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Atomic con6gurations of binary alloys have been generated by a computer using experimentally measured
short-range and long-range order parameters and 4000—16 000 atoms. This program did not use energetic con-
siderations; atoms were selected at random and interchanged, if the change in the parameters was toward
the experimental values, until computed and experimental values coincided. In systems based on the fcc
lattice it is shown that the three first short-range order parameters are sufhcient to give a reliable picture
of the structure of the real alloy. For Cu3Au above the critical temperature, small ordered volumes sus-
pended in a random matrix were observed. Below the critical temperature, two-dimensional antiphase
domains were found. For Cu72Au28 the regions were two-dimensional at low temperatures, but three-dimen-
sional closer to the critical temperature. Some of the excess Au atoms were found in domain boundaries. The
rest of them were distributed at random over the matrix. With Cu-14 at.% Al, there were chains of Al
second neighbors. The results are discussed in terms of a number of experimental observations and theroetical
suggestions.

I. INTRODUCTION

It ERTAIN alloys are known to be ordered; that is,~ each of the atomic species occupies a specific sub-
lattice in the structure. When such an alloy is heated to
a given temperature, the long-range order parameter 5
(which is a direct measure of the fraction of a given atom
type on its sublattice) drops from a maximum value to a
value characteristic of that temperature. Above a
certain critical temperature T„one kind of atom no
longer has a tendency to be on a specific sublattice
(5=0) but is found in equal proportions on all of them.
Nevertheless, even above T„ the atoms are generally
not arranged at random. There is a tendency to order
in shells near any one atom. In some alloys there is only
short-range order, but no long-range order at any
temperature, and in others there is clustering, i.e., a
tendency for like atoms to be neighbors. In order to
describe these kinds of "local order, " Cowley' intro-
duced the Warren short-range order parameters, o.j, .

crt,
——1—pip't zrtp ——1—(1—p„")/rrtp
= 1—ppi "/nz, = 1—(1—ppp")/nzi. (1)

p»" is the probability of finding a 0 atom in the kth
shell around a 1 atom and pii, ppp, and ppi are defined
in a similar way; mo and ml are the atomic fractions
of 0 and 1 atoms in the alloy.

In this paper we shall be concerned only with order,
not with clustering.

The nI, 's can be obtained directly from a Fourier
inversion of the diffuse scattering from an alloy'; most
of the available data have been obtained with x rays.
uI, is really a Patterson function, or autocorrelation
function, but unlike the situation for a compound, it
can vary greatly from unit cell to unit cell in the struc-
ture. As a result of this variation, the known techniques
for interpreting Patterson functions for periodic
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structures are not useful; the period is the entire crystal.
Furthermore, if measurements are made at a tempera-
ture where the atoms can interchange appreciably, the
measurement is also an average over a period of time.

Despite this complexity, attempts have been made to
describe the microstructure of alloys having a given
set of e~'s and S. These attempts can be divided into
three categories (and reference will be made only to the
work on order). The first approach is based on finding
models of very small ordered "particles" that fit the
observed shapes of the superstructure peaks' ' and the
diffuse scattering intensity. ' ' Another approach is
based on interpreting the kinetics of changes in prop-
erties associated with changes of 5.'''"" Finally,
configurations have been simulated with high-speed
computers'~" using simple energy models to control
atomic interchange, Although the principle of this
Monte-Carlo method is well defined, the use of greatly
simplified energy calculations leads to uncertainty in
the real meaning of the configurations.

The equilibrium value of any given physical property
is really a weighted average over all possible micro-
states, the probability attached to each microconfigura-
tion being proportional to the Boltzmann factor
exp( —E/kT), where E is the internal energy and k and
T have their usual meanings. The standard deviation
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of the configurational internal energy of the micro-
structures which have to be considered is equal to the
excess specific heat. Hence, far from a critical point,
i.e., in a region where the excess specific heat is small,
this deviation is small and the energies of the micro-
structures over which the average is taken do not vary
drastically. The 0,1,'s, which are related to the con-
6gurational energy'7 "then do not vary much from one
configuration to another. The problem in understanding
the meaning of the o.~'s, in. these cases, reduces to finding
arrangements of the atoms such that all the nl, 's are
satisfied. The e~'s for a given state of an alloy must in
fact be related and not independent; the atoms must
be arranged in such a way that 0,~ is obtained for the
first shell around each atom while o.2 results for atoms
in the second shell, etc. Clearly each atom is involved
in several of these average parameters, because an atom
may be a 6rst neighbor to one and, say, a third neighbor
to another atom. There may be a unique solution to
this problem in a practical sense and it could well be
that only the first few nI, 's are really important in deter-
mining the atomic array. If this is true, one might be
able to say that a con6guration satisfying for example
0,~, e2, and 0.3 can be taken as representative of the
actual con6guration for the alloy, not just one of many
very different configurations. So far this problem has
not been developed successfully analytically.

The purpose of this paper is to propose a computer
method which generates the microstructures correspond-
ing to a given set of ni's (the three first uj, 's are con-
sidered) and S.The basic idea of this approach is purely
geometrical; the final configuration must have a number
of 1—0 pairs for each shell such that the resulting ej,'s

agree with the experimentally determined values. No
energetic considerations are made. The alloys considered
were: Cu3Au above and below T„Cu~2Au28 below T„
Cu-(14.5 at.

%%uoA1), an dAg-Zn . Thes ealloy sar chased
on the fcc lattice, except Ag-Zn which is based on the
bcc lattice. Models are presented in each case. The
configurations for a given set of o,~ to n3 were generated
by starting the computing process with an ordered
alloy and then with a random alloy. Except for Ag-Zn,
the microstructures came out similar in these two cases
and the values of higher order o.&'s agreed reasonably
well with the measured values. Thus, all of the atomic
arrangements do indeed have a de6nite appearance for
a given set of nI, 's, and only a small number of these is
needed to describe the microstructure in systems based
on the fcc lattice.

as being characteristic of the given n~ s and S.This does
not mean that two configurations satisfying the same
such set, but generated along two diferent paths, could
be rigorously superimposed. But on the other hand, as
will be shown in a later section, if one defines a suitable
set of criteria for "equivalence, " such as density of
ordered regions (if these exist), volume fraction of
ordered material, shape, etc., one finds that the re-
semblance between two such con6gurations is quite
good. (The configurations to be presented can only be
considered as representing equilibrium in so far as this
is implied by the imposed values of the ui, 's and S.)

Fcc and bcc models with ten unit cells on an edge
were used. One fcc system with 20)&20&&10 unit cells
was examined. The programs corresponding to these
three models being very similar, we will focus attention
on the smaller fcc model. In order to minimize surface
effects and to effectively extend the crystal to infinity,
periodic boundary conditions were used; a macroscopic
crystal was obtained by surrounding each 10)&10)&10
system by a copy of itself on each side.

The fcc lattice can be decomposed into four inter-
penetrating simple cubic sublattices which will be
designated by e, P, y, and 5 (Fig. 1) and similarly the
bcc lattice can be considered as two simple cubic sub-
lattices. A storage location was assigned to each lattice
site in the computer. As only binary alloy systems were
examined, atoms of one kind were represented by a one,
atoms of the other kind by a zero. The indices of each
site were x, y, and s, where x ran from 1 to 10, 11 to 20,
21 to 30 and 31 to 40 for the n, P, y, and 8 sublattices,
respectively, and y and s from 1 to 10 for each of them.
The input data to the computer was as follows: (a) the
occupancy of each lattice site, (b) the initial number
of 1-atoms in the first, second, and third shells around
each atom. (Two initial states were used. For a fully
ordered initial state these numbers were the same in
each cell and could be readily calculated by inspection
of the structure. For a random initial alloy these num-
bers were computed by examining the surrounding of
each atom after producing a random alloy from an
ordered one, by imposing e~=n2=0.3=0, with the
program to be described below), (c) the initial and final
total numbers of (1,0) pairs Lnot (0,1) pairsj in each
shell, (1,0)~' and (1,0)i,y, (4= 1—3). For the initial
configuration, these numbers were machine computed
from the information in (b) and for the final one, they

II. THE COMPUTATIONAL METHOD

The chief aim of the method to be described is to
generate an atomic configuration for a given alloy
system satisfying an experimental set of values for the
6rst three nI, 's and S. This configuration is considered

FIG. 1. The four sublattices
in a fcc lattice (u, p, y, and 5).
ABC and ABCD are a nearest-
neighbor triplet and quadru-
plet, respectively.

My
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Input;
a) Occupation of each site

h) (x,o) , (x,o)r , (w=z, a, 3)

c) (Lao} , (~=j., a, 3,4)

d.} (mll)k or (m01)k for every

atom, k=1,2, $.

Random selection
of coordinates of
a 1-atom and a
0-atom such that
the (LBO)~ 's come

closer to zero.

These two atoms are not
suitable' for interchange.

The time be-
tween jumps is
not excessive.

These two atoms are
suitable for interchange.

The two are interchanged
( )„'

(mO&)& 's are adjusted

for their neighbors.

S and the (1 's are close
k

enough to their final
va1ues.

nv

The time be-
tween jumps is
excessive.

One or several
random jumps ~

S and the a 's

are not close
enough to their
final values.

Printout on (100) planes.
computation of the a 's

k
(k=1 to 6), triplets and.
quadruplets, selection of
ordered atoms.

Fzo. 2. Flow chart for the
computer program.

End.

were obtained from

(1,0)„~= (1—n&) m, mpC&AT

(where Cs is the coordination number of the kth shell
and X the total number of atoms in the crystal), (d)
the differences (LRO); (j=n,P,y, 5) between the initial
and final numbers of 1 atoms on each sublattice; the
initial number of 1-atoms on each sublattice was found
by a direct count, while the final number was deduced,
for example, for a structure like Cu3Au where the Au
atoms (1) occupy primarily the n sublattice and the
Cu atoms (0) primarily the P, y, 8 sublattices from

S=-,'(rd —ms))(1 —ms)+-', (r.—nag)/(1 —mr), (3)

where rp and r are the fractions of the P- and n-sub-
lattice sites correctly occupied. This equation and a
mass balance for 0 and 1 atoms allows the calculation of
r and rd, if D is known. t Equation (3) is valid in the case
of a stoichiometric or nonstoichiometric alloy and was
used with the measurements for Cus Au~+ with $&0.j

From the de6nition of (LRO);, (LRO), = 0 when the
experimental value of S is satisfied.

After these data were fed into the computer. the

program selected two lattice sites at random, " one
corresponding to the 1 atom which was to be inter-
changed, the other to the 0 atom. The generation of
random numbers being very time consuming, the three
coordinates of one site were derived from a single
random number. Suppose a number A, between 0 and
3999 is generated at random, then A can be defined as

A = (x—1)X 100+ (y—1)X10+ (s—1),
where x can vary between 1 and 40 and y and s between
1 and 10.

In order to adjust S, only random numbers were
accepted for which the x value fell on a sublattice with
(LRO),)0 for the 1 atom and on a sublattice with
(LRO), (0 for the 0 atom (i.e., if on a sublattice there
were more 1 atoms than there should be in the final
configuration, 1 atoms would be removed from this
sublattice and put on a sublattice where 1 atoms were
missing); see Fig. 2.

The sites selected with these random numbers were
not necessarily occupied by 1 and 0 atoms. First consider

' For the generation of random numbers, see the A. Roten-
berg J. Assoc. Computing Mach. , 7, 75 (1960).
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the choice of the 1 atom and suppose that the site
(xiyisi) was occupied by a 0 atom. Then the program
would scan successively the sites having their coordi-
nates between x1 and x„y1 and 10, and s1 and 10 until
it found a site occupied by a 1 atom. (x, was the maxi-
mum value x1 could have on the previously determined
sublattice. ) A 0 atom was then similarly chosen. Before
the interchange was made, the total number of 1—0
pairs for a given vector length rp was (1,0)i,', and this
same quantity after the jump, (1,0)&', would be

(1,0)&'——(1,0) i'+2L(mll) p (moi) p+~j (4)

where (mii) p and (moi) p are, respectively, the numbers
of 1 atoms in the kth shell around the 1 and 0 atoms to
be interchanged. 8 is unity if the sites are kth nearest
neighbors and 0 if they are not. These quantities were
computed for the three first shells and the interchange
was made only if each of the (1,0) p'-'s was not further
from the (1,0) i,i's than were the (1,0)p"s. If the selected
0 atom did not satisfy these conditions, the scanning
was continued until a more suitable 0 atom was found.
If no 0 atom could be found, the procedure was started
over again with a new random number.

In certain cases it was found that an appreciable
amount of computing time could be saved by selecting
the 1 and 0 atoms in two other ways:

(1) Instead of accepting the first 1 atom selected, the
scanning was continued until a 1 atom with special
(mii)q's was found. These specifications were made in
such a way that the chance for interchange was im-
proved. Suppose for example, that (1,0) i,r) (1,0)p'.

Then (m») &) (mpi)& is required for a jump. But if for
example, (mpi) p ——4 and (mii) p ——0.5 (where the barred
quantities are averages over the whole configuration),
very few 1 and 0 atoms will satisfy the conditions for
interchange and many selections of random sites must
be made before a jump will take place. On the other
hand, if a 1 atom is selected only if it has say (mii) p) 2,
then an interchange is more likely to occur. Sta,tistically,
the final conlguration is the same, beca, use in either
procedure the same 1 atoms would have been inter-
changed (as very few are available). This procedure can
only be justified when the average values of (m») p and
(mpi) p are extreme. Nevertheless in other cases, it was
shown that configurations generated by the two dif-
ferent procedures were equivalent.
(2) Sometimes it happened that even though the
special selection procedure discussed above was used,
no two atoms suitable for an interchange could be found
within a reasonable time interval, say hve minutes.
(Normally between 60 and 100 jumps were made in a
minute in. the IBM 709 computer used in this study. )
In this case one or several jumps where only the change
in S was taken into account were accepted. After this,
the program could usually proceed again. Both of these
operations were initiated by hand during a run by the
operation of sense switches.

After each jump, the (mpi) p s and (mii) p s for all the
atoms around the two interchanged atoms were ad-
justed. Finally, it was checked how far S and the nI, 's
were from the experimental values and the program
was stopped, as soon as (LRO);=0 (j=n,P,&,li) and

The resulting configurations on (100), (010), and (001)
planes were printed out. (Other planes were also used
occasionally as a check on the appearance of regions. )
The values of n4, n5, o;6 and the distributions of 1 and 0
atoms over all the nearest-neighbor triplets and
quadruplets (see Fig. 1) were also computed.

It is not certain u priori that the configurations gener-
ated by this procedure represent the actual microstruc-
ture corresponding to the given experimental set of nI, 's
and S, but instead just one possible one. No mathe-
matical approach could even be found to prove that the
three 6rst el, 's were sufhcient to characterize a configura-
tion. Nevertheless, experimentally it could be shown
that the use of the three first o.~'s and S gave results
indicating that the configuration +as representative of
the actual atomic arrangement. This could be done by
considering data where the excess specific heat was small
and by comparing the two final configurations having
the same nI, 's and S, but generated from two different
initial states (say a completely ordered and a completely
random initial state). Several aspects of the results were
compared from both initial states. (a) The distribution
of the two kinds of atoms over all nearest-neighbor
triplets and quadruplets was obtained. In a binary alloy,
the 1 and 0 atoms can occupy the triplets and quadru-
plets in nine ways, namely, 1-1-1, 1-1-0, 1-0-0, 0-0-0,
1-1-1-1,1-1-1-0, 0-0-0-0. Let X111,E110 ~ be the
numbers of triplets and quadruplets having three 1
atoms, two 1 atoms, and one 0 atom, etc. Seven equa-
tions can be written between these nine unknowns, the
number of 1-0 pairs in the first shell and the fractions
of 1 and 0 atoms. In the case of 4000 atoms and an fcc
structure: 1Vooo+1Vooi+iVoii+ xiii ——total number of
triplets= 32,000; 1Voooo+Noooi+1Vooii+1Voiii+1Viiii
= total number of quadruplets=8, 000; 1Vppi+21Vpii
+31Viii ——total number of 1 atomsX24= 24X1Vi;
1Vppi+1Vpii total number of nearest neighbor 1-0
pairsX2= 2mimoCi(1 —ni) =2Pio,'41Voooo+1Voooi=1Vooo,

41Viiii+1Voiii =1Viii; 31Voooi+21Vooii= 1Vooi (If one
introduces higher order o.I,'s and hence complexes of
triplets and quadruplets, the number of unknowns
increases faster than the number of new equations. )
+000, +001, ' ' ', Spp11 can be written as functions of
~ 0111 and ~10 . In the systems studied, E»» turned out
to be zero. Knowing that all the E's have to be positive,
an upper and lower limit can be found for each of them.
These intervals are considerable and thus if the numbers
of triplets and quadruplets agree for con6gurations
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TAsz, z I. Results for CuqAu at 450'C. Data from Ref. (20).

A],
CX2

CL3

tX4

A5
ck6
Cu-Cu-Cu
Cu-Cu-Au
Cu-Au-Au
Au-Au-Au
Cu-Cu-Cu-Cu
Cu-Cu-Cu-Au
Cu-Cu-Au-Au
Cu-Au-Au-Au
Au-Au-Au-Au
No. of ordered

Au atoms
No. of ordered

Cu atoms
Number of

jumps

Experimental
values

—0.195
+0.215
+0.003
+0.077—0.052
+0.028

750 1536

1102

2273

Results
From initially ordered

configuration using:
tX]. AI) A2 C1].) A'2) CX3

—0.1942 —0.1949 —0.1947
+0.2942 +0.2168 +0.2160—0.0045 +0.0365 +0.0031
+0.1395 +0.0627 +0.1329—0.0704 —0.0800 —0.0662
+0.0610 —0.0173 +0.0487

10494 10466 10472
19022 19094 19080
2474 2414 2424

10 26 24
1242 1220 1224
5526 5586 5576
1222 1168 1176

10 26 24
0 0 0

—0.1958
+0.2689
+0.0161
+0.0858—0.0855—0.0093

10442
19150
2374

34
1204
5626
1136

34
0

—0.1951
+0.2168
+0.0379
+0.0511—0.0729—0.0296

10467
19087
2425

21
1223
5575
1181

21
0

—0.1942
+0.2147
+0.0030
+0.1313

0.0671
+0.0507

10481
19061
2435

23
1229
5565
1183

23
0

1045

462

1121

4127

obtained with the computer
From initially random

configuration using
CL& tX&) A2 CXy) CX2) A3

16 000
atom

model'

—0.1949
+0.2152
+0.0029
+0.1407

~ ~ ~

+0.0577
10468
19088
2421

23
1225
5578
1177

22
1

1113

14705

a The results have been reduced to a 4000-atom model.

satisfying the same nj, 's and 5, this is not only by chance,
but can be a proof of uniqueness. (b) The higher order
n"'s (k= 4 to 6) which were not adjusted by the program
were determined and compared to the experimental
values. (c) The total amount of ordered material was
obtained. (d) If domains or ordered regions occurred,
the density of these (and the average number of atoms
they contained) was obtained. (e) The distribution of
1 atoms having a given number of 1 atoms in their kth
shell was counted.

400

E
O

f00

0
200

E
z'.

100

1 2 3 4 5 6 7 S 9 10 II 12 13

Number of Au atoms in k shell

Fre. 3. Distribution of Au atoms in the three Grst shells around
a Au atom. ~-erst shell, &-second shell, g-third shell; full line
for initially ordered configuration, dashed line for initially random
configuration. Cu3Au at 450 C. Experimental data from Ref. 20.

If these points are satisfactory and in agreement.
starting from the two initial states, and data are used
for a situation with low excess specific heat, the re-
sultant configuration must be truly representative of
the actual atomic structure —not just a "picture" of
one possible a,rrangement.

III. RESULTS

(i) Alloys based on the fcc lattice

(1) CusAu above T,

The experimental data taken recently by S. Moss"
at 450'C along with the computed results starting from
a fully ordered and from a random configuration are
shown in Table I. Taking into account the experimental
error (for the higher order ns's) one can see that the
agreement between the experimental and computed
n~ s is quite good. In Fig. 3 the distribution of Au atoms
around Au atoms for an initially ordered and an
initially random configuration are shown superimposed;
the agreement is good. Considering also the fact that
at 450'C the excess specific heat of Cu3Au is about
0 015 cal/g C) it can be assumed that the configura-
tions"described below are representative of the actual
crystal. (Using Moss'" value for the first neighbor
energy only three near-neighbor bonds would have to
be exchanged out of about 11 000 to account for this
specihc heat and this would not alter the configurations
appreciably. )

Note also in Table I the very small changes in

S. C. Moss, J. Appl. Phys. 12) 3547 (196$).
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triplets and quadruplets when n2 and ns are added to
the input and the much larger changes in n4, es, and o.6.

Table I shows the numbers of Au and Cu atoms with
ordered surroundings. The definition of "ordered" is
somewhat arbitrary and will be specified in each case
discussed in this paper. For fully ordered Cu3Au, Au
atoms are at the corners and Cu atoms at the faces of
the cubic unit cell. Rigorously then, an Au atom is in
an ordered region for Cu~Au if it has only Cu atoms in
its first shell of 12 neighbors, none in its second shell of
six neighbors. A Cu atom is in an ordered region if it
has four Au atoms in its first shell, zero in its second, etc.
(For random alloy, a Au atom has on the average nine
Cu first neighbors and 4.5 Cu second neighbors, whereas
a Cu atom has three Au first neighbors and 1.5 Au
second neighbors. ) Using a definition of order based on

complete order one would find very few "ordered"
atoms (atoms in boundaries of small ordered regions
would not be "ordered" for example) and furthermore
the ratio of the number of ordered Cu atoms to the
number of ordered Au atoms would be far from the
value of mg„/ms~„. This would occur because for a given
set of n~'s, the average number of Au atoms around a
Cu atom is much closer to the ordered value than for

11 1 1l & g 1
0 1 0 i. C i. 1 0

Gt 1 0 ~ i l~ G 0 00,0 0 ijG 0 0 G 0

0 1 l 0 1:0 0 ~, 0

0 0 0 lO OI 0 G 0 0

0-0 OXIXQLXX 1 0 0

l 1 C 0 1 1 G 0 0 1
0 0 1 G 0 0 1 0 t0) 0

0 O O 0 1 0 0 IO O-0
1 0 +0 F 9 0) 0 0 0

o o o X,o o o Io 0 o

0 1 1 il 0 1 1
&0 0 l 0 0, 0

o o o 0 'o o o o

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 P( 0 0 0

o o o o o o lo 0 o 0

0 o o o o o o o o o
0 0 0 0 1 1 1 1] 0 10000000. 0 0LQ
1 0 1%1 0 1 1 0 1 1

0 0 '0 0 0 0 0 0 ~00
1 0 1%1 1 1 1 1 1 0

0 0 0 0 0 ,

'0 0 0 0
0 0 lg 1 ll 0 0 0 0 0

0 0 5 0 0] 0 0 0 1 0
0 0 1 1 0 0 0 I 0 0 Jo

0 0 0 0 1 1 1 1 0
1 0 1 1 0 0 0 0 0 0

0 1,0 0 1 1 '1 1 1 1
o o o o o Lo oto~oo

0 0 1 1 0 0 0 0 0 0
0 o ~ lo 0 0 ~c 0 lo o

0 0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1
O O 0 O OiO 1 0~0

F&G. 4. Cu3Au at 450'C—Data from Ref. 20. 1=Au Q=Cu.
Two consecutive (100) sections through a crystal having S=Q,
1=—0.1942, ng ——+0.2147, cz3 ——+0.003, n4 ——+0.1313, cx5

= --0.0671 and a6 ——+0.0507. Notice the shaded areas, which are
regions which appear to be ordered but which are really not
because of wrong neighbors in the planes above or below the ones
shown.

g~zzzTEEEl

E/r'E/E, — @%X

/ XXXXXXVgpj/~jg/gg~ — k%%M

r/-

FrG. 5. Cu3Au at 450'C—data from Ref. 20: Three-dimen-
sional model of an ordered domain. The shaded regions have
their Au atoms on a different sublattice from that of the white
regions.

Cu's around an Au atoni, i.e., the difference in number
of neighbors of each kind between full order and
randomness is much larger for a Au atom than for a
Cu atom. For these reasons, it was decided to adopt a
looser definition of an ordered atom, which would not
have the above mentioned disadvantages. The following
set of definitions gave satisfactory results: The Au atoms
were ordered if there were 0, 1, or 2 Au atoms in the
first shell and 3, 4, 5, or 6 Au atoms in the second shell.
The Cu atoms were ordered if there were 4 Au atoms in
the first shell and 0 or 1 in the second. (For a com-
parison of the results for a given set of data from two
starting states it is only necessary to maintain the same
definition. ) In addition to a printout of all the atoms,
another printout based on these definitions was ex-
tracted to help draw any ordered regions. This choice
of ordered atoms had another use. The definition of an
ordered Au atom being very loose, the total number of
ordered Au atoms would be roughly proportional to the
total amount of ordered material. On the other hand,
the total number of ordered Cu atoms would give an
indication of the degree of order inside any domains or
of the size of such domains, if they occurred.

Figure 4 shows two consecutive (100) sections
through the configuration, corresponding to Moss' data
at 450'C. The whole configuration can be described as
a random matrix in which ordered regions are sus-
pended. (The shaded areas in the figure are regions
which might appear to be ordered in this section, but
which in fact are not, because of wrong neighbors in the
planes above or below the section shown. ) The ordered
regions are composed of successive (100) layers whose
shapes vary considerably from one plane to the next
one, so that very irregular volumes result. The dirnen-

sions of these domains vary between 1 and 7 or 8 unit
cells in the (100) directions. Some of these domains are
connected through an antiphase boundary. Several
interconnected domains are shown in Fig. 5. (The
general shape of these regions was Dot affected by the
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TAsr.E II. Results for Cu3Au and Cu72Au28 below T,. Experimental data from Ref. 9.

Experi-
mental
results

ar
from

random

A&) A2
from

random

Cu3Au S=0.80
Results obtained with the computer

&1)2) 3 ~1)2) ~ 3

from from
random order

Cu;2Au28 S=0.71

Computed
Experi- results
mental
results from random

Cu72Au28 S=0.83

Computed
Experi- results
mental n1, o.2, a 3
results from random

n1 —0.265
a2 +0 715
cx3 —0.209
cz4 +0.636—0.223
n6 +0.643
No. of Cu atoms

in ordered matrix
No. of Au atoms

in ordered matrix
No. of isolated

Au atoms
Ratio of total No.

of misplaced Cu
at. to total No. of
misplaced Au at.

Number of jumps

—0.2642
+0,7271—0.2212
+0.6851—0.2305
+0.6723

2817

1.28
1047

—0.2642
+0.7155—0.2223
+0.6866—0.2275
+0.6690

2810

1.30
1009

—0.2651
+0.7146—0.2091
+0.6651.—0.2323
+0.6446

2824

851

21

1,18
1401

—0.2644
+0.7151—0.2092
+0.6637—0.2349
+0.6400

2830

30

1.20
1554

—0.238
+0.620—0.176
+0.540—0.197
+0.544

—0.2382
+0.6209—0.1760
+0.5706—0.2000
+0.5579

2669

872

0.76
1164

—0.280
+0.804—0.250
+0.734—0.253
+0.750

—0.2790
+0.8041—0.2499
+0.7671—0.2549
+0.7542

2806

950

68

0.34
6108

initial configuration or by the definition of an ordered
atom. )

Raether" observed sha, rp superstructure peaks, using
electron diffraction, even above T„where such peaks
might be expected to disappear. Because of the small
wave length in electron diffraction the tiny regions in
Figs. 4 and 5 would give such sharp peaks a,nd in fa,ct
if the more diffuse x-ray scattering due to local order is
treated as due to small ordered particles the resulting
dimension of these particles (about 12 A) agrees well

with the average dimension of the domains in Figs. 4
and 5.

One model with 16000 atoms was made for Moss'
data at 450'C starting from an ordered configuration.
The results which have been reduced to a model of
4000 atoms are shown in the last column of Table I.
Although here the history of the configuration was quite
different from the one for a 4000 atom model, the results
are in good agreement; the amount of ordered material
is the same (i.e., the number of ordered Au atoms) and

the degree of order inside the domains is also similar.
Nevertheless, it should be pointed out that the con-
6guration was not merely a superposition of four
4000-atom models. In the 16000-atom model there
wa.s more freedom to arrange the domains. The random
regions between two ordered regions changed their
dimensions considerably. Suppose, for instance, that
there are two ordered regions at least two unit cells
apart. Then they can be shifted farther apart over any
distance without changing the seven first nj, 's

appreciably.
Only the results for the most recent experimental

data on Cu3Au are presented here. Nevertheless, runs
were made using several other sets of experimental
data. '»" The results were as satisfactory in all cases
and also quite similar regions were obtained.

Table I shows also the results for configurations where
nI alone and nI and n2 alone were adjusted. n& alone
seemed to determine the distributions of Au and Cu
atoms over the triplets and quadruplets (more com-

TABLE III. Experimental and computed y s for CuaAu and Cu72Au2S below T, (experimental values from Ref. 9).

Experim-

entall
results

cj'1

from
random

(XI) CL2

from
Iandom

A] p 0!2)CX3

from
random

A ]) CX2) 0!3
from
order

Cu3Au S=0.80

Results obtained with the computer
After

adjusting
results in
column 6
(see text)

Experi-
mental
results

Computed
results;

A&) A2) CL3

from random

Cu~2Au28 S=0.71

Experim-

entall
results

Computed
results;

A], ) CL2) A3
from random

Cu72Au2S S=0.83

P2
tff)3

p4

%6

—0.052
+0.075
+0.004—0.004—0.010
+0.003

—0.051
+0.087—0.008
+0.045—0.017
+0.032

—0.051
+0.075—0.009
+0.047—0.014
+0.029

—0.052
+0.075
+0.004
+0.025—0.019
+0.005

—0.051
+0.075
+0.004
+0.024—0.022
+0.000

—0.047
+0.076
+0.004
+0.004—0.014
+0.000

—0.057
+0.076
10.005—0.004—0.016
+0.0005

—0.057
+0.076
+0.005
+0.026—0.019
+0.014

—0.032
+0.060—0.002—0.010—0.005
+0.006

—0.031
+0.060—0.002
+0.023—0.007
+0.010

"H. Raether, Z. Angew. Phys. 4, 53 (1952).
» S. C. Moss, International Union. of Crystallography, Sixth Ipt, f;j.'pa, tjonal Congress and Symposium, Rome, 1963, p. A 100 (unpub-

lished).
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pletely than was to be expected from the equations
presented in the previous section) but not the total
amount of ordered material. The adjustment of e2 on
the other hand determined the number of ordered
atoms (i.e., the number of ordered Au atoms), but not
the order inside the domains (given by the ordered
Cu atoms).

The small experimental value of o,3'" makes it
difFicult even to be sure of its sign in experimental
determinations. For this reason the eRect of variations
in n3 was studied while n~ and e2 were kept constant.
The small changes required to maintain the magnitude
of the measured value but change its sign have a
negligible eRect on the structure.

The general configuration at 405'C is similar to that
for 450'C, but the total amount of ordered material is
increased by about 20% at the lower temperature.

Heeler and Delaney" used a Monte Carlo approach
with only a 6rst-neighbor energy to allow a vacancy to
move around in the alloy below T,. The initial stages of
ordering were observed and the regions that developed
were quite similar to those presented here.

(Z) CusAu below T,

The experimental data used in this section were
taken from Schwartz and Cohen' for S=0.80. In this
case the excess specific heat is of the order of 0.15
cal/g-'C&'&, i.e., still quite low.

As shown in Table II, the computed results are in
good agreement with the experimental values. Never-
theless it should be noted that the method of analysis
used by Schwartz and Cohen did not yield the nk's

directly but the quantities pI,

+&=&I—I S
~

where ng, represents the limiting value of 0.~ when the
atoms on wrong sites are randomly distributed
(ns' ——bmemr with b=16/3 for k even and b= —16/9
for k odd). The results are compared with the experi-
mental y~'s in Table III; the experimental errors for
the ys's given by these authors were &10% for k odd,
&30% for qs, &200% for q4 and qs. The agreement
between the experimental and computed y4 and ps is
then only fair, and the reasons for this will be discussed
after more of the results are presented.

The most interesting sampling procedure for atoms
was found in this case to be a count by eye of all the
Cu and Au atoms which were not in the ordered matrix.
First consider the case where the three first o.I,'s have
been adjusted simultaneously, Lsee Fig. 6(a)j. In this
case, starting from an ordered configuration, it was
found that the alloy was composed essentially of an
ordered matrix in which 10.5X10' antiphase domains
per cc were suspended. On the average each such domain
contained 5.2 atoms, i.e., about seven percent of the
atoms were in domains. In the case where a random
alloy was used as the initial configuration, these num-

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 0

1 1 1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0 0

0 0 0 1 0 0 0' 0 1
1 0 0 0 1 1 1 0 0 10,. 0 0 1 0 0 0 0 0 „, 0
0 0 0 0 0 0 0 0 0 0

1 0 0. 0 1 1 1' 1 1 1
0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 .0 0

1 1 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 Q
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0 0 0 0 0 0 0 0 0 Q

1 1 1 1 1 1 1 1 1 1
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1 0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 J 1 1 1 1
1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 '0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1
1 0. 0 0 0 0 0 0 0 -Q

1 0 1 1 1 1 1 . 1 1 1
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1 1 1 1 1 1 1 1 1 1
0 0 Q 1 0 Q 0 0 1 0

1 1 1 0 0 1 1 1 1 1
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1 1 1 1 LQ 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0

1 1 1 1 1,1 1 0 (1 0
0 0 0 0 0 0 1 1L0 0
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Fzo. 6. (a) Cu, Au below T,: (100) section through the crystal.
S=0.80, ceI= —0.2644, 0.2=0.7151, 0,3= —0.2092, a.4=+0.6637,
a5= —0.2349, and ~6——0.6400. (b) Cu72Au28 below T&. (100)
section through the crystal. S=0.83, n1 =—0.2790, ~2=+0.8041,
~3———0.2499, ~4 ——+0.7671, ~~= —0.2549, and ~6——+0.7542. (c)
Cu72AUQS below T, : (100) section through the configuration.
S=0.71, a1= —0.2382, ~'2 ——+0.6209, cz~ ———0.1760, ~4 ——+0.5706,
ms= —0.2000, and F6=+0.5579. Data from Ref. (9)—1=Au,
O=Cu.

bers were found to be 11.2)&10" and 5.1, respectively.
The domains were two-dimensional, lying on {100)
planes, and were mostly rectangular, the sides lying
along (100) directions. (A few domains were observed
containing two or three layers stacked over each other. )
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FIG. 7. Models for altering the
antiphase domains of Fig. 6 to
bring y s within their experi-
mental limits. 1=Au, O=Cu.

Chipman' suggested this kind of region, but in attempt-
ing quantitative comparisons to the local order from
his x-ray measurements he assumed that the composi-
tion of the domains did not change from one domain to
another. The computer results reported here show that
this assumption was not valid and this probably
accounts for the poor agreement found by Chipman
and also Schwartz and Cohen between measured nI, 's

and values calculated from such a model of tiny
domains.

If o.& alone was adjusted, the structure was quite
similar and the total number of atoms in domains was
not very much affected. The only difference was that
the domain plates had a tendency to overlap. The
effect of n2 was to split the domains on (100) planes.
The overlapping in the third direction was still present.

As mentioned earlier, the values of q4 and q 5 were
not within the experimental error. Many attempts were
made to slightly rearrange the antiphase domains in
such a way that these two values would fall within the
experimental accuracy without changing the values of
any of the other q, 's. All but one of these failed, so that
the e6ect of q4 on the structure must be practically
unique.

First consider Fig. 7(a) and suppose that the anti-
phase domain on the left is split into two parts and the
two shaded areas interchanged. The changes in Au-Cu
pairs will be, using Eq. (4), —8, +10,0, +12, —20, and 0
for the first six shells. From the computer results for the
initially ordered configuration, the number of Cu-Au
pairs in the fourth shell is 3026 while from the experi-
mental data this number must be at least 3204, even
allowing for the experimental error. Hence 178 addi-
tional bonds must be created, or 14.8 domains like that
in Fig. 7(a) must be split (less than 30% of the total
number of domains). The changes in Cu-Au pairs in
shells 1—6 then would be —118, +148, 0, +178, —296,
and 0.

Now, considering the erst-nearest-neighbor shell, the

generated conlguration contained 11 380 Cu-Au pairs,
but there were 11 262 after the 14.8 domains had been
split, while the minimum value compatible with the
experimental data would be 11 338. Hence 76 additional
bonds must be found.

Consider Fig. 7(b). If the two shaded areas are inter-
changed, the following changes in Cu-Au bonds are
found for shells 1—6, respectively; +2, —4, 0, 0, +4, 0.
Therefore 38 such changes are required to adjust e~
again and the changes of the Au-Cu pairs in each shell
would then be 76, —152, 0, 0, +152, and 0; and the
over-all changes would be —42, —4, 0, +178, —144,
and 0. The resulting values of the y s are shown in
Table III and are in excellent agreement with the
experimental values; although no effort was made to
bring &p5 closer to its experimental value, it is in excellent
agreement. Note that the changes discussed here are
minor in terms of the appearance and percentage
changes in the bond numbers. It appears that the
adjustment of higher order y s would produce a
splitting of some of the domains and that their shape
would become more regular.

TABLE IV. Results for Cu —14.5 at. % Al.
(Experimental data from Ref. 27.)

Experimental
From
Order

0.' i O.'2) Of3

From
Random

CX1

CL2

CX3

cX4

CX6

a6
Number

—0.137
+0.124
+0.096—0.041
+0.011—0.184

of jumps

—0.1369
+0.1228
+0.0957—0.0328—0.0456—0.0909
10 288

—0.1369
+0.1215
+0.0959—0.0381—0.0466—0.0879

1527

"From the measured value of 5 and a mass balance one can
calculate r and rp and show without the computer that there are
more wrongly occupied Au sites for Cu»Au» than for Cu&Au.
However, the ratios reported here refer only to the domains and
cannot be inferred from S. LSee Eq. (3)g.

(3) Cu72Au2a below 2',

The experimental data taken by Schwartz and Cohen'
and the computed results are presented in Table II.
Figures 6(b) and 6(c) show (100) sections through the
crystals with $=0.83 and S=0.71, respectively. This
set of data was run in order to determine how the non-
stoichiometric Au atoms were distributed; the results
here should be compared with those of the previous
section. The maximum order in this alloy is $=0.88.
Cu72Au» S=0.71, corresponds to a state a few degrees
below T„imsil rato Cu3Au 5=0.80. (A) The ratio of
the number of Cu atoms in domains to the number of
Au atoms in domains dropped from 1.5 for Cu3Au
S=0.8 to 1.1 for Cu72AU28 with S=0.71 and to 0.5 for
Cu72Qu2a 5=0.83, i.e., the number of Au atoms in do-
mains was increased as compared to the stoichiometric
case."This increase as shown in Fig. 6 was due to the
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Fro. 8. Cu-14.5 at. % Al—data from Ref. {27):(100) section
through a configuration with S=O, a1= —0.1369, 0.2=+0.1215,
me =+0.0959, n4 = —0.0381, a~ = —0.0466, and ~6 ———0.0879.
1=Al, O=Cu.

presence of Au atoms in the boundaries of the domains.
Cahn and Kikuchi'4 suggested that this could occur, as
based on first-neighbor energies there is no difference in

having the extra Au's in Cu»Au» randomly distributed
or in the boundaries. Their appearance in the boundaries
in fact suggests that the second-neighbor energy has
the same sign as the first, because there are more wrong
(Au-Cu) second-neighbor bonds with the extra Au

atoms in domain boundaries than if they are randomly
distributed. ConQicting opinions have been expressed
previously concerning the sign of this energy, ' """
but this result supports the latest estimate. 7 " (8) The
number of isolated Au atoms was increased, as com-

pared to Cu3Au, from 5.7&&10' per cc to 13X10"for
5=0.83 and to 15.6X10' for S=0.71 (i.e. about 2%
of the total number of atoms). Thus the Au atoms
do not seem to avoid each other as has often been
suggested'; in the boundaries of the domains or as
random wrong Au atoms they have many Au neighbors
that could be avoided if they were inside the domains.

For S=0.83 all the domains were one layer thick.
The density of plates was 6.3)&10"per cc. Each plate
contained 5.3 atoms on the average. For $=0.71 the
density of (100) plates was found to be 17X10"per cc.
Only 30% of these were not clustered. The rest of them

formed domains several layers thick suspended in an
ordered matrix. The shapes of these plates were no

longer rectangular but were more like the ones found
in CusAu above T, (Fig. 5). Thus, just below T, the
nonstoichiometric alloy has a very different structure
from that for Cu3Au.

Tasx,z V. Distribution of Al atoms in domains
in Cu-14. 5 at. % Al'.

From
Order
From
Random

Numbers of domains containing between
1 5 10 15 20 25 Total

and and and and and and number
5 10 15 20 25 31 of

atoms atoms atoms atoms atoms atoms domains

163 10 7 3 2 2 187b

162 11 7 4 0 2 186

(4) Cu-14.5 at.% Al

The experimental data'7 along with the computed
rrs's are presented in Table IV. A (100) section through
the crystal is shown in Fig. 8. The microstructure can
be pictured as a Cu matrix in which are suspended
Al rods, one atom thick. Each Al atom is linked to the
next one in a rod by a second-nearest-neighbor bond.
These rods were not always straight lines but were
often composed of segments, each of which lay along
one of the (100) directions. Several rods intersected
or ran parallel to each other one lattice distance apart,
so that in some cases, little plate-like domains ap-
peared. It is interesting that although the local-order
parameters are characteristic of an alloy containing
short-range order, the configuration can better be
pictured as a Cu matrix in which little Al clusters are
suspended. The atoms in these clusters are linked
together by second-nearest-neighbor bonds and the
local order comes from the Cu first neighbors to these
i ods.

In this particular case, the computer could easily
count the numbers of atoms in each domain. Two Al
atoms are considered to be in a domain if and only if
they have a common second-nearest-neighbor bond.
Table V shows the distribution of the Al atoms among
these domains. Although the numbers of jumps between
the initial and final configurations were quite different
(10 288 jumps from the ordered configuration and 1527
from the random one), the agreement between the two
conhgurations is excellent. First- and third-nearest
neighbor Al-Al bonds could be adjusted independent
of the number of second-neighbor bonds by placing the
rods in a suitable way with respect to each other. Any
place two rods are only one nearest-neighbor distance
apart first-nearest neighbor Al-Al bonds are created,
and each place two lines run perpendicular to each other
on planes one lattice distance apart third-nearest
neighbor Al-Al bonds are created.

Recently, Boric, and Sparks'0 proposed a model for
the distribution of the Al atoms in the Cu matrix for
this alloy system. In their experiments )on Cu-16 at. %

'4 J. W. Cahn and R. Kikuchi, J. Phys. Chem. Solids 20, 94
(1961)."G. Fournet, Compt. Rend. Reunion Ann. Avec. Comm.
Thermodynam. Union Intern. Phys. (Paris, 1952), p. 199.

'6 C. H. Sutcli6e and F.E. Jaumot, Jr, , Acta Met. 1, 725 (1953).

a The numbers are related to a 4000-atom model.
b This corresponds to 3.88 )(10» domains/cc.

"C.R. Houska and B. I, Averbach, J. Appl. Phys. 30, 1525
(1959).



A 854 P. C. GEHLEN AND J. B. COHEN

I

I

I

I

I

I

I

I

I

I

I

/I
/

/

FIG. 9. Two face-centered cubic unit cells containing a tetra-
hedron as used by Boric and Sparks" to represent local order
in Cu-16 at. % Al. (The Al atoms are represented by open
circles. )

A17, they did not actually determine the n~'s but
quantities involving complex sums of these, which
could not be solved uniquely for the o.&'s; all possible
solutions showed that o.i was its minimum, i.e., there
were no Al-Al first-nearest-neighbor bonds. They
assumed that the Al atoms were placed on the corners
of a tetrahedron as depicted in Fig. 9 and then assumed
a distribution of such tetrahedra in the crystal in such
a way that no 6rst-nearest-neighbor Al-Al bonds were
created and that yielded values for these complex sums
that were close to their experimental values. A simple
calculation shows that for Boric's and Spark's data, or
the data in Ref. 27 for Cu-14.5 at. % Al, such a
distribution would be quite complex; the tetrahedra
must, in fact, be linked together in big clusters. If the
tetrahedra were isolated there would be 145 of them in a
4000 atom crystal of 14.5 at. % Al, and as each one has
two and four Al-Al pairs involving second and third
neighbors a total of 290 and 580 second- and third-
nearest neighbor Al-Al pairs, respectively, would be
created as compared to 437 and 1580 calculated from
o,2 and n3 reported in Ref. 27. In order to make up for
the missing pairs, big clusters have to be assumed and
the tetrahedra would no longer be recognizable. In the
printout not even one complete isolated tetrahedron
could be found. Clusters were not the predominant
feature anyway. Between 85 and 90% of the Al atoms
were in rods. The remainder of them were in little
two-dimensional plates.

(ii) Alloys Based on the bcc Lattice

Alloys based on the bcc lattice provide another
interesting opportunity to examine the effect of the nl, 's

on the structure of an alloy. a2 and n3 involve atoms on
the same sublattice whereas, this is true only for o,2 in
structures based on the fcc lattice. For the fcc structure
each atom has twelve first-, six second-, and twenty-four
third-nearest neighbors, while for the bcc structure
these numbers are, respectively, eight, six, Bnd twelve;
therefore, not only is the relation between sublattices
more poorly defined, but also the relation between
individual atoms. Unfortunately, accurate n~'s are not
really available for the bcc case. Two systems that

involve only local order, Ti-Mo" and Li-Mg, " have
been studied using powder specimens, and in obtaining
the o.l,'s by a Fourier transformation of suitable inten-
sity data, there was too much overlap between the first
and second shells to separate n~ and o,2 in a straightfor-
ward manner. P-Ag-Zn has been examined at a tempera-
ture above T,"using a single crystal, but the thermal-
diffuse scattering was so large that after correcting for it,
the o, I,'s obtained were not very accurate. There was an
indication that the n~'s fell off rapidly and were close to
the random values by the fifth shell. An attempt was
made to use this set of data, with the computer program
reported here. The fcc program could be easily adapted;
the only change was that only two sublattices were
involved.

The results were not as satisfactory as in the fcc case.
Even when n4 was added to include a value, besides o.~,
involving the two sublattices, this did not seem to be
sufFicient to determine the structure uniquely. The total
amount of ordered material varied by about 25% for
runs from the two different initial states and the
distribution of the atoms over the ordered regions
varied drastically from one run to the other. Attempts
starting from an ordered configuration had to be
rejected because too few jumps were required to adjust
the n~'s and hence the inhuence of the initial configura-
tion was too important; there was one very large
ordered region.

That two configurations having almost the same o.~'s

can have quite different aspects was not observed for
the fcc case. It is not clear whether this difference is
due to the data or to the different geometries of the two
types of structures. More conclusive analysis of the
meaning of local order in alloys based on the bcc lattice
must await more precise data.

rv. coN CLUsrON'8

It has been shown that the computer can be used to
generate the microstructure of a binary alloy by using
the experimentally determined short-range order and
long-range order parameters (ns and S). Definite
ordered regions were found above T, which were
different in shape in different systems.

At least for alloys based on the fcc lattice the first
three short-range order parameters give essentially the
same structure starting from different initial states,
and good agreement with the experimentally observed
higher order o.q's (which are not used by the computer).
A qualitatively correct picture can be obtained in
some cases with only o.&.

If o.~ alone is used, the distribution of the atoms over
the triplets and quadruplets is determined. In some
cases even the amount of ordered material is determined
(CusAu below T,) while in the case of CusAu above T„

' J. M. Dupouy and B.L. Averbach, Acta Met. 9, 755 (1961)."F.H. Herbstein and B.L. Averbach, Acta Met. 4, 414 (1956).' E. Suoninen and B.E. Warren, Acta Met. 6, 172 (1958).
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n2 is required to determine this amount. n3 and n&

determine the distribution and size of the ordered
domains.

Though it could not be shown analytically that the
first three n~'s were sufhcient to practically determine
the structure of an fcc alloy, from the computer results
it could be seen that higher order nI, 's would not add
much to the appearance of the structure. Higher order
0,&'s may be required however for bcc structures.

The computer program used here is written in such
a way that the configuration corresponding to any given
composition in a binary alloy or degree of order can be
generated. It could prove useful in a study of kinetics
of ordering, by measuring the changes in the 0.I,'s with
time and following the changes in the shapes and sizes
of the ordered regions by starting each computation
with the final configuration for the previous time.

It could also be helpful in pursuing the problem of
determining alloy structure analytically. This type of
program might also be applied to other problems, such
as the distribution of magnetic spins, using results of
studies of the diffuse magnetic scattering of neutrons;
and it could also be altered to use the experimental
data on pair densities in liquids.
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A generalized gneiss molecular-Geld calculation is presented for the solution to the Heisenberg Hamil-
tonian. Thermodynamic perturbation theory is used to deGne a series of approximations for the magnetic
state. In particular, the equations for the ferromagnetic state are expanded near the transition temperature
T„ in order to examine the temperature dependence of x. Numerical results suggest that 6th-order per-
turbation theory gives the susceptibility accurately in the temperature range above 1.5T, ,

I. INTRODUCTION

HE Heisenberg Hamiltonian which describes the
behavior of some magnetic insulators has been

solved previously in the low-temperature limit (T«T,)
and in the high-temperature limit (T))T,), where T,
is the critical temperature at which a phase transition
takes place. The region around the transition, T=T„
is intriguingly simple experimentally', nevertheless, no
really satisfactory theory yet exists for this tempera-
ture region.

The theory developed in the present paper, though
applicable to the magnetic state, is closely related to
the high-temperature expansion, which if carried to
high order gives information about the transition region.
The scheme is based on thermodynamic perturbation
theory' which is not valid at low temperatures. The
high-temperature expansion for the magnetic suscepti-

bility derived in this work is suggestive of the Pade
approximant scheme discussed extensively by Baker
and others. ' Whereas the Pade approximant scheme is
a mathematical extension of an expansion of the sus-
ceptibility, the present perturbation theory approach
is a physical extension of the Weiss molecular-field
solution to the Heisenberg Hamiltonian.

Section II contains the mathematical development
of the approximation scheme. In Sec. III the calculation
is specialized to ferromagnetic nearest-neighbor inter-
actions. An expansion of the magnetization is then made
near the transition temperature T, which allows a calcu-
lation of both the high-temperature susceptibility

(paramagnetic state) and the temperature dependence
of the magnetization at the transition (ferromagnetic
state). In Sec. IV the results of the ferromagnetic
calculation are discussed with regard to fitting the sus-

ceptibility and magnetization to a simple power law.

* Operated with support from the U. S. Air Force.' P. Heller and G. Benedek, Phys. Rev. Letters 14, 71 (1965);
8, 428 (1962).
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