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A theory of liquid alkali-metal alloys is proposed which takes advantage of the absence of structure factors
in the diagonal elements of the augmented plane-wave Hamiltonian. The theory is used to calculate volume
and compressibility deviations from ideal values for a 50-50 ¹Kmixture, with the result that the cal-
culated deviations are of the order of twice those found experimentally. The enthalpy of mixing also turns
out too large. The sizes of the atomic cells for sodium and potassium tend to approach somewhat their
average value on mixing. Also a small negative charge (~0.04e) is predicted to be transferred from the potas-
sium to the sodium cell.

I. INTRODUCTION

'HE pure crystalline alkali metals have as a class
been investigated probably more effectively and

certainly more repeatedly than any other class of ma-
terials. To a large extent this popularity can be attri-
buted to the close resemblance of these metals to the
free-electron model as first demonstrated by the classic
papers of Wigner and Seitz. ' 06hand one might imagine
that alloys of these metals would prove similarly tracta-
ble and exhibit similar free-electron-like propensities.
Actually, alloying in the solid state is rare among binary
systems of alkalis and in one or two cases there is even
immiscibility in the liquid state. It is the difference in
lattice parameter or, what is physically more significant,
the variation in electron density from one metal to the
next that is crucial in determining solubility. We have
attempted a general approach to the problem of cal-
culating the energy and related properties of alkali
alloys. The initial application, to the 50-50 (atomic
concentration) sodium-potassium mixture, serves as a
trial run of the method and is described in detail in this
report. The physical properties investigated are en-

thalpy of mixing, compressibility, individual cell sizes
(or nearest-neighbor distances), and charge transfer.

In this research it was our aim to concentrate on that
aspect of the mixing process which could be reduced to a
problem of wave function matching between atomic
cells of different electron density. We have chosen a
model which we believe represents the liquid state in a
simple and consistent manner and, since our interest
lies in the mixing problem itself, we have, so far as
possible, side-stepped the far more subtle problem of the
solid-liquid phase transition. Qualitatively it is clear
that in the cell with the smaller dimension and higher
electron density one can expect the gradient of the wave

* Supported by the National Science Foundation.
f Visiting Professor of Metallurgy and Solid State Physics

during 1960—61, when this work was begun.
r K. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46,

509 (1934).

function to be negative at the cell boundary and con-
versely for the larger cell. It does not follow that the
cells are necessarily neutral or even that one can predict
the sign of the net cell charges without quantitative
calculation.

To formulate our solution, we chose the augmented-
plane-wave (APW) approach. ' According to this
method, one constructs a spherical cell around each
atom and assumes a spherically symmetric potential
within each cell and a constant potential outside all
cells. Inside a cell one selects a linear combination of
solutions to Schrodinger's equation such that the re-
sulting function joins continuously to a plane wave at
the cell boundary. For our problem we limited the num-
ber of these plane waves to one per wave function. The
radial slope is then allowed to vary and substantial
discontinuities can be expected, particularly between
like neighbors. The great advantage which results from
the use of single APW wave functions is that the cal-
culation of the energy is then independent of the cell
geometry, even to the extent that the number of nearest
neighbors do not have to be specified. This "looseness"
of the model appeared to be an agreeably simple way to
simulate the nature of the liquid state.

To determine the wave functions and g.orxnal deriva-
tives as functions of energy at the cell boundaries we
used the quantum defect method. ' Following the de-
velopment of Slater and Saffren, 4 we chose the energy
parameters within the cells to coincide with the ex-
pectation value of the energy for that electronic state,
thus minimizing the expectation value with respect to
those parameters. The electron energy is determined to
terms in the square of the wave-propagation parameter,
and the total energy is obtained by summing over the
states below the Fermi energy. In this first eR'ort we
neglected the volume outside the atomic cells and dis-

~ J. C. Slater, Phys. Rev. 92, 603 (1953).
3 F. S. Ham, Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1956), Vol. 1, p. 127.' M. M. Saffren and J. C. Slater, Phys. Rev. 92, 1126 (1953).
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regarded the distortions involved in mak ing the cells
space filling. It is known that for the pure solids these
distortions cause only small corrections to the energy.

In order to compute the exchange-correlation energy
we use a correlation-hole density which depends ex-
plicitly on the local electron density and on two other
parameters, one of which is specified by normalization.
The second is chosen so that the expression for the
energy is identical to the Pines' result when the electron
density is unif orm throughout the liquid . Closed form
solutions to the integrals involved in the exchange-
correlation potential do not exist and rather than resort
to numerical integration, the potential as a function of
distance is fitted to a parabola.

In Sec. II we describe in detail the general approach
and give explicit expressions for the energy and cell
charge as functions of composition. We then particular-
ize to single component and 50-50 binary systems. In
Sec. III we give some of the details of the calculation as
well as results for pure sodium, pure potassium and the
50-50 sodium-potassium mixtures. These results are
presented and compared with experimental data. In a
final Sec. IV we have analyzed the significance of our re-
sults and discussed plans for future work.

II. THEORETICAL ANALYSIS

A. Wave Function and Energy in the Independent
Particle Approximation

We assume a "muffin-tin" potential characterized by
the spherically symmetric potential V„ inside the
spherical cell with center at the eth atom and the con-
stant potential Vo outside all cells. We take the function
ps= Ac'~' for r outside all spheres,

tgp Ae'" ——~ P& i'(2l +1)j&(kr„)
X(R.i(r,E)/R. i(r.,E))P1(co») (1)

The energy parameter E is chosen, by a variational
procedure, ' 4 to be the expectation value of the energy
in the kth state. Thus E(k) satisfies

1 d—R„i(r,E)
R„~(r„,E) dr

In spite of the fact that kr„ is greater than unity for
many occupied states, theoretical investigations have
shown that energies and wave functions may be rep-
resented, to a su%ciently good approximation by ex-
pressions which are linear in k'. The coefficients of higher
order terms are small. We neglect these terms and write

and
P(k) =Ep+k2F2

re„i(r„,E)=$„1(r„,Ep)+k'E2[8$„1(r„,I':)/rlE]s r,

For convenience in writing this and later expressions, let

P (r Ep) =P . p(r Ep)

P.(r,Ep) =@„1(r„,Ep),

W„(r„,Ep) = r„2[BED„p(r,E)/8E]s

We also take co= 0. Then (3) becomes

Q„r„2P (r,Ep)+Q„ks[—-',r„'(F„—P„)+E2W„]=0

to order k '. Thus Eo is the solution to

P. r „P„(r„,E,) =0

E2= s (Z - r-'(P- —P-)/Z- W-)

[E(k)—k' —Up]pi = 42r Q r.'
XZ (2~+1)j '(k -)~. ( -,F), (3)

where
co = volume not enclosed by spheres

for r inside the eth sphere, to be the wave function of an The average electronic energy E, is
electron in the molten metal ~ Here

E, =Earp+0 6k ps Li'p+Fip, . ——
R„=position of 12th atom,

r„=radius of the eth cell

8= angle between r and k,

where
k r ——(1/r, )(92r/4) ' I '

r.'= (1/Ã)P r

and R &(r,E) satisfies the radial equation For a binary system with concentrations x& and x2 of
components 1 and 2, respectively, the average energy is

1 d t' dR„ii — l(3+ 1)
r' ~+ U (r)+ ER~1=0. (2)—

r' dr( dr I r' F, =Ep+0.6k p2E2,
with

&lrl Pi+&sr2 P2Bohr units (energy in Rydbergs, distance in Bohr radii)
are used. These wave functions are everywhere con-
tinuous but have discontinuous normal derivatives at
the cell boundaries.

+X2r2 (P2 P2))/(X1W1+X2W2) ~ (6)
5 D. Pines, Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1956), Vol. 1, p. 367. ra &lrl +&2r2 ~
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r12=

p = electronic number density in the eth cell,

x(rq, r2) = exchange-correlation density.

We assume that p„ is the constant 3q /4~r„', where q„
is the number of conduction electrons in the eth cell
and that x has the formR~q(r, E)=(1/r)[U»&0&(r, E)—tanvrri„»Uq&'&(r, E)]. (g)

In general, the potential V„appearing in (2) is un- Here
known although potentials which reproduce crystalline
energy levels have been invented. We chose rather to
employ the quantum defect method to obtain the
derivatives P„g(r„,EO), (see Ham'). For the outer regions and
of the cell the functions E„~(r,E) can be written as
linear combinations of the two solutions to the hydrogen
problem:

The particular choice of the functions U~"&(r,E) and
U~&'&(r, E), and the determination of the "r& defects" as
a function of E are discussed in detail by Ham. ' We
have used the "unmodified defects" which do not include
the e6ects of core polarization on the free-atom levels.
In principle, one should correct for polarization in the
free atom and then include a polarization term in the
liquid energy. Some discussion of this approximation
appears in the final section.

B. Electron-Electron Interaction

When the space occupied by the liquid can be divided
into X cells such that each surrounds one ion and the
cells are space filling, then the Coulomb and exchange-
correlation energies per electron can be written

p. (»)p.(r2)
d7.1dV-2

x(r~, r2) =A(p„/po) exp[ —~r&2 E (p„/po) I ],
where r1 and r2 are both in the eth cell, When r1 and r2

are in different cells, we assume that on the average the
density outside the cell of interest is the uniform back-
ground density pa and obtain x(r&,r,) =A exp[ ——',r&2'E'],
(r~ and r2 in different cells). The average density po is
given by

po= (3/4~r, ')

and the constants K and A are chosen so that when
p„=po for all e then the correlation-exchange charge is
unity and the expression for the energy is that given by
Pines. The 6rst condition leads to

A = —(E/g(27r))'

and the second to

0.916

and

volume of
nth celL

r12 E= (-'7r) 'I'
rs

+0.140—0.0626 lnr, +0.0028r,

all volume of
space nth cell

p„(ri,r2)X(fl r2)
dT1.

r12

Evaluation of the energy was carried out by fitting
the exchange-correlation potential to a parabola through
the values at the center and boundary of the spherical
cell. The explicit equation obtained for E, is

1 0.6 r, (7r~ '~' 1
E« ——P ——Kq„ 1+ q~'"+

~

—
~

—[H(&2Kr„) H(v2Kr. q '")]—
X ~ v'(2 ) r„ES) K.„

1 rsEq„—q„'I'[1—exp( ——'E'r, 'q„'~')]+exp( ——,'E'r~') (9)E ~ l(2m. ) r

7l 0

8 dn

was included in the Schrodinger equation itself. The re-
sults of the above perturbation technique, however, did
not differ from those obtained by the earlier method by
more than 10 ' Ry.

is the error integral.
The Coulomb energy E, can be written

E.=(1/N)Q 1.2(q '/r )

and the total electron-electron interaction energy for a
binary system

E,. „=E+E
Originally an approximate electron-electron potential

C. Normalization and Charge Transfer

The number of electrons q„ in the eth cell is related
to all of the r and to Eo through the equation

g
7r2

volume of
nth cell
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TABLE I. Computed parameters and energies for
potassium (Bohr units).

where Eo is the solution to

4.6 4.7 4.9 5.0
F(r„EO)=0,

E2 —— s(r—,'F—/W),
kg
Ep
E2
Ez
Ec
Eec
Eav

0.417208
-0.503850

1.10522
0.115427
0.260869

-0.256479
—0.384033

0.408331
-0.498786

1.09996
0.110040
0.255319

—0.251176
—0.384603

0.399824
—0.493665

1.09522
0.105048
0.250000

—0.246077
—0.384694

0.391664
-0.488476

1.09094
0.100411
0.244897

—0.241172
—0.384340

4'I 4'ldr =1.

subject to the normalization condition

0.383831
—0.483295

1.08608
0.096006
0.240000

—0.236449
—0.383738

(12)

E;„1= (1.2/r, )—(0.916/r, )
—0.140+0.0626 Inr, —0.0028r, .

The equation for the charge q gives q=1 identically.

III. METHOD OF CALCULATION AND RESULTS

A. Method of Calculation

The functions

volume of
nth cell

It can be shown that

Po*gl,dr = —+142rr 2(21+1)
and

Ul( )(r E)
D["&(r,E)=r(a/ar}Ut. "',

Dl &'& (r,E)= r(a/Br) Ul "&

volume of
nth cell

Xj /'(kr„)(ay„l/BE)
l

A
l

'= —42r
l
A

l
'[W„+k'U„j,

are tabulated by Blume, Briggs, and Brooks' for values
of r from 2.0 to 8.3 in intervals of 0.1, values of E from
—0.07 to —1.20 in intervals of 0.01, and for 3=0, 1,
and 2. Thus

where the last expression is valid to order k' and

U =«„2$E2B'4 '.o/BE'l z zp+sr„'B&„1/BEl e E, =
sr„'ay—.o/-BE

I
~ ~,3 and

1 -Do '&(r„,EO) —tanlrri„pDO '&(r,EO)
p —1

r„Upgo~(r, EO) —tanorri oUoi'&(r„, EO)

The normalization condition (12) yields

1 1 Q U

42r Q W (p W)'

For the binary system

and

pi=
xlW1+ x2W2

x2(U1W2 U2W1)j0.6k p2

(xlW1+x2W2) 2

8'2 xl(U2W1 —U1W2)
+0.6kr2

xlW1+x2W2 (xlW1+x2W2)

and this value substituted into (11) gives

8' U P;W, —W„Q, U, —

+0.6kF'

1 Dl&o&(r„,EO) —tanlrrl„lD1 "l(r„,Eo)
p =— —1

'r —Ul (r Eo) tanll rl~lU1 (re Eo)

can easily be computed for those values of the argu-
ments which are tabulated. Values of Ii N„ I' N„ Ii K, PK
were calculated for the ranges of rN, or rK and Eo of in-
terest, namely from about the pure crystal values to
slightly beyond the average values. The intervals here
were also 0.1 for r and 0.01 for Eo. Derivatives with re-
spect to energy were obtained by taking 6rst and second
diGerences. All computations were made by means of a
desk calculator.

For the mixture, relevant quantities were computed in
terms of AF = F—Fo and rN, . Here F= 2r, ' and

TABLE II. Computed parameters and energies for
sodium (Bohr units).

For the binary system it is sometimes convenient to use
the charge transfer Y„dehn. ed by

gn= 1+gn

Equations valid for a one-component system are
derived from those for the binary system by setting
xi ——1 and x2——0. Thus

&Na

kg
Bp

EF'

Ec
Eec
Eav

3.7

0.518691
—0.629227

1.01699
0.164166
0.324324

—0.316026
—0.456763

3.8

0.505041
—0.621474

1.01534
0.155387
0.315789

—0.308121
—0.458419

3.9

0.492091
—0.613561

1.01579
0.147586
0.307692

—0.300594
—0.458877

4.0

0.479789
—0.605562

1.01532
0.140234
0.300000

—0.293418
—0.458746

4.1

0.468087
—0.597540

1.01481
0.133410
0.292682

—0.286566
-0.458014

E. =Ep+0.6kr2E2+E;„„
6 M. Blume, N. Briggs, and H. Brooks, Technical Report No.

260 Croft Laboratory, Harvard University, 1959 (unpublished).
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TAnLE III. Energy parameters and charge transfer for Na-K (Bohr units).

3.9 4.0 4.1 4.2 4.3

Ep
gg
E,
Eec
Eav

Ep

Eg

E,

Ep
Eg
Ec
Eec
Eav

—0.547486
+0.125749
+0.280700
—0.274420
—0.415457
—0.096675

A = —0.419157,

—0.542601
+0.120415
+0.274877
—0.269223
—0.416532
—0.079832

A = —0.419663,

—0.549864
+0.125655
+0.280236
—0.274655
—0.418628
—0.028116

A = —0.419677,

sr =+10
—0.537900
+0.115598
+0.269577
—0.264420
—0.417145
—0.061023

8= +0.00849 C= +
ar=O

—0.544764
+0.120331
+0.274777
—0.269444
—0.419100
—0.021864

8=+0.004815, C=
sr= —10

—0.551690
+0.125578
+0.281323
—0.274888
—0.419677
+0.042064

J3= +0.00072, C=

—0.539818
+0.115538
+0.269847
—0.264621
—0.419054
+0.004245

0.09765, D =0.0245

—0.541241
+0.115467
+0.271418
—0.264801
—0.419157
+0.070210

—0.552841
+0.125537
+0.283973
—0.275094
—0.418425
+0.112842

+0.11505, D=+0.030

—0.546377 —0.547376
+0.120266 +0.120217
+0.276092 +0.278908
—0.269644 —0.269844
—0.419663 —0.418095
+0.054943 +0.124452

+0.10655, D =+0.021

—0.542083
+0.115426
+0.274312
—0.264962
—0.417307
+0.136983

I'& ——(3.9)'+(4.8)'=169.911 as', a close approximation
to the sum of the cubes of the pure component values.
Because the several contributions to the average energy
are strongly dependent, the order of computation is
fairly rigidly set. For selected values of r, and rN„Bp
was computed by linear extrapolation between the two
tabulated energies which produced the smallest magni-
tudes of xN, rN, 'FN, +xKrK'FK. Functions appearing in
the expressions for E2 and the charge were also computed

by means of linear extrapolation in rI, and Ep.
For a given AI', E, was 6tted to a cubic through the

four values of rN closest to its minimum and the result-
ing expression minimized with respect to rN, . The quan-
tity y=qN —1 was also fitted to a cubic and the
resulting expression used to find y at the equilibrium rN„.
The procedure described above was carried out for
&I'= —10 aq', 0, and +10 ai„' and, with F., fitted to a
quadratic in AI', the equilibrium volume, equilibrium

energy, and compressibility were computed.
The relevant equations simplify considerably for a

one-component liquid, as was noted in the previous sec-
tion. With the equation given there we computed E, as
a function of rN, for pure sodium and for pure potassium
and, with the results of the three calculations, we com-

puted the enthalpy of mixing and the deviation of
volume and compressibility from ideal mixture values.

B. Results

The various contributions to the energy are given in
Tables I through IV. We give here cubic expressions
which fit E, at the four points closest to its minimum,

TAnLE IV.¹Kparameters as functions of volume (Bohr units).

~Na

~K

Ep
g jl

Ec
Eec
Eav

—10

4.3081
4.0969
4.5004

—0.551643
+0.125580
+0.281266
—0.274881
—0.419678
+0.039861

4.3961
4.1773
4.5950

—0.546062
+0.120279
+0.275665
—0.269599
—0.419717
+0.039425

+10
4.4807
4.2558
4.6850

—0.540678
+0.115497
+0.270562
—0.264724
—0.419343
+0.040955

~ G. Abowitz and R. B.Gordon, J. Chem. Phys. 37, 125 (1962).
8 Iiquid Jfrietals Handbook, Sodium-%AX Supplement, edited by

C. B. Jackson et al. (U. S. Government Pmnting Once, Washing-
ton, D. C., 1965).

a listing of equilibrium values, and some discussion of
the results. Experimentally determined compressibili-
ties when quoted are from Abowitz and Gordon' whose
measurements were at T=100'C. Experimental cell
radii were computed from density measurements re-
ported in the Sodium-Potassium Supplement of the
Liquid Metals Handbook, ' and are also at T=100'C.
Graphical interpolation of experimental data was used
when necessary.

1. Pure Pofassium (see Table I). F., was fitted to a
cubic at rK ——4.6, 4.7, 4.8, and 4.9 with the result

F., = —0.384694+0.001372(rK—4.8)
+0.02225(rK —4 8)'—0.005667(rK —4.8)'.
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At the minimum of E, ,

and

rK——4.7695ah,

E, = —0.384715 Ry,

d'E, /dr K'= 0.044693 Bohr units.

dEp/drK=+0. 0513,

dEr/dr K = —0.0492,

dE,/dr K= —0.0527,

dE„/dr K=+0.0506,

d'Ep/dr K'=+0.006,

d'Er/drK'=+0. 037,
d'E, /dr K' +0.022, ——

d'L:„/dr K'= —0.020.

Thus the calculated compressibility PK is

/K= 12rK/(d'E, /drK') =4.023X10' Bohr units

=27.36X10 "cm'/dyn.

This value is to be compared with the experimental
value of 34.9&0.2X 10 " cm'/dyn. Experimentally
rK=5.030a .

It is of interest to note the various contributions to the
first and second derivatives of E, with respect to rK
and they are listed in the following table:

of a cubic expression 6t to the four points closest to the
minimum. Table III gives the various contributions to
the energy as well as the coefficients in the expressions

E, =A+B(Ar~, )+C(ArN, )'+D(ArN, )'.
In each case ArN ——rN, —r~,o with rN, O equal to the
tabulated value for which E, is closest to its minimum.
The charge transfer y, de6ned so that there are 1+y
electrons in a sodium cell and 1—y electrons in a potas-
sium cell, is also given. Note that at a given volume the
greatest variation occurs in Eo and E. and it is chiefly
the balancing of these two energies which determines the
relative cell sizes.

BEp/drN, —0.01——45,

BEr/Brw, —0.000——6,
BE,/BrN, +0——0171,.

BE„/BrN, —0.0020. ——

Table IV gives the equilibrium values of the various
quantities as functions of EI'. E, was fitted to the
quadratic expression

E, = —0.419717+0.001675(A I'/100)
0.02065 AI' 100 '

Z. Pure sodium (see Table II). Here

E, = —0.458877—0.001655(rN, —3.9)
+ ( / )

+0 02945(„N 3 9)p and the following values were obtained at equilibrium:

and

rN
—-3.9280ug„

E, = —0.458900 Ry,

d'E, /drN, ' 0.059236 Bo——hr units.

These values lead to a compressibility PN, of

PN„= 2.50X 10' Bohr units= 17.0X 10 "cm'/dyn

as compared to the experimental value of

16.91&0.07X 10 "cm'/dyn.

Experimentally r~, =4.049 aI,.
For sodium the contributions to the first and second

derivatives of E, are

dE p/dr N. =+0.0799,

dEr/dr I,= —0.0746,

dE./dr N, = —0.0778,

dE„/dr N, =+0.0725,

d'E p/dr N, ' ——+0.010,
d'E p/dr N, ' = +0.047,
d'E, /dr N, ' = +0.039,

d'E.,/dr N, '= —0.035 .

3. 50-50 sodium potassium -mixture (see Tables III
aid IV). For this case minimization of E„with re-
spect to rN, was accomplished at each volume by means

This expression is the first three terms of a cubic ex-
pansion fit at rN, =3.8, 3.9, 4.0, and 4.1. Our calculation
lacked the accuracy necessary to obtain the fourth
term. At the minimum of E, ,

61'= —4.0556,
r= 165.855,

r~,—— 4.1449,

rK= 4.5572,

E, = —0.419751.

All four terms contribute about equally to the deriva-
tives of E, with respect to volume.

The compressibility P was found to be

P= (2pr/3)(1'BPE/Bi'P) =3.Q57X jQ Bohr units

=20.79X10 "cm'/dyn.

IV. DISCUSSION OF RESULTS AND
FUTURE PLANS

The calculation presented here is intended to give
changes of the various physical quantities on alloying
and as such does not include some contributions which
would be required for accurate computations of the
quantities themselves. In the first part of this section we
shall discuss the corrections as they acct the results
given in Sec. III, while in a second part we shall test
the assumption that their change on alloying is negligi-
ble by comparing our values with experimental results.
The final paragraph of this section gives an outline of
future plans.

Diseussiort and Assumptions. For our calculation the
basic equation, which incorporates only diagonal ele-
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ments of the Hamiltonian, is

4s P r 'Pi(21+1)jP(kr„)p„i(r„,B)=0.
It does not depend on the structure of the material and
yet takes into account the average of the wave-function
distortion which arises from the accommodation of
neighboring cells. OR-diagonal elements, which involve
the correlation in atomic positions, have been largely
ignored up to this point.

The radii which appear in the basic equation are
equivalent sphere radii and the potentials due to the
single ion core are artificially extended throughout the
equivalent spheres. In reality there are regions in both
solid and liquid where the potential can be better
approximated by a constant. Addition of the term

[8—O' —Vp]cp

to the left side of the basic equation partially corrects
for the "free volume" in such a way that structure is not
introduced. Now the radii are no longer equivalent
sphere radii. In the solid they are usually taken to be
inscribed sphere radii although, with the proper choice
of Vo, the results should not be sensitive to small changes
in their values.

A second correction, which takes into account atomic
correlations and which requires the use of oR-diagonal
elements for its description, is needed. . For the solid,
correlations are specified when the lattice or reciprocal
lattice is given. Hence, the atomic correlation correction
reduces to a boundary-condition whereby functions
with propagation vectors differing from k by a recipro-
cal lattice vector are added to the original wave with
proper amplitude to satisfy the Bloch boundary condi-
tions on the polyhedral cell. For the liquid, no such
symmetry exists and the augmented-plane-wave states
are mixed to a larger extent. One would expect the in-
Quence of configuration interaction to be strongest near
the zone boundaries but the alkahs, because their Fermi
surfaces are nearly spherical, have few electrons in these
states. For the pure molten metals this may be less true
as the melting process tends to disperse the critical
interaction regions more broadly in k space. Kith alloy-
ing, the regions may be still further widened because of
the disparity in cell size. Conceivably, these considera-
tions may have bearing on the energetics of alloying.

As a check for our procedure we compared our results
for the pure metals against calculations by Ham' and
Brooks" designed for the crystalline state. On the whole
agreement was satisfactory. Discrepancies between our
results and those of Brooks, who used essentially the
same boundary conditions, are explained by considera-
tion of the free-atom polarization correction and our
omission of the term in E~'. Ke carried out a potas-
sium calculation which included the polarization correc-
tion and used a cutoff radius equal to the equivalent

~ F. S. Ham, Phys. Rev. 128, 82 {1962).
'P H. Brooks, Nuovo Cimeuto Suppl. 7, 165 (1958).

sphere radius. Results are given below (in Bohr units):

4.7
—0.4950

1.164

4.8
—0.4906

1.153

4.9
—0.4860

1.142

These values, when interpolated to the r, value used by
Brooks, check quite well with those obtained by him.

In his use of Green's-function technique, Ham took
explicit account of structure considerations. His results
do not appear to be significantly diRerent from ours.

Correction for free atom polarization leads to a much
larger equivalent sphere radius, a smaller compressi-
bility, and a larger average energy as shown below for
potassium (in Bohr units):

no pola, rization polarization experimental

4.77
—0.385

4.02X10'

4.98
—0.378

3.90X103

4.86
—0.389

3.68&& 10' (solid)
5.13&&10' (liquid)

Except for the liquid compressibility va, lue which was
measured a,t T= 373'K, the "experimental" values are
obtained by extrapolation to O'K. The experimental
value of E, is the heat of sublimation plus the ioniza-
tion energy.

Omission of free atom po1arization corrections leads
to values of E close to the measured value, and so
seems justified for a preliminary calculation (for this
reason they were ignored for the first run through). The
calculated equilibrium r, and compressibility, however,
are too small.

Discussion of a/loying Havin. g compared our cal-
culations for the pure substances with solid-state cal-
culations, we now compare the changes on alloying of
the various quantities with experimental results. If
sodium and potassium alloyed according to the laws
of ideal mixing, then the atomic volume VzM for the
mixture would be given by Vegard's la,w:

UrM= xN. VN.+xKVa,
where VN, and VK are the atomic volumes for the pure
substances and xN and xK are the atomic concentra-
tions. The compressibility prsr of the ideal mixture
would be

pr=M( / 1Vr)M[& N VpNw +&KVKpK],

where PN, and PK are the compressibilities of the pure
materials. In Table V the ideal mixture values are given
and compared with results for the actual mixture. Ex-
perimental data for atomic volume were derived from
data given in the Sodium-Potassium Supplement of the
Liquid Metals Handbook' and for compressibility from
Abowitz and Gordon. v In all cases interpolation of ex-
perimental data was necessary. Calculated deviations
from ideal mixing values of both volume and com-
pressibility compare favorably as to sign and order of
magnitude with experimental values.
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TABLE V. Deviations from ideal mixture values.

Atomic volume
(Bohr units)
calculated

Atomic volume
(Bohr units)
experimental
100 C

Compressibility
(Bohr units)
cakulated

Compressibility
(Bohr units)
experimental
100 C

Percent
Ideal devia-

mixture Mixture tion
Sodium Potassium (50-50) (50-50) (%)
253.87 454.47 354.17 347.37 —1.9

277.97 533.05 405.51 400.79 —1.2

2.50 &(103 4.02 &(103 3.48 )(203 3.06 )(103 —12.1

2.49 )(103 5.14 &(103 4.23 &(103 3.96 &(103 —6.4

The first three columns of Table VI summarize cal-
culated quantities previously given; the fourth gives the
average of sodium and potassium values and the fifth
the change on mining. E, increases by 0.0021 Ry per
atom or 655 cal per mole. This is to be compared with
the experimental value" of 175 cal per mole at 111'C.
We have neglected a small correction to E, of the mix-
ture due to cell-cell interaction. At 6nite temperatures,
the distribution of spheres about a given sphere will not
be 50-50 but, because of the charge transfer, unlike
spheres will tend to attract each other. Boltzmann
statistics were used to find the probable number of
nearest neighbors of each kind and the electrostatic
energy was calculated. Using the cell sizes and charges
given in Sec. III, we find the energy of mixing at 100'C
is reduced by about 0.00029 Ry per atom or 90 cal per
mole to 565 cal per mole.

The error in the enthalpy change is, of course, re-
Qected in the free energy change and is such that im-
miscibility is predicted. The ideal mixing part of the
entropy change, k ln2, contributes —ThS= —514 cal
per mole at 100'C to AF. Using the values of AS quoted
by Hultgren e$ al. ,

12 we find a deviation from ideal mix-
ing of about 36 cal per mole so that —TDS= —478 cal
per mole at 100'C and DF=+87 cal per mole. Thus,
our calculated free energy is just slightly too large to
produce binding but is much larger than the measured
result, —260 cal per mole, given by Hultgren et al. 12

Possibly this shortcoming of the theory could be cor-
rected by consideration of configuration interactions.

Future P/ass. We expect to investigate in a more
systematic way some of the corrections discussed in the
first part of this section. In particular the role played
by a& (the volume outside the spherical cells) will be
studied in greater detail and an attempt will be made to
take into account the temperature variation of the
thermodynamic quantities. In addition we wish to
apply the analysis developed to the alloying of other
alkalis with the hope of understanding miscibility of
these elements. Some consideration will be given to
possible short-range order.

Note added t'n proof. More recent work incorporating
the quantum defects given by Brooks and Ham LPhys.
Rev. 112, 344 (1958)j and an expansion to terms in k'
has yielded an appreciably improved result for the heat
of mixing. Detailed discussion will be given in a later
paper.

ACKNOWLEDGMENTS

Es
Ec
Eec
Eav

Sodium Potassium
Na-K
(50-50)

Average of
Na and K

—0.611326
+0.145477
+0.305498
—0.298549
-0.458900

—0.495232
+0.106529
+0.251597
—0.247609
—0.384715

—0.548302
+0.122366
+0.277877
—0.271692
—0.419751

—0.553219
+0.126003
+0.278547
—0.273079
-0.421808

TABLE VI. Mixing energies for ¹K.
NaK-Av

+0.004977
—0.003637
—0.000670
+0.001387
+0.002057

We are indebted to Dr. Robert Gordon for first draw-
ing attention to the interesting elastic properties of the
Na-K solutions. We also wish to express our thanks to
Dr. O. J. Kleppa for allowing us access to his experi-
mental data before publication and to Dr. Frank Ham
for the loan of Technical Report No. 260, Croft Labora-
tory, Harvard University, which is unfortunately now
out of print.

"T. Yokokawa and O. J. Kleppa, J. Chem. Phys. (to be
published).

"R. Hultgren, R. Qrr, P. Anderson, and K. Kelly, Selected
Values of Thermodyrlumic Properties of Metals used Alloys (John
Wiley Ik Sons, Inc. , New York, 1963).


