p) jlc'"n~c~ c»', (15)

where i= @, y, or a; mo is the mass of the atoms; p now
designates the normal modes corresponding to a given
set of values of (qi, q&), 0 = c or s, and

Tc(qi, q2) = COS(lq, +mqk) (16a)

Tc (qi, q2) = Sin (lqi+ mqk) . (16b)

The quantities q~ and q2 are wave-vector components
introduced by the cyclic boundary conditions. If Eq.
(15) is substituted into Eqs. (8) and (9), one sees that,
the quantities $,„,(qi, q2,p) constitute the eigenvector

components of a reduced dynamical matrix D(qi, qg)
and satisfy the equation

D(q, q )&(q,q,p)

Dcc(qlpq2) Dcc(qlcq2) pc(qi)q2)p)

D (q1 q2) D (qi q2)

& (q,q,p)
=~~ (q»q~)

& (q,q,p)

& (qi, q2,p)

(17)

For a parallelepiped with E' atoms, the original

dynamical matrix D has dimensions 3Ã')&3Ã' whereas
the matrices D(qi, q&) have dimensions 6EX6X. By
utilizing symmetries one can frequently reduce the size
of the matrices still further.

Using Eqs. (15), (16), and (17) one may obtain
expressions for (ui „,ui „;) analogous to those given
by Eqs. (11), (12), (13), and (14). At a general tem-
perature the analog of Eq. (11) is

4(qi, q2)
(uimniulmnj) P Q 2 c (ql&q2) ~c (ql&q2)

mph Ql'zap c& id& (ql, q2)

Xt-'(q, q,p)&- (q,q p) (»)
where g is the number of atoms on an edge of the
parallelepiped. . The analog of Eq. (12) is

(uimniuimnj) P P( 2 c (qlyq2) 2 c (qlyq2)
29Ãol l 9192 «

XLD-ii2(q„q, ) coth(@Dii2(q„q, )/2&2)].„,-„„,) . (19)

In the high-temperature limit it is convenient to
make use of the following relationships which are valid

for the cases under consideration:

(qlpq2)fcnicnj ,
= LD (q i~q 2)7 cni, cjn (20a)

LD-'(qi q~)3-',- = —LD-'(q, ,q,)&,„;...;. (20b)

The high-temperature forms of Eqs. (18) and (19) can
then be written, respectively, as

kT g...(q„q2,p)„„,(q„qg,p)
(u,„„,u, „;)= P

'

(21)
~.'(qi, q2)%Sod Q1 Q2 P

(uimniulmnj) P t D (ql qc2)]c in, cjn~

mOiV' ~1e2

(22)

Our calculations are based primarily on Eq. (22), but
some use is made of Eq. (21).

III. APPLICATION TO A FACE-CENTERED CUBIC
LATTICE WITH NEAREST-NEIGHBOR

CENTRAL INTERACTIONS

We assume that the force Fkk acting on atom 0 due to
its interaction with atom k' has the form

Fkk =~L(«k —«k) ~ (rk —rk)/~rk —rk~]
X ((rk —rk)/~ rk —

rk ~), (23)

where r~ and r~ are the position vectors for the equi-
librium lattice sites of atoms k and k, and + is the
Hook e's-law force constant. A face-centered cubic
lattice with nearest-neighbor central forces is a stable
lattice for e)0, whereas simple cubic and body-
centered cubic lattices with this type of interaction are
unstable.

The equations of motion have been obtained for the
nearest-neighbor central-force model of face-centered
cubic lattices with free surfaces parallel to (100), (110),
and (111)planes. The dynamical matrices D(qi, q2) for
these three cases are tabulated in the Appendix. All

calculations were made in the high-temperature limit.
For most sets of (qi, q2), D(qi, q2) has no zero eigenvalue
and the calculation of its inverse presents no essential
difficulty; Eq. (22) was then used to obtain the ap-
propriate contribution to the mean-square displacement.

The inverse of the dynamical matrix was found using
the Gauss elimination method. The individual inverses
for the various q values were then summed as indicated
in Eq. (22). As there are a large number of operations
necessary in Q.nding the inverse of a matrix the possi-
bility of round-off error must be considered. In view
of this the calculation was repeated utilizing double-

precision arithmetic in order to check the precision
of the calculated inverses. It was found that the diagonal
elements of the inverted matrices were accurate to at
least six figures. For a few sets of (qi, q2) having the
form (nim, e2cr), where ui and ec are integers, D(qi, q2)

has a zero eigenvalue; consequently, no inverse exists
and Eq. (21) was used excluding the term correspond-
ing to the zero eigenvalue. The eigenvalues of D(qi, q&)

for these special sets of (qi, q2) were found by the method
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of V/ilkenson. The values for the mean-square displace-
ment were then added to the appropriate sum found
from Eq. (22). As the contribution to the total mean-
square displacement components from these few sets of
(qt, qs) is quite small, the precision of the calculation
is not as crucial as that of the calculation of the in-
verses. In this calculation at least four significant
figures were obtained, which was considered adequate.

An alternative method of eliminating zero eigen-
values is to replace one of the two free surfaces by a
fixed surface. Then the inverse of D(qt, qs) can be
calculated for all sets of (qt, qs). A disadvantage of
this method is that symmetry operations are lost
which are valuable in further reducing the size of the
matrices to be inverted. The results presented in this
paper were obtained using two free surfaces on opposite
faces of the crystal.

The force constant o. may be evaluated in a number
of ways. One possibility is to seek a value of o. which
best reproduces the elastic constants c~~, cy2, and c44 or
the bulk modulus 8 as specified by the equations

cii——2'i'n/a (24a)

c»=n/ (2'"is) (24b)

c44= n/(2'"a) (24c)

8= —', (cii+ 2crs) = (2'"/3a)n, (24d)

where a is the nearest-neighbor distance. Equations
(24) may be derived by comparing the elastic continuum
equations of motion with the continuum limit of Eqs.
(7). If dispersion curves determined from neutron
scattering are available, n may be chosen to give the
best fit between theoretical and experimental dispersion
curves. Bearing in mind the co' dependence of the
frequency distribution at low frequencies, we see from
Eq. (21) that all frequencies contribute approximately
uniformly to the mean-square displacement. The pro-
cedure of seeking the best fit to the dispersion curves is
therefore better than 6tting the elastic constants which
emphasizes the low-frequency region.

IV. NUMERICAL RESULTS FOR NICKEL

Detailed numerical calculations have been made of
the mean-square displacement components of atoms
in nickel crystals with free surfaces parallel to the
(100), (110), and (111)planes. We have worked in the
high-temperature limit of the harmonic approxi-
mation with nearest-neighbor central forces. The force
constants coupling surface atoms to their neighbors
are assumed to be unchanged from those coupling
interior atoms to their neighbors.

The value of the nearest-neighbor force constant e
was determined in three ways: (a) from the room-
temperature value' of the elastic constant q~~ for
unmagnetized nickel using Eq. (24a); (b) by fitting the
maximum vibrational frequency as determined by

' J. de Klerk, Proc. Phys. Soc. (London) 73, 337 (1959).
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Fro. 1. Phonon dispersion curves for the L100$ and L111j
directions of propagation in nickel. The theoretical results are
indicated by the curves and correspond to case (b) discussed in
the text. The experimental results of liirgeneau et af. (Ref. 9) are
indicated by the solid circles.

Birgeneau et aL'; (c) by fitting the bulk effective Debye
temperature as determined by MacRae and Germer. '
The phonon dispersion curves were calculated for the
bulk nickel crystal for propagation in the $100), $110$,
and L111$ directions. The results for case (b) are
presented in Figs. (1) and (2) together with the experi-
mental data for unmagnetized nickel obtained by
Birgeneau et al. ' The agreement between the calculated
curves and the experimental results is fairly good and
indicates that the nearest-neighbor central-force model
of nickel with suitably chosen force constant should
be reasonably adequate for investigations of lattice
vibrational properties of nickel. Case (a) leads to
dispersion curves which are about 7% too high at the
higher frequencies, while case (c) leads to dispersion
curves which are about 9% too low at the higher
frequencies. It may be noted that the value of o.
determined by case (b), n=3.79)&104 dyn/crn, leads
to values of c~~, c~~, and @44 which diGer from their
room-temperature values' by 13, 28, and 11%,
respectively.

In Table I are presented the calculated mean-square
displacement components in units of kT/n for atoms
in successive layers parallel to (100) and (111) free
surfaces. In each case the crystals are 20 layers thick
with two free surfaces. The components are taken
parallel and perpendicular to the respective surfaces.
Two mutually perpendicular components parallel to a
given surface have the same mean-square displace-
ments because of symmetry. In agreement with previous
workers we find that the mean-square displacement
components are signi6cantly larger at the surface than
in the interior and that the bulk values are very nearly
achieved within about Ave atomic layers from the
surface. At each surface the mean-square value of the
parallel component is smaller than that of the perpen-
dicular component. This surface anisotropy is similar

~ R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods,
Phys. Rev. 136, A1359 (1964).
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TssLE II. Mean-square-displacement components in units of

kT/afor a. toms in successive layers parallel to (110) free surfaces
in a crystal 20 layers thick.
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FIG. 2. Phonon dispersion curves for the L110j direction of

propagation in nickel. The theoretical results are indicated by
the curves and correspond. to case (b) discussed in the text. The
experimental results of Sirgeneau et al. (Ref. 9) are indicated by
the solid circles.

to that found by Maradudin and Melngailis' for a,

simple cubic lattice.
In Table II are given the calculated mean-square

displacement components for atoms in successive
layers parallel to a (110) free surface in a crystal 20
layers thick with two free surfaces. The components
are taken in the perpendicular direction [110jand the
two parallel directions [110j and [001]. The results
in Table II exhibit a feature not shown by earlier
calculations —namely, a lack of equivalence in the
mean-square displacement components in two mutually
perpendicular directions parallel to the surface. Other-
wise, the qualitative features for the (110) surface
are similar to those for the (110) and (111)surfaces.

From low-energy electron-diffraction studies of the
(110) surface of nickel MacRae' has already obtained
experimental evidence for the anisotropies just dis-
cussed. Since MacRae presents his results in terms of
eRective Debye temperatures, we have converted our
results to effective Debye temperature using Eq. (6).
In Table III we give the calculated values for (110)
surface atoms and for atoms at the middle of the
crystal for each of the three choices of the force constant

Tax.z I. Mean-square displacement components in units of
kT/n for atoms in successive layers parallel to (100) and (111)
free surfaces of crystals 20 layers thick.

o,. Also given are values derived from experimental data,
of MacRae. ' One sees that choice (a) for u gives O~
values which are too high. Choice (b) gives much
better agreement with experiment, and choice (c) gives
the best agreement. Even for choice (c), however, it is
clear that the theoretical results for the [110j and
[001jdirections are a bit too large.

A question of some interest is how the mean-square
displacements of surface atoms depend on the thickness
of the crystal. In Fig. 3 are plotted the mean-square
displacement components in units of kT/a as a function
of crystal thickness for atoms on a (110) surface.
In Fig. 4 the ratios of the surface values in the [110j
and [001$ directions to that in the [110jdirection are
plotted as a function of thickness. One sees that the
ratios are particularly insensitive to the crystal
thickness.

It may be noted that the results for the dimension-
less mean-square displacements given in Tables I and
II and in Figs. 3 and 4 are valid for any face-centered
cubic lattice with nearest-neighbor central forces and
a,re not restricted to nickel.

V. DISCUSSION

As in the case of the (100) surface of the simple
cubic la,ttice investigated by previous workers, the
mean-square displacement components for the model
of a face-centered cubic lattice considered here decrease
monotonically from the surface layer toward the
interior for each of the (100), (110),and (111)surfaces.
After about five atomic layers froIn the surface, the
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TAar. z III. Theoretical and experimental effective Debye
temperatures associated with mean-square displacement com-
ponents at the surface and in the bulk of a nickel crystal with a
(110) free surface. The experimental data are due to MacRae'
and the theoretical methods for determining the force constant
are given in the text.
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TAsr. E IV. Numbers of bonds broken making angles' with various
displacement directions for the (110) surface. (I IO) SURFACE
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FIG. 3. The mean-square displacement components in units of
kT/a plotted as a function of crystal thickness in atomic layers for
atoms on the (110) surface. The solid curves are a smooth 6t to
the calculated points indicated by the solid circles.

rate of decrease of the mean-square displacements
becomes very small.

The mean-square displacement components for the
surface atoms of the (100) and. (111) surfaces exhibit
an anisotropy analogous to that found by Maradudin
and Melngailis' in the simple cubic lattice. The parallel
component has a smaller mean-square value than the
perpendicular component. This is consistent with the
qualitative picture that the creation of the free surface
leads to a greater reduction of the over-all forces
affecting the perpendicular motion than the parallel
motion. The (110) surface exhibits a new type of
anisotropy —namely, the two mutually perpendicular
components which are parallel to the surface do not
have the same mean-square value. It is quite clear
from an examination of a crystal model that these two
directions are not equivalent, so this anisotropy is to be
expected and is in fact exhibited by the experimental
results of MacRae. ' If we examine the bonds which
are broken in creating the free (110) surface, we may
tabulate for a given surface atom the numbers of bonds
broken which make various angles 8 with a given
displacement component. The results are given in
Table IV. Since a bond at 90 gives no restoring force
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Fxo. 4. The ratios of the surface mean-square displacement
components in the L110] and L001] directions to that in the
I 110]direction plotted as functions of crystal thickness in atomic
layers for atoms on the (110) surface. The solid curves are a
smooth Qt to the calculated points indicated by the solid circles.

and a bond at 45' gives a greater effective restoring
force than a bond at 60', it seems reasonable from the
numbers in Table IV that both the L110] and L001j
displacement components should have larger mean-
square values at the (110) surface than the L110j
component.

The quantitative comparison between the theoretical
and experimental effective Debye temperatures given
in Table III requires comment. It is clear that choosing
the force constant to Gt the elastic constant c~~ leads
to 0'n values which are too large both at the surface
and in the bulk. The reason is that the calculated
normal-mode frequencies are too large in the upper
frequency range. Choosing the force constant so that
the maximum frequency is fitted leads to much better
results both for the dispersion curves and the O~D

values. If the force constant is chosen so that the bulk
O~n value is fitted exactly, the calculated 0'ii for the
L110j direction at the surface is somewhat smaller
than the experimental value, while the calculated
Oz&'s for the L1107 and $001$ directions are too large.
It is evident that no single choice of the force constant
will lead to agreement for all three directions.

There are a number of possible reasons for this
discrepancy. First, there is the problem of whether
the experimental and theoretical 0'&'s are directly
comparable. Experimental factors such as penetration
of the electrons beyond the surface layer would tend
to invalidate the comparison. From a cursory exami-
nation it seems unlikely that this difhculty is responsible
for the discrepancy between theory and experiment.
Since a detailed analysis of this and other experimental
factors is not the province of this paper, we proceed
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to discuss several possible shortcomings of our theo-
retical calculations.

It is possible that the nearest-neighbor central-force
model is too simple and that agreement might be
improved if additional interactions are included. While
the rather good fit which can be obtained to the dis-
persion curves with the nearest-neighbor model tends
to cast doubt that significant improvement can be
attained in this way, we are nevertheless carrying out
an investigation using a model with nearest- and next-
nearest-neighbor central forces together with angle-
bending forces involving three consecutive nearest
neighbors. This model can of course be applied to other
materials than nickel.

A second possibility is that our assumption that the
force constants at the surface are the same as in the
interior is not correct. It seems likely that appropriate
changes in the force constants characterizing the
interactions of the surface atoms can lead to signifi-
cantly better agreement with experiment. This is also
under investigation.

Another question which may be raised is how the
results for the finite-sized crystals considered here will
compare with those for semi-infinite crystals. Although
no complete answer can be given, some evidence can
be presented. First, the results of Rich' and of
Maradudin and Melngailis' suggest that a crystal
which is 20 or more layers thick may be expected to be
a reasonable approximation to a crystal of macroscopic
size. This conclusion is also indicated by the curves in
Figs. (3) and (4). Another piece of evidence concerns
the relative magnitudes for the mean-square displace-
ment components associated with three mutually
perpendicula, r directions at the rniddle of a crystal. For
an infinitely large cubic crystal, these three mean-
square components should be equal. The lack of
equality exhibited by these quantities for the middle
layers in the data given in Tables I and II arises from
the finite size of the crystals. A possible intuitive
estimate of the fractional difference between the mean-
square displacements in finite and semi-infinite crystals
is 1/1V, where X is the number of layers in the finite
crystal. For a crystal 20 layers thick the fractional
difference would be 0.05 or 5%. This seems consistent

with the trends shown by our calculations. It may also
be pointed out that the bulk mean-square displacement
which we calculate agrees within about 5% with the
bulk value 0.4191 calculated by Maradudin and Flinn"
using an equation analogous to Eq. (21), but with
cyclic boundary conditions along all three axes.

Since nickel is a ferromagnetic element with a Curie
temperature of 358'C, one may wonder whether the
mean-square displacements are influenced by magnetic
effects. Maclae's data for the (110) surface cover the
temperature range from 150 to 600'C. There is no
indication of anything significant happening at the
Curie temperature. Be clerk' has measured the elastic
constants for both magnetized and unmagnetized nickel
at room temperature. The adiabatic constants for the
two cases di8er by up to 2 or 3%.

As Maclae and Gerrner' have pointed out, at the
high temperatures used in obtained the experimental
data, anharmonic effects may be appreciable. Appli-
cation of the results of Maradudin and Flinn" to
bulk nickel indicates that anharmonic corrections to
the mean-square displacement might reach 10—15%
at temperatures around 600'C. Since surface atoms have
larger mean-square displacements than bulk. atoms, the
anharmonic corrections may be expected to be larger
for the former than the latter. It is indeed possible that
the discrepancy between theory and experiment in
Table III is at least partly due to the neglect of an-
harmonic effects.

In summary, the nearest-neighbor central-force
model for nickel with unchanged force constants near
the surface seems to account for the qualitative features
of the surface mean-square displacements as observed
in the low-energy electron-diffraction data. Some
quantitative discrepancies remain to be resolved.
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APPENDIX: REDUCED DYNAMICAL MATRICES FOR THE FACE-CENTERED CUBIC LAT-
TICE WITH NEAREST-NEIGHBOR CENTRAL FORCES

Let 0 =c or s and r =c or s. The reduced dynamical matrices D„(q,,q,) can be expressed in terms of 3&&3 matrices
d'i =~i':

d21 d22

flap

'OA. A. Maradndin and P. A. Flinn, Phys. Rev. 129, 2529 (1963).

dN —1,N—1 dN —1,N

d V, N—1 de, N
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The matrices d;; are expressed in terms of the quantities c&= cosy&, c&
——cosq2, s&= sing&, and s2= sinq2. In every case

the surface planes are speciied by i= 1 andi =N. See Sec. II for the primitive translation vectors used. For (100)
surfaces, the 3&&3 matrices which make uP Dcc(ql, q2) are

2sys2

0

2sys2

4—2cgc2 —8 g
—8 ~

0

0
0

4—28;,x
—28;,x

—cg 0 0
d~g= 0 —c2 0-( +")
d, ~,=0 for j)2,

while those which make up D„(ql,q2) are

0
d;;= 0

,
0

0 0
0 0,
0 0

0
d;;+g —— 0

~

—Si —$2

—Sy
—Sg d;, ;~,=0 for j&2.

Dss(clsC2ssls$2) Dcc (Clsc2ssls$2) s Dsc (Clsc2ssls$2) Dcs (Cls C2s Sls $2) ~

For (111) surfaces, the 3&&3 matrices which make up D„(ql,q2) are

4(2—8;,1—8;,N)
0
0

0
(Cl+4C2+C1C2+$1$2 8+Os 1+Is N)

3 (cl clc2 sls2)

0
3 (Cl C1C2 S1$2)

(3cl+3clc2+3$1$2 8+~s, 1+~s,N)

—4(cl+c2+ 1) —6'~'(C2 —1) —2'I'(2cl —c2—1)
d, ;+1——6 6"(c ——1) —

2 (c2+ 1) —'3'I'(c2 —1)—21~2(cl—C2—1) —3 I (c2—1) —2(4cl+c2+1)

while those which make up D„(ql,q2) are

d, ,+,.——0 for j&2,

0 0 0 4(sl+s2) 6'j'$2 2'"(2sl —s2)
d;,= 0 0 0, d;, ;+g= 6 6'~'s2

0 0 0 2'~'(2$1—s2) —23'~'$2 2 (4$1+$2)

d;;+,——0 for j)2.

Dss(clsc2ssls$2) Dcc(clsc2ssls$2)s Dsc(clsc2ssls$2) Dcs(cls C2s Sls $2)

For (110) surfaces, the 3&&3 matrices which make up D„(ql,q2) are

0
0

0
4—2 (c12—$12)—8, , 1

—8;,N
0

0
0

4—25i g
—28i ~

cyc2

0
0

0 0 0 0
—c~cg 2'I's~s2, d;,~~= 0 0 0 d .+ ——0 for g)3
2'l"s~s2 —2c~c~ 0 0 0

while those which make up D«(qlq2) are

0
—syc2

—s]c2 2 cys2

0 0
0 0

d;,~,=0 for j&2.

Dss (Clsc2ssls$2) Dcc (Clsc2ssls$2) s Dsc (Clsc2ssls$2) Dcs (Cls C2s Sls $2) ~


