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A set of successively niore accurate self-consistent equations for the one-electron Green's functionhavebeen
derived. They correspond to an expansion. in a screened potential rather than the bare Coulomb potential.
The first equation is adequate for many purposes. Each equation follows from the demand that a corre-
sponding expression for the total energy be stationary with respect to variations in the Green's function. The
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in
metals as well as configurations in atoms, molecules, and solids with one electron outside or one electron
missing from a closed. -shell structure. In the latter cases we obtain an approximate description by a modified
Hartree-Pock equation involving a "Coulomb hole" and a static screened potential in the exchange term. As
an example, spectra of some atoms are discussed. To investigate the convergence of successive approxima-
tions for the Green's function, extensive calculations have been made for the electron gas at a range of metallic
densities. The results are expressed in terms of quasiparticle energies E(k} and quasiparticle interaction. :

f(k,k ). The very first approximation gives a good value for the magnitude of E(k). To estimate the deriva-
tive of E(k) we need both the first- and the second-order terms. The derivative, and thus the specific heat, is
found to diRer from the free-particle value by only a few percent. Our correction to the specific heat keeps
the same sign down to the lowest alkali-metal densities, and is smaller than those obtained recently by
Silverstein and by Rice. Our results for the paramagnetic susceptibility are unreliable in the alkali-metal-
density region owing to poor convergence of the expansion for f. Besides the proof of a modified Luttinger-
Ward-Klein variational principle and a related self-consistency idea, there is not much new in principle in

this paper. The emphasis is on the devcloIiment of a numerically manageable approximation scheme.

1. INTRODUCTION

M~ RE—PARTICLE equations are yvidely used to give
an approximate description of complicated inter-

acting systems ot particles. The Hartree-Fock (HF)
equations are used for atoms and molecules, the shell-

model equations for nuclei, the Huckel equations for
aromatic molecules, and the periodic potential equa-
tions for calculation of the energy-band structure of
solids. These equations were originally little more than
a fairly effective phenomenological model of the system.
In the last ten years with the development of formal
techniques to treat many-particle systems, much work.

has been done to connect these equations with an exact
theory. Although we now have a wealth of beautiful
general theorems, fairly little has been done towards
manageable and reliable approximation schemes es-

pecially for interacting electrons.
The high-density electron gas is a case that has been

examined diligently. Its properties are expressed as
series expansions in r„where 4 r 7' r'a/ 30(1V= 1(p,
with co=Bohr radius=0. 5292&(1.0 ' cm. In the me-

tallic density region r, = 2-5, most of the series ex-

pansions, however, predict nianifestly wrong results.
In this paper the electrom gas problem is rein-vestigated,

formally amd numerically, with the maim purpose of esti

mating the convergence of our expansion in the metallic

derIsity region. The application of the method for solids

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

1 Now at the Department of Mathematical Physics, Chalmers
University of Technology, Gothenburg, Sweden.
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and particularly for alkali metals will be discussed in

another paper. '
The results of this paper also provide a new approach

to, amd»qualitative comdusioms regarding, the general tyPe

of excitation spectra, which correspond to a single excited

electron outside or a hole in, a closed-shell structure. In
particular, the alkali atoms and the Born-Heisenberg

type of polarization correction are discussed. The treat-
ment is concerned only with a nonrelativistic descrip-
tion of electrons moving in a fixed configuration of
nuclei.

In Secs. 2—5 the main results of the formal analysis
are presented, detailed derivations being given in the
Appendices. In Secs. 6—10 the numerical results for an
electron gas are given and the accuracy of our approxi-
mations discussed. Section 11 contains a summary of
important results.

2. FORMAL FRAMEWORK

The conceptual tool to be used is the one-particle
Green's function, '

G(&,2) = —('(h)(&'(O(I)a»(2))) (I)

Here 1 and 2 each stand for the five coordinates of a

' L. Hedin, Arkiv. Fysik (to be published).' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
See also T. Kato, T. Kobayashi and M. Namiki, Progr. Theor.
Phys. Suppl. 15, 3 (1960); A. Klein, Lectures on the Many-Body
Problem, edited by E. R. Caianiello (Academic Press Inc. , New
York, 1962), p. 279; P. Nozieres, The Theory of Interacting Fermi
Systems (W. A. Benjamin, Inc. , New York, 1964);A. A. Abrikosov,
L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field
Theoryin Statistical Physics (Prentice-Hall, Inc. , Englewood CliRs,
New Jersey, 1963).
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particle: space, spin, and time, (1)= (ri, l t, t t) = (xi, ti) =xi.
T is the Dyson time-ordering operator and P is the field
operator in the Heisenberg representation. The brackets
stand for averaging with respect to the exact ground
state, rather than the noninteracting ground state of
the system.

The Green's function 6 obeys the equation

Le—h(x) —V(x)]G(x,x'; e)

~Ã,0) stands for the ground state of the 1V-particle
system and the sum s runs over all states of the N+1
and E—I particle systems, the configuration of the
nuclei being unchanged.

The amplitudes f, (x) and the energies e, are solutions
of the eigenvalue equation'

Le—h(x) —V(x)]f(x)— 3f(x,x"; e)f(x")d(x")=0, (5)

cV(x,x"; e)G(x",x'; e)d(x") = b(x,x'), (2)

where
all uuclei

h(x) = —(h.'-'/2m) V' — P Z„v(x R„)

V(x) =- v(x, x')p(x')d(x'),

Z„and R„=charge and position of the eth nucleus,

v(x, x') =e'/~ x—x'~,

p(x) =8"(x)4(x))

=number density of the electrons

= —ihG(x, t; x, t+3), (6~ 0, 6)0),

Z6

G(x,x'; e)= G(x,t; x', t') exp —(t—t') d(t —t').

in case of a discrete energy value e, . In the continuous
part of the spectrum the solution of (5) in general gives
a complex eigenvalue, e. The real part of e represents
some average energy of a group of excited states and the
imaginary part of e the spread in energy of these states.
It is understood that we use the analytical continuation
of M into the complex e plane.

The self-consistent solution of Eq. (2) u»ng 1lf =~"
gives a G built up from the f, and e, which are the one-
particle functions and energy eigenvalues of the HF
approximation. The E smallest values of the e, corre-
spond to occupied one-electron functions and the re-
maining to unoccupied or "virtual" functions.

Besides giving information on excitation spectra, the
one-particle Green function allows us to calculate the
expectation value of any one-particle operator by

(1V~ g 0(x;) ~1V)= (1V~ft(x)0(x)P(x) ~1V)dx

3f is the self-energy operator which represents the
complicated correlation sects of a many-particle sys-
tem. A series expansion of M in n gives as 6rst term the
HF exchange potential,

M (x,x'; e) = —v(x, x')(lp" (x')ltt (x))
=ihv(x, x')G(x, t; x', t+6), (3)

which obviously is independent of e.
Later we will write down a set offunctionals of G giving

successively more accurate approximations of M. Since
both V and M are given in terms of G, Eg. (Z) represents
a self consistency -problem which can also be formulated as
a variational problem

From definition (1) it readily follows that

G(x x'; e) =2, (f (x)f *(x')/(e —')),
where

f,(x) =(.V„O~Q(x)
~
1V+1, s);

63= I~~+l 9 1~.~ () 2A WhCA 6s ~~P )
(4)

f,.(x) = (X—1, s
i P (x) i

1V, 0);
e, =—E~ o

—E~ r, ,+i'A wllell e,,:(p,

p= 2&~+l 0
—A~ 0——chemical potential

= —(electron affinity).

de—d(x)e"s0(x)G(x,x; e), (6)
2m.

and also that of the total-energy operator H by

dt.
(1V

l

+
l
1V)= i ——d(x) d(x') e"~

27r

X (b(x—x')(h(x')+-', V(x'))+-,'M(x, x'; e) j
XG(x',x; e)+-', P' Z„Z„v(R„,R ) . (7)

In Eq. (7) the term involving h gives the expectation
value of the kinetic energy plus the electrostatic inter-
action between electrons and nuclei. The term con-
taining V can be written

1
p(x)v(x, x')p(x')dxdx'.

2

'This equation was erst derived, in a very general form by
J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). Its
application to many-electron problems has been discussed by G.
Prat t, Phys. Rev. 118,462 (1960);Rev. Mod. Phys. 55, 502 (1965);
L. Hedin and S. Lundquist, Quantum Chemistry Group, Uppsala,
Sweden, Technical Report T III, 1960 (unpublished); L. Hedin,
Quantum Chemistry Group, Uppsala, Sweden, Technical Report
No. 84, 1962 (unpublished); Bull. Am. Phys. Soc. 8, 535 (1963).
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The MG term gives all exchange and correlation con-
tributions. It is easy to check that Eq. (7) reproduces
the HF expression for the energy when 6 and MH~

are used.

3. EXPANSION OF M IN TERMS OF A
SCREENED POTENTIAL,

We now turn to our central problem, namely, the de-
velopment of good approximations for M. The simplest
approach is to develop M in a power series of v. It is well

known, however, that such an expansion diverges for
metals. Even in cases when it is convergent, its con-
vergence rate rapidly becomes poor with increasing
polarizability of the system. One common way to handle
this problem is to make partial summations to infinite
order. The difIiculty here is one of knowing what partial
summations to choose in order to obtain a systematic
theory.

In this paper a new method is developed. We use the
Schwinger technique of functional derivatives to gener-
ate an expansion in terms of a screened potential4 W
rather than the bare Coulomb potential v.

The potential 8' was first introduced by Hubbard':

W(1 2)=~(1 2) &(1 3)P(p (3)p (4)))

Xi (4,2)d(3)d(4) =W(2, 1), (9)
where

p'(1) =Ps(1)P(1)—(Pt(1)P(1));
V(1,2) =5(Xl,x2) 8(ti t2) ~

FIG. 2. Diagrams representing the expansion of P(1,2).

much weaker than the bare Coulomb interaction v if
the polarizability is large. 8' is spin-ind pendent.

The first two terms in the expansion of M are

3f(1,2) = ihG(1, 2) W(1+,2) —h' G(1,3)G(3,4)

where
XG(4,2) W(1,4)W(3,2)d(3)d(4)+, (10)

1+=xi, ti+&.

The expansion for M is represented by diagrams in Fig.
1. There is only one first-order and one second-order
term while there are six third-order terms.

The de6nition (9) of W is not directly useful since it is
in terms of the density-density correlation function
rather than the Green's function. Instead weland W from
the i rItegral equation

W(1,2) =v(1,2)+ W(1,3)P(3,4)i (4,2)d(3)d(4), (11)W(1,2) essentially gives the potential at point 1 due to
the presence of a test charge at point 2, including the J
effect of the polarization of the electrons. W represents
the effective interaction between two electrons and is

2.

FIG. 1. Diagrams representing the expansion of 3I(1,2). The
one-particle Green's function G(1,2) is represented by an arrow from
2 to 1, and the screened potential W (1,2) by a wiggly line between
1 and 2.

4 The feasibility of expanding in a screened interaction has been
emphasized by J. C. Phillips, Phys. Rev. 123, 420 (1961).

5 J. Hubbard, Proc. Roy. Soc. A240, 539 (1957).

P(1,2) = —ihG(1, 2)G(2, 1)+O' G(1,3)G(4,1)
~I

XW(3,4)G(2,4)G(3,2)d(3)d(4)+ . . (12)

The expansion for I' is represented by diagrams in
Flg. 2.

Equations (11)and (12) define W as a functional of G
and thus Eq. (10) gives M as a functional of G.' G then
has to be obtained self-consistently from Eq. (2). The
practical usefulness of this scheme of course depends
on how many terms in the expansions of M and E' are
needed to provide a good approximation. In the follow-

ing we will try to illuminate that question as much as
possible.

' Special cases of such functionals have been proposed by G.
Baym and L. P. KadanoB but no systematic expansion was de-
veloped. See G. Baym and L. P. Kadano6, Phys. Rev. 124, 287
(1961); Q. Baym, Phys. Rev. 127, 1391 (1962); L. P. KadanoB
and G. Baym, Quantum' Statistical 3IIechunics (W. A. Benjamin,
Inc. , New York, 1962).
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4. REPRESENTATION OF M BY A "COULOMB HOLE" PLUS SCREENED EXCHANGE

A 799

Yo start with we exhibit the structure of the first-order term in 3f. From the spectral resolution of G and of
the density-density correlation function in 8"we have

M(x, x'; e) =
27

dr P exp —(e—e,) f,(x)f.*(x')$8(r) —8(p —e,)]
S

i P i/r[
X v(x, x')b(r+6) —— t (x,x")P' R,(x")R&*(x"')exp~ — ei v(x'",x')dx"dx'", (13)

for ~)0
8(r) =

0 for v&0.

P f,(x)f,*(x')=8(x—x');

2 f.(x)f.*(x')8( —")= (kt(x')4(x)).
Rg(x) = (1V,1~ it t(x)ly(x)

~
E),

the ordinary oscillator strength being

The term inside the curly brackets is W(1+,2). R,(x) is Here W„=W —v and we have used the fact that
an oscillator strength function,

(19)

2m 2

Ri(x)r n dx
A2

The first factor in Eq. (18) gives the contribution of a
"Coulomb hole"r since, according to general results of
linear response theory,

fi,*(x)M(x,x'; eg) fi, (x')dx dx'

Z7

dr P exp —(ci—e,) L8(r) —8(p—e,)]

Here,

X(ksi W(r)iks). (16)

where I gives the direction of the dipole moment and
e,=E~, E~. The prime—on the sum over t in Eq. (13)
indicates that the term with e& ——0 is excluded.

One important use of M is in Eq. (5), which gives the
excitation spectra of the (V&1)-particle systems. The
energy shift of a level k caused by M is approximately,

W„(x,x', 0) = t (x,x")Ap(x")dx"

n( xx")R( "x, "x', 0)v(x"',x')dx"dx"', (20)

where hp(x") is the change in number density at the
point x" caused by the presence of a point charge at
point x'. R(x,x';0) is the density-density correlation
function. The factor —,'arises mathematically from 8(r)
and physically because the force on the electron due to
the induced charge is proportional to

grad, t (x,x")Ap(x")dx"=-,'grad, W„(x,x; 0) .

(ks
i
W(r) iks) = f~*(x)f,(x)IF(x,x'; r)

Xf,*(x')fi,(x')dx dx', (17)

is a Coulomb integral when k =s, and an exchange in-

tegral when k/s. Generally the Coulomb integral will

be much larger than the exchange integrals and the
largest exchange integrals will correspond to energies
e, close to eI, . In many cases then the important energy
difference, eI,—e„will be small compared to the im-
portant energy e& that appears in 8'. Assuming that to
be the case, we put the factor exp[(ir/h)(e —e,)] in M
equal to 1 and obtain,

M(x,x', e) =—',h(x —x') W„(x,x', 0)
—W(x,x'; 0)(alt(x')iP(x)). (18)

The last term in Eq. (18) is a screeried exchange
potential. If we replace fV by ~, the Coulomb hole dis-

appears, the screened exchange potential becomes un-
screened and we are back at the HF expression for M.
We will abbreviate the "Coulomb hole plus screened
exchange" approximation by COHSEX.

For the Rydberg-like spectra of one electron outside a
closed shell, the assumptions behind COHSEX are
readily verified. I.et us take sodium as an example.
Here the smallest (X+1)-type excitation energy is

ei ——E(Na, 1s'2s'2p'3s) —E(Na+) 1s'2s'2p') = —0 378 Ry

' E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934);E. Wigner, iMd. 46, 1002 (1934); Trans. Faraday Soc. 34,
678 (193S).
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TAnr, z I. Quasiparticle energies in rydbergs. (Experimental values without reference are taken from Charlotte Moore's tables. )

2 He, HF
He, expt

2 Ll )HF
Li+, expt

1$

—1.8359.
—1.8073

5 5847a
—5.5597

2$

—0.3934b —0.2574b—0.3963 —0.2629

3$

—0.11354b
—0.1144g

—0.06356b —0.04050b
—0.06394 —0.04075

10 Ne, HF
Ne, expt

—65.5446' —3.8606' —1.7007
63 89c 3 5628c 1 Sg74

10 Na+, HF
Na+, expt

10 Mg++, HF
Mg++, expt

81 5190c —6.1474a
—79.88' —5.8866

—8.944c
—8.7359

—3.5944' —0.372~ —0.2188'—3.4810 —0.3777 —0.2231

—5.990c
—5.8970

-0.1406~ -0.1002~
—0.1432 —0.1019

10 Si4+, HF
Si4+, expt

—16.17'
—15.962

—12.41'
—12.273

—3.275' —2.639f—3.3180 —2.6655
—1.839' —1.538' —1.319' —0.793'
—T.8565 —1.5502 —1.3279 —0.7977

18 Ar, HF
Ar, expt

18 K+, HF
K+, expt

18 Ca++, HF
Ca++, expt

36 Kr, HF
Kr, expt

237 2202c
234.6c

—267.5042'
264, gc

—19.1426' —2.5545' —1.1818'
18 28c 2 1491 1 162

23 59620 3 9275c 2 3409c
2 63c 3 5288c 2 3387

-5.557g -3.756'—5.1634 —3.7743
-0.6659~ -0.8295~ -0.6193~—0.7478 -0.8725 -0.6416

—2.303h —1.06"
—2.0386 —1.0453

a P. S. Bagus, T. Gilbert, C. C. J. Roothaan, and H. D. Cohen, (to be published).
"V. Fock and M. Petrashen, Physik. Z. Sowjetunion 8, 547 (1935).' P. S. Bagus, University of Chicago thesis, (to be published).
d V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368 (1934).' W. J. Yost, Phys. Rev. 58, 557 (1940).
& D. R. Hartree, W. Hartree, and M. F. Mannig, Phys. Rev. 60, 857 (1941).
g D. R. Hartree and W. Hartree, Proc. Roy. Soc. A164, 167 (1938).
h B. H. Worsley, Proc. Roy. Soc. A247, 390 (1958).

while the smallest excitation energy appearing in 1V is

E(Na+) 1s'2s'2 p'(2P s (s') 3s)
—E(Na+, 1s'2s'2p') = 2.414 Ry.

The average (ei—e,) will be numerically smaller than
c1unless the exchange integrals with the continuum and
the core states have great inRuence.

For higher Rydberg-like states the functions f, are
well outside the closed shell. The exchange term then
becomes negligible. We can further make a multipole
expansion of the two ~'s in the Coulomb hole term. The
result is simply

M(x,x', e) = —(ne'/2
~
r~ ')b(x, x'), (21)

where n is the ion-core polarizability. Eq. (21) was first
derived by Born and Heisenberg in 1924. It has been
redei. ived by quantum-mechanical methods, 9 and widely
used" to obtain polarizabilities from spectral data.

M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).' I. Wailer, Z. Physik 38, 635 (1926); J. E. Mayer and M. G.
Mayer, Phys. Rev. 43, 605 (1933);J. H. Van Vleek and N. G.
Khitelaw, ibid. 44, 551 (1933);H. Bethe, Handbuch der Phy$ik,
edited by H. Geiger and Karl Scheel Qulius Springer-Verlag,
Berlin, 1933), 24.1, 431.

' D. R. Bates, Proc. Roy. Soc. A188, 350 (1947); K. TreHtz
and L. Biermann, Z. Astrophys. 30, 275 (1952); A. S. Douglas,
Proc. Cambridge Phil. Soc. 52, 687 (1956); K.- Bockasten, Arkiv
Fysik 10, 567 (1956) and others.

The Coulomb-hole contribution will lower the energy
while screening of the exchange will raise the energy rela-
tive to the HF value. Experimental values of e, are
generally lower than the HF nalues for e,)tz and higher

for e, (tz. To the extent that Eq. (18) remains valid,
this shows that the Coulomb hole correctio-n dominates for
the higher orbitals while the screening of the exchange
dominates for the core orbitals Acompa. rison between HF
values and experimental values is given in Table I.

S. LANDAU FERMI-LIQUID THEORY. THE QUASI-
PARTICLE INTERACTION IN TERMS OF W'

Many important aspects of the theory of metals de-

pend only on the excitation spectrum close to the Fermi
surface. This can advantageously be discussed in the
framework of I andau's Fermi-liquid theory. " For
simplicity we here treat only the electron gas in a uni-

form background of positive charge.
Since the electron gas is translationally invariant,

G(1,2) and M(1,2) depend only on the difference be-
tween 1 and 2. A Fourier transform with respect to space

"L.D. Landau, Zh. Ekspenm. I 'I'eor. FIz. 30, 1058 (1956);
32, 59 (1959);35, 97 (1958) LEnglish transls. : Soviet Phys. —JETP
3, 920 (1956); 5, 101 (1957); 8, 70 (1959)j. See also P. Nozieres,
Ref- 2.



and time transforms Eq. (2) into

(e—e(k)]G(k) —M(k)G(k) =1;
k = (k, e); e(k) = k'k'/2m.

The Fourier transforms are de6ned as

G(k) = exp('l(kf+er/A))G(xl ti xp $2)drdr

r=i'i —rp, r=fi fp. (—23)

The set of coordinates k should also contain two spin
variables. We omit them since for a paramagnetic
ground state, G(k) and M(k) are diagonal in spin with

equal diagonal elements. W(k) is spin independent by
definition. The V term of Eq. (2) exactly cancels the
uniform background of positive charge in the limit of
large )V.

The expansion for 3I now becomes

M(k) =
(2~)'

e '"~W(k')G(k —k')dk' — W(k') W(k")G(k+4')G(k+k")G(k+0'+k")dk'dk "+
(2m.)'

W(k) =p(k)/(1 —p(k)P(k)); p(k) =4~e'/~k~'; (24)

P(k) = — G(k')G(k' —k)dk'+
(2m-)4 (2~)'

G(k')G(k") G(k"—k)G(k' —k) W(k' —k")dk'dk" +

The factor 2 in P(k) comes from the spin summation.
The eigenvalue equation, Eq. (5), for the quasiparticle
energies becomes

tron gas are uniquely specified by their momentum dis-
tribution n, (k). Thus, e.g. , the paramagnetic ground
state is given by

E(k) = e(k)™(k,E(k)). (25) n."i(k)=e(ikpi —ski). (29)

E (k) = e'(k)+zM'(k, p+ e(k) —e(kp))

z
—'=1—(BM(kp, p)/Be).

(27)

Equation (27) was obtained by expanding M(k, E(k)) as

M(k, p+ e(k) —e(kp))

+(E(k) p e(k—)+—e(kp)) BM/Be+

taking the derivative with respect to k, and solving for
E'(k). The prime on M refers to a total derivative, not a
partial derivative. Equation (27) is exact on the Fermi
surface but only approximate when ~k~" ~kp~. E'(k)
gives the level density at the Fermi surface and is
simply related to the specific heat C":

The chemical potential p is equal to E(kp) where kp, the
Fermi momentum, is the same as for the noninter-
acting gas, "

~kp~ =(1/nr, ap); n=(4/9x)'~'=0. 52106. (26)

The derivative of I'.'(k) with respect to
~

k
~

at the Fermi
surface is

The basic assumption in Landau's theory of a Fermi
liquid is that for small excitation energies there exists a
one-to-one correspondence between the noninteracting
many-particle states and the true states. It has been
proven" that the Landau theory is exact to the extent
that the interacting many-particle states can be ob-
tained from the noninteracting ones by infinite-order
perturbation theory.

The change in energy of the true state corresponding
to a change in the distribution function, n (k) =n, "'(k)
+bn, (k), of the noninteracting state is

bE=Q E(k)bn. (k)
k, a

+-,' Q f..(k,k')bn. (k)bn. .(k')+ . (30)
k,k', 0', 0'

Here E(k) is defined by Eq. (25) and f is the quasipar-
ticle interaction. The magnitude of k and k' is ~kp~ and
f depends only on the angle between them, f .(B) We.
split f in two parts,

Cp/C=f' (k)/e'(k). (28) f- (0) =f.(B)+b- f.(B) (31)

Here C'o is the noninteracting or Sommerfeld value of C,
C,= 16.86r, 'T peal/'K' mole. z gives the discontinuity
at the Fermi surface in the momentum distribution
n (k) =(Ã~ a",,ta'„~ 1V). Here a' is related to the field
operator by the relation

a( ) =(1/"'")E..",'"*X.8)
The noninteracting many-particle states of an elec-

"J.M. Luttinger, Phys. Rev. 119, 1153 (1960).

f(k,k') =2mjzqz PEP(k, k'),

where 'I' is defined by the integral equation

(32)

"P. Nozieres and J. M. Luttinger, Phys. Rev. 127, 1423,
1431 (1962).

The specific heat and the paramagnetic susceptibilities
are obtained from simple integrals involving f In the.
former the combination 2fp+ f, enters and in the latter
f,."We can write f as"
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PI'(lz, k') = PI(k,k') include a spin index. Since M does not contain the
Hartree-like potential, I and 1 are the "proper

+ (~ ~ ) (~ ) (~ ~lz )d~ ~ (3 ) operators" marked with a tilde in Nozieres' book.

'I(k, k') = 8M(lz)/8G(k') .
Using the expansion for M given in Eq. (24) and

derived in Appendix A, we obtain the following ex-
In Eqs. (32) and (33) we have for simplicity taken k to pansion of f in powers of W

f,(k,k') = ——W(k —k', 0)+ [2W(k —k'; 0)W(k")G(k+lz")G(k'+k")
n (2 )4

+W(k")W(lz"+lz —0')G(k+lz")(G(k' —k")+G(k+k"))]dk", (34)

S2 i
fp(k, k') =— W'(P')G(P+P")(G(lz' —lz")+G(P'+P"))dP".

0 (2zr)4

M'(k, e) =— [W(k', 0)—m(k')]dk'
2 (2zr)z

(2zr)'
dk' W(k', 0)

27ri
e""aG(k—k'; e') de'. (35)

The Coulomb hole term is independent of k and e and
thus a constant. The integration over e' in the last term
of Eq. (35) gives, closing the contour in the upper half-

plane and using the analytic properties of G,

27ri

e'"aG(k', e') de'

IJ ImM(k', «') de'

zr [e —e(k ) ReM(k e )] + [ImM(k e )]
(36)

r4 M. Watahe (Ref. 14l has recently treated the Landau theory
using this approximation for f. He does not however have the s'
factor, which is about 0.5 for metallic densities, nor does he take
the second-order terms into account.

'5 M. Watabe, Progr. Theoret. Phys. (Kyoto) 29, 519 (1963).

Here k = (k, tz) and k' = (k', tz). The volume of the system,
which appears in the denominator of f, is balanced since

the number of terms in the sum in Eq. (30) is of the
order of the number of particles. If we indicate the order
in W by a superscript, we have that the functional
derivative of Mol gives rise to f,& ' and fpt & while that
of M'" gives the first two terms in f,"&. The third
term in f,&'& comes from the IG' 'I' term in Eq. (33).
The first-order term in f involves only the static
screened potential' '5 and corresponds to the COHSEX
approximation (Sec. 4) for M. That approximation
for M is however not so clear-cut in the case of an elec-

tron gas since the eg spectrum of W starts at zero rather
than at a large finite value. The average value of e~

could, on the other hand, be fairly large since the
plasmon energy carries a substantial fraction of the
oscillator strength.

From Eq. (18) we find that COHSEX for an electron

gas is

If we treat Im3I as a small energy-independent quantity,
the integrand in Eq. (36) becomes a 8 function and we
obtain for the screened exchange term in Eq. (35),

W(k', 0)
(2~)'

I&—&'l &l&ol

8M[k —k', E(k—k')] —'

(X 1— dk'. (37)
86

The last factor in Eq. (37) equals s when ~k—k'l = ~kpl

and it varies fairly slowly with
~

k—k ~. Putting this
factor equal to s and using Eq. (27), the specific heat
comes out the sa,me as from the linear term in f. The
magnitude of M is however about 25/~ too large at
metallic densities. Judging COHSEX from what it
gives for the magnitude and derivative of E(k) at the
Fermi surface, we conclude that it is a rough but reason-
able approximation at metallic densities. From our
numerical results, to be discussed later in detail, it is
clear that COHSEX becomes better the smaller the
value of r, . For small r, the factor s poses no problem
since here" s= 1—0.17r, and thus tends to 1.

Art approximation similar to tjzat in COHSEX is
useful for estimating higher order diagrams The expres-.
sion for M &') can be written

ikG(1, 2)W(1+,2) = [(tP(1)P"(2))8(r)
—8'(2)ll (1))0(—)][ (1+,2)+&&(1+,2) —(1+,2)];

(38)

The approximation in COHSEX consists in neglecting
the time-dependence of (fpt) and Q "lt ), or equivalently

by replacing

W(1+,2) —zI(1+,2) —& 5(r) [W(1,2) —zt(1,2)],=p. (39)

M"' is exceptional in the sense that we have to use 1+
rather than 1 in W(1,2). When this is not the case we

"K.Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960).
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can make an approximation in the same spirit as that of
COHSEX simply by replacing W(r) by b(r)W(p=0),
or if we work with energy-variables, by replacing W(c)
by W(0).

It should be noted that while the energy dependence
of the M operator is very important for an electron gas
(see Sec. 9), it is quite negligible for the alkali atoms dis-
cussed earlier. Thus if we have an error Ae in the energy
argument of M, the correction is only of the order

Ap[M(p) —M j/(pz, average) . (40)

This is easily seen by noting that MHF is energy-inde-
pendent and that the energy derivative of [M(p) —MnF]
effectively introduces a factor (pz, average) '.

6. ELECTRON GAS: SURVEY OF
NUMERICAL RESULTS

So far the discussion has been mainly qualitative.
We will now see to what extent it is supported by
numerical results for the electron gas. Calculations have
been made for ~,= 1, 2, 3, 4, 5, and 6 and in a few cases
for smaller and larger r, values. For 6 me hate used the
expression

G(k, p) = 1/(p —p(k) —pp);

p(k) =(h'k'/2m)+ih sgn([kpi —~k~), (41)

where pp is chosen so that tz= p(kp)+ pp. From Eq. (24)
we see that if the M operator is M(k, s) using (41) with
pp= 0, it becomes M(k, p pp) fol pp/0. F is independent
of Ep. The equation for tz is ti= p(kp)+M(kp, p,—pp)

which combined with the above expression for p gives,

pp ——M[kp, p(kp)].

It would have been desirable to have used a self-
consistent G,

G(k, p) =1/(p —p(k) —M(k, p)) . (43)

This should be possible to do but the size of the numerical
enterprise is probably considerably larger than is
justified in a 6rst investigation. That (41) is not too
bad is shown by the fact that M(k, p(k)) is found to have
a very weak k dependence compared to p(k). On the
other hand ciM(k, p)/cI p is found to have an appreciable
magnitude compared to 1. This might very well eRect
our quantitative results but can do little to change our
qualitative conclusions regarding the convergence of the
expansion in 8' and the smallness of the specific-heat
correction.

For M we use the approximation iGW, and for F, tlze

approximation iGG. A quite reliable es—timate of the
error in the magnitude of M is obtained from a con-
sideration of the total energy of the electron gas. The
magnitude of the second-order term in M is also esti-
mated and found to be of the same order as the error
in the first-order term.

From the relation G=Gp+Gp(M —pp)G we see that
the correction to HEI('& = iG8' from the use of Go instead

of G is approximately iGp(M pp)GpW=zGpMGpW

+ppBMi'&/c) p T. his term is appreciably smaller than the
uncrossed second-order term appearing in an expansion
with Gp=0. The cancellations mentioned by DuBois"
(p. 54 in his paper) involving this term are discussed in
Sec. 9.

The first-order term in the quasiparticle interaction f
is trivial. The second-order terms have been calculated
using W(k, 0). The contribution to the specific heat
coming from fp has been evaluated with W(k, p). It is
found that the W(k, 0) approximation gives about 70%
of the W(k, p) approximation at metallic densities. We
assume that the error is about the same for the other
second-order term in f. The first-order term in f is
about three times larger than the second-order terms for
r, =4, the ratio being more favorable for smaller r, .
The picture of M that emerges shows a quite large first
order term with a weak k dependence and a small second
order term with a k dependence of about the same magnitude
and opposite sign

7'. ELECTRON GAS: COULOMB HOLE
AND CORRELATION HOLE

For the polarization propagator P(1,2) we have used
the approximation —ihG(1, 2)G(2, 1) with G defined by
Eq. (41). This gives I.indhard's expression, "or as it is
often called, the Random Phase Approximation (RPA)
for the dielectric constant. To exhibit the properties of
this approximation we investigate the Coulomb and
correlation holes associated with I'.

We define a propagating dielectric function by the
relation

W(1,2) = n(1,3)p '(3,2)d(3).

From Eqs. (9) and (11) it follows that

z
'(1,2) = b(1,2)—(7'(P'(1)P'(3)))

Xv(3,2)d(3) = (1—Pp)
—'(1,2) . (45)

The function e ' is closely related to the linear response
function e~ ',

Z

pr
—'(1)2) = b(1,2)——0(ti —t,)

A

&[p(1) p(3)])p(3,2)d(3), (46)

17 Recent calculations by Rice (Ref. 18) indicate that the energy
dependence of W is more important for the erst term in f,&'&,

Eq. (34), than for the other second-order terms in f. While this
makes the convergence properties of the expansion for f worse
than anticipated from our results, it does not influence the con-
clusion regarding a weak k dependence of Jttf. Our values for the
paramagnetic susceptibility on the other hand seem quite
unreliable."L M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965)."J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954); D. F. DuBois, ', Ann. Phys. (N. Y.) 7,
174 (1959);8, 24 (1959).
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the density of the electronwhich gives the change in t e en
'

e~ '(1,2) —~(1,2)jp-'"(2)d(2), (47)
go(r) dr =0. (54)

where

=p-&L(p(r) p(O)) —pS(r)j, (48)

p r = p'(r, i)0(r, t)df, p=(p(r)) (49)

From the definition of g(r) it read' ydil follows that

g(r) —+ 1 when r ~~

p(g(r) —1)dr = —1.

f (r) is related to e(k, e) byThe Fourier transform o g,r i

the resence of an external charge density,

is an even function of e, while in t e a er
is even and the imag' y p

From a knowledge of e ' we can ca cu a e
correlation function:

the other hand, we have fromFor an electron gas, on e o
Eq. (53)

go(r)dr =go(k=O) = —1. (55)

1 1 1
H('-) =4 —+ + +"

3s 15s' 35'5

l tion should hold also for metals. »isiea io
r the dielectric con-The I.indhard expression or the

stant. is

e(k, e) = 1—v(k)P(k, e) = 1+n(k, e),

(q, )=( '/ )(/q')L (q+( /q)

H(s) =2e+(1—s') ln((x+1)/(s —1))= H( s-, —
q= (k/2ko), u= c(4h'koz/2m) ',
n= 4/9zr)"'=0. 52106.

m the branch where
~

Im 1ns~The logarithm is taken from ie
(R )x. To obtain e we have to take = gIml=h s n el

~v
'

L,
' '

d b takin Iml=d. For further~vhile eL, is obtaine y a ing
reference we note that

g(k)=p ' [1—e '(k„e)id&—p
2zrz ~(k)

+ (2zr) 'b(k) . (51)

&8 &6 &
7'

H(s)=4i s
15 35

—zri(1 —s') sgn(lms); s —+ 0,

go(r) = $c '(1,2)—8(1)2)fdtz df'i, r=ri 2. —r = ri—r2. (52)

The Fourier transform of gp(r) is

l calculate the linear response
n i t e leto de sit o d

~k ~~ we can a so ca cu
" "g

fixed externa po'
o e —e and using the facttaking the external charge to e —e an

that e '(k,O) =&I. '(k, 0),

n(q, 0) = (nr, /zr)1/q', q
—+ 0;

n(q, 0) = (nr, /3zr) 1/q', q ~m;

n(0, u) = —(nr, /3zr)1/u';

n(q, u) = (nr. /3~) 1/(q4 —uz).

n(q, O))0 for all q;

nr, w'+1 —q' w'+ (1+q)&

n(azu) = +

(57)

(k) = e '(k, O) —1.

r ives the Coulomb hole discussed
the correlatzozz

in an electron. From a we-11- o 1 t d' g
r an atom, t e corre a io

E (48) hil h
of th t d d

sim l from q.
Coulomb hole requires calculations o

hl f l to d
olarizabilities.

W note that the Coollomb ho es or ae
erzer aP are qua zta iee y'"gyg

From Eqs. (46) and (52) we have or a sys

( 1+q—2w~ arctan +arctan
1—

q)
w=u/q.w)

The pair correlation function g rr has been calculated
the RPA expression for e '(q, u), L1+n(q,u)l—',

and from the HF expression, —o. q,
Fi . 3. The HF expression is obtained by using a

45). Both the RPA and the HFwave function in Eq.

e that E . (54) will remain valid if surface ef-""'""""""'
Th nd.

-
g t-b

' t'
rith increasing number of particles.3f however tends to zero wit increasing
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PAIR CORRELATION FUNCTION FOR AN FLECTRON GAS and W from the RPA approximation. For r =0 Eq. (58)
gives simply

g(0) =0 5+0 5Lgap"(0) —0 5j (59)

0.5

0.0

-0.5

2.0

e.g. it gives one half of the RPA correction to HF.
Ueda's approximation changes g(0) for r, = 1 and 2 from
the RPA values —0.07 and —0.54 to 0.22s4 and —0.02
and thus Ueda's expression also gives a negative g(0)
at metallic densities.

While Eq. (58) is a good approximation for the small
values of r, that Ueda considered, for metallic densities
one should rather use

e '=(1—Pse) '+(1—Ppe) 'Pitt(1 —Ppe) ' (60)

-I.O

FIG. 3. Pair correlation function for an electron gas.

where Z'0 is the RPA approximation and I'~ is the next
term in the expansion Eq. (12) for P, evaluated with G

0
0

0.5

r
a r

i.5 2.0 1,5

Fzo. 4. 3(r/aor, )'
Xh(r) —lj. g(r) is
the pair correlation
function. The area
under each curve is
equal to —1.

-0.5

-l.o

"A. J. Glick and R. A. Ferrell (Ref. 21) have calculated the
RPA approximation of g(r) for r, =2. They 6nd that g (0) = —0.15
while the present calculation gives —0.54. The quantity g(0) can
be written 1—cJo"k'f(k)dk. The reason that their value is in
error might be that they Qtted f(k) by a Gaussian which under-
estimates the asymptotic contributions to the integral.

"A. J. Glick and R. A. Ferrell, Ann. Physics 11, 359 (1960)."S.Ueda, Progr. Theoret. Phys. (Kyoto) 26, 43 (1961).

approximations obey Eq. (50). Since g(r) is a probability
it must always be positive but from Fig. 3 we see that
the RPA approximation becomes negative" "for small
r. In our calculations however we are not directly inter-
ested in g(r) but rather in r'g(r). In Fig. 4 we see that
theinftuence of the misbehavior of g(r) for small r is sup
pressed to a large extent by the factor r'.

Ueda" has calculated g(r) for r, =0.1, 0.5, and 1 using
the approximation

e —=(1—Pr) '=(1 Psii) '+P~n— —

This expression however can be expected to give an
even smaller correction to RPA than does Ueda's. To
improve significantly upon RPA it is thus not enough
to take P =Ps+Pi with a simple RPA approximation
for G and 8".

Considering P(k, e) in the limit of small k, Glick, '"
reached the conclusion that one has to take the in6nite

FIG. 5. The ladder-bubble diagrams of Eq. (61).

sum of ladder-bubble diagrams,

I'=diagrams of Fig. 5, (61)

'4 Ueda reports a slightly dMerent value, 0.19.
2~ A. J. Glick, Phys. Rev. 129, 1399 (1963)."S.Engelsberg and J.R. SchrieBer, Phys. Rev. 131,993 (1963)."B.Lundqvist, (unpublished note from Chalmers' University

of Technology, Gothenburg, Sweden)."J.S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

in order to keep Ime(k, e) positive for all e. Starting
from Ward identities Kngelsberg and Schrie6er" and
Lundqvist" also arrived at Eq. (61) in the cases of
electron-phonon and electron-electron interactions, re-
spectively. In Appendices A and 8 we will argue that the

ladder bubble su-m does not give a systematic improvement
as far as M and G are concerned While for the. lower
metallic densities some inhnite summation for I' has to
be made, for the higher densities it seems more im-
portant to explore self-consistent solutions for G to
erst or perhaps second order in 8'.

The Coulomb hole gs(r) has been calculated by
Langer and Vosko, ss with the RPA expression for e(q, u).
The function gs(r) is qualitatively similar to p(g(r) —1).
It extends over a distance of order r,as, obeys Eq. (55)
and is finite for r =0. The magnitude of gs(0) is however
much larger than p, and gs(0) ranges from —2.20p for
r, =1.5 to —6.35p for r, =6. RPA thus predicts that
more charge is pushed away, close to the external charge
—e, than was present at the beginning. This feature
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TI-IE SCREENING FACTOR . Sir), OF THE POTENTIAL W(r, o).

e2
5'(r, o) = —

r S(r)

rs= 3

0.7

0.6

0.5

0.4

0.3

0.2

J
3.0 3.5

FIG. 6. The screening factor
S(r) of the potential W(r, 0) S(r).
is defined by W(r, 0) = (eP/r)S(r)
The curves correspond to r, =3.
The Thomas-Fermi (TF) approxi-
mation is S(r)=e ~~", where k,
=0.815r,'/k0. The Pines' expres-
sion (Ref. 30) is given in Eq. (63).

O. I

- 0. I

-0,2—

might be true also for the correct gp(r) since it is de-
6ned from a linear response expression.

The behavior of gp(r) for small r has however relatively
small influence on W(r, 0) = (e'/r)S(r),

S(r) = —4v. r'(r' r)gp(r')dr', —(62)

Si(x)=
sint

dt )

(63)

which is quite different from the two others.
The HF expression for e, namely, c '(q, u) = 1—n(q, u),

gives a reasonable result for r =0:

gii(0) = ——,'vrnr, p, (64)

but predicts a completely wrong asymptotic behavior,

gp(r) = 3n'r, (apr, /r) p; r—~po, (65)

which makes the integral in Eq. (55) divergent.

' S(r) has also been calculated by March and Murray (Ref. 30)
by a rather complicated method. The results for S(~) as obtained
from Langer and Vosko's densities (Ref. 28) using Eq. (62) agree
within 0.1%with those of March and Murray's for r, = 1.5. Other
r, values cannot be accurately checked since they lie far from
those used by Langer and Vosk.o.

"N. H. March and A. M. Murray, Proc. Roy. Soc. A261, 119
(1961).

'~ D. Pines, Solid State P/zyszcs, edited by F. Seitz and D. Turn-
bull {Academic Press Inc., New York, 1955), Vol. 1, p. 387.

as can be seen in Fig. 6 where the Thomas-Fermi (TF)
and the RPA results"" for S(r) are plotted for r, =3
The TF go tends to infinity for small r but still the TF
S threads the RPA S quite well. As a comparison we
have also plotted Pines' expression, "
S(r) = 1—(2/pr) Si(x), x=k.r, k, =0.353r, ' "kp,

8. ELECTRON GAS: THE TOTA.L ENERGy

Our primary interest in this paper is to calculate the
electron self energy M. By considering the total energy
we can obtain an estimate of the error in ti= (h'kp'/2m)
+~(kp tt). The relations between e, the energy per
particle, and p, are"

tr = e ',r, (de/dr, ), ——

"u(x)
6= 3/g dg.

(66)

The curve e(r, ) has its minimum in the neighborhood of
r, =4 and here an error in c gives essentially the same
error in p.

To calculate «(r, ) we use the virial theorem for an
electron gas":

V+2T+r, (de/dr, )=0, (67)

1
e=—2+

2ts

Tst

xV(x)dx Ry. (68)

From the known behavior'4 of e for small r, we infer that
the integration constant A is

& =-3/5rr'=2. 2099. (69)

"F.Seitz, 3fodern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1940), p. 343; J.J. Quinn and R. A. Ferrell,
Phys. Rev. 112, 812 (1958}.» N. H. March, Phys. Rev. 110, 604 (1958).

'4 M. Cell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

where t/' and T are the expectation values of the poten-
tial and kinetic energies divided by the number of
particles. Solving Eq. (67), we have, considering V to be
expressed in rydbergs,
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For convenience we write V(r,) as

V(.)=(1/.)(V--—~)

8=3/2wn 0= 91.63,
(70) -0, 1

-0.2
-0,3

POTENTIAL ENERGY OF AN ELECTRON GAS

rs
3 4 5 6 9 10

vrhich allows us to express the correlation energy
&c= &

)s

-04
Ry - 0.5

&c=
r.2

V,„„(x)dxRy. (71) -0.7

-0.8
"0.9

V„„can be calculated from the dielectric constant"
1+n(q,u):

-1.0

FIG. 7. Potential energy of an electron gas. The quantity r ,(U).
+0.9163 Ry plotted as a function of r,. The derivative of this
quantity is always negative according to a theorem by R. A.
Ferrell (Ref. 35). The correlation energy is obtained by an
integration,

q'n(q, iu)
dQ —1 8) 72

1+n(q, iu)

oo

Ucorr = dg
X'Q p r8

(r,(U)+0 9163).dr, Ry.r,' pwhich, when we use the RPA expression for n(q u) See also Ref. 37.
becomes

V„„=—
q'n'(q, iu)

dQ
1+n(q, iu)

(73)

From a general theorem given by Ferrelp' we can
deduce a restriction on U„„.Ferrell proved that

f)'e/8(e')'~&0 at constant density, (74)

where e is the electron charge. From the relatiorI

n( h' /m)(3 ir'p)' t'r, = e', we see that r, is proportional to
e' when the density is kept constant. The factor 1/r, ' Ry
= (1/r, ')(me'/2h') in Eq. (68) then becomes inde-

pendent of e' and the Ferrell condition, Eq. (74), can be
written

d2

A+
)S

[V,.„(x)—Bjdx = V,„„(r,) &0. (75)
dr,

In Fig. 7 we have plotted different expressions for
U„„.The series expansion in r, is taken from Carr and
Maradudin":

e,=0.0622 lnr, —0.096+0.018r, lnr, —0.036r, ,

V„„=d(r, 'e,)/dr, =r, (0.1244 lnr,

0 130+0 0—54r. , lnr, —.0.090r,) .
(76)

"P.Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958)."R.A. Ferrell, Phys. Rev. Letters I) 443 (1958).
W. J. Carr, Jr. and A. A. Maradudin, Phys. Rev. A133, 371

(1964).

This Vporr violates Eq. (75) from r, =2. The RPA ex-
pression for V„„satisiies Eq. (75) at least up to r, = 100.
The contribution to e, from exchange of second order in
e has been calculated by Gell-Mann and Brueckner. '4

They obtain the value 0.046 Ry which gives a contribu-
tion of 0.092r, to V„„.When this is added to RPA, the
Ferrell condition becomes violated from r, =3 (see
Fig. 7). The unscreened second order exchange terms-

actually represent a substantial overcorrection to RPA
already at r, =1, as can be seen by comparing with the
r, expansion.

V„„can also be calculated from the pair correlation
function g(r),

1
U,.„=—

37l A

x[gnp"(x) —g"v(x)]dx; x= 2hsr (77).

As a check on the numerical accuracy of gaps, Eq. (77)
was evaluated and found to give the same result as Eq.
(73) within a few percent. Since the g (r) curves vio-
late the condition g~p~&0) for small r, they were
smoothly extrapolated to zero (dashed curves in Fig. 3).
These extrapolated curves were then used in Fq. (77) and

the result plottedin Fig 7with the l.abel RPA„,r. Since the
correct g lies above g "for small r it has to lie below
g~p~ for some regions of r in order to satisfy the nor-
malization condition. If the correct g were zero for r =0
the RPAycf Vcorr would give a rough upper bound to the
correct V,.„.At metallic densities the dashed curves in
Fig. 3 lie so much above the g~p" curves that a further
small shift will make relatively little change in V„„.
We conclude that, at metallic densities, the RPA„,~V„„
is a rough upper bound to the correct V„„.

In Fig. 8 the total energy is plotted as calculated from
Eq. (71) using the values for V„„given in Fig. 7. For
comparison the HF energy and the energy of the
Wigner-type electron lattice" are also plotted. We note
that while the extrapolation of the g curves looks drastic,
the difference between the RPA and the RPA„,~ curves
for the total energy is fairly small even though the
energy calculation involves rg(r) and not r'g(r), cf. Fig.
4 and the discussion of the correlation hole in Sec. 7.

The phase transition where the electrons cease to be

"W. J. Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein,
Phys. Rev. 124 747 (1961)
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TOTAL ENERGY OF AN ELECTRON GAS

Ry

-Ol

-0.2 '

Q

I t l l

FIG. 8. Total energy of an electron gas. The energy of the
electron lattice is taken from Ref. 38.

'9 I'. W. de Wette, Phys. Rev. 135, A287 (1964).
'0 T. Gaskell, Proc. Phys. Soc. 77, 1182 (1961);80, 1091 (1962).

itinerant and form a lattice has been estimated by de
Wette39 to occur between r, =47 and r, =100. From a
calculation to 6nite order in 8' we expect to 6nd a
smooth energy curve, which, if carried to high enough
order in 8', will cross the energy curve corresponding to
electrons on a signer lattice. The RPA curve for the
total energy lies below the lattice curve at least up to
r, = 100. This gives additional evidence, besides the fact
that the second-order term in e is positive, that RPA
gives a lower bound to the energy. It is indeed hard to
imagine that any reasonable curve for V,.„which starts
out as the series expansion, has a negative slope, and
never goes below —0.876 Ry, couM lie lower than the
RPA curve. The limit —0.876 Ry is set by the fact that
the lattice energy goes asymptotically as —1 792/r, .

and the HF energy as —0.916/r, .
If we extrapolate the RPApcf curve fol t corr& Fig 7&

with a horizontal line starting at the minimum, the cor-

responding curve for the total energy will cross the
lattice curve at r, =11.This gives further evidence that
the RPA~, ~ curve is an upper bound to the energy. The
RPA„,f total energy actually comes quite close to the
results of a calculation by Gaskell. " His curve lies

0.003 Ry above and 0.007 Ry below the RPA„,f curve
at r, =3 and r, =5, respectively. Gaskell made a varia-
tional calculation with an antisymmetrized product of
pair functions, but due to an additional approximation
his results do not quite give a rigorous upper bound for
the energy. From all evidence taken together we esti-
mate that the error in the RPA approximation for the

energy e is positive and at most 0.0Z Ry.
We now return to the question of estimating the

error in the chemical potential p. Equation (66) relates
the exact e to the exact p and within the numerical

accuracy of our calculations, ~0.0005 Ry, it holds
also for e calculated from Eq. (71) and u calculated
from M=iGW/P= iGG, G acco—rdi'ng to Eq. (41)].If
for the error in the energy De, we use the difference be-
tween RPA„,~ and RPA, we find that the term
~3r,ddt/dr, is small compared to Ac at metallic densities.

+le estimate that. the error irt the RpA approximation for
the chemical potential tj, is positive and at most 0.0Z Ry.

To further investigate the convergence properties of
the expansion for 3f, Eq. (24), we consider the second-
order term. Voile the 6rst-order term is given by a
four-dimensional integral, which easily can be reduced
to a two-dimensional integral, the second-order term
is given by an eight-dimensional integral which is
difficult to reduce to less than a seven-dimensional one.
As we discussed in Sec. 5, a rough value can however be
obtained by using the static potential W(k, 0) instead of
the full potential W(k, e). The second-order term then
becomes

cV&"(k,u)

dkgdk21
Ry, (78)

vr4 kx'k2'e(ki, O)e(k2, 0)(k'—u —2k~. k2)

where the integral is taken over the regions

ik+kgi &0.5 Ik+kil &&o 5

ik+k, i
&0.5 and )k+k2i &0.5

( k+kg+k2[ ~& 0.5 Jk+4+k2[ ~&o.5)

and the k's are expressed in units of twice the Fermi
momentum and u in units of (4h'kP/2m). One angular
integration is trivial but there still remains a five-
dimensional integral. For the particular case of k=0,
u=O, Ecl. (78) can however be reduced to a, double
intcgl Rl,

8 dk~dk~ sgn(k~ —0.5)3f!"(0,0)=—
e(kg)0) «(k2, 0)kgkg

Xlr)
2kgk2

Ry, ('79)
0.25 —kg' —P '-

over the regions

0&&kg —kg&~ 0.5, and kg+k2& 0.5.
This integral was evaluated using a TF dielectric
constant:

e(k, O) = 1+(ar, /v. )(1/k'), (80)

which is good enough for the present discussion.
M&'&(0,0) was found to vary slowly with r, at metallic
densities, reaching a maximum of 0.014 Ry at r, =3
From values of (d/dk)M~"(k, (h'k'/2m))q=q„Sec. 10,
we estimate that p"'=M~"(ko, (h'ko'/2m)) is about
0.02—0.04 Ry i.e. of about the same size as the error in
the erst-order contribution p"'. It should be realized
that while the preceding discussion suggests a very good
convergence of the expansion of p in terms of g, an
accurate value of p cannot be obtained by just adding
~(» to ~H"& since the p, (') which corresponds to a self
consistent solution for 6 might well differ from p,

~p" by
an amount comparable to p, (2).

In the calculation of the energy we have assumed that
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TABLE lI. Energies of an electron gas in rydbergs.

To= Kinetic Energy in the HF approx. = (3/5cr'r, ') Ry= (2.2099/r. ') Ry.
&„.,h= potential Energy in the HF approx. = —(3/2vrar, ) Ry =—(09& 63/r. ) Ry.

~„,+PA = Correlation energy in the RPA= Total energy —HF energy.
e„,p =0.0622 lnr, —0.096+0.018r, lnr, —0.036r,.

T =Expectation value of the kinetic energy in the RPA.
V=Expectation value of the potential energy in the RPA.
~ =Total energy in the RPA= T+V= T0+e,„,h+ e«»

eF„,=Total energy of the Ferro-magnetic state according to RPA.
~L,«" ——Energy of the signer type lattice of electrons

1.792 2.65 0.73 21 4.8 1.16,„,/, 2,06 0.66
r, r, /4 r,~/4 r, 5/4 r, /4

The energies are accurate to &0.0005 Ry.

TO

2.2099
0.5525
0.2455
0.1381
0.0884
0.0614
0.0451
0.0345
0.0273
0.0221

—0.9163—0.4582—0.3054—0.2291—0.1833—0.1527—0.1309—0.1145—0.1018—0.0916

RPA
&corr

—0.1578—0.1238—0.1058—0.0938—0.0851—0.0784—0.0730—0.0685—0.0647—0.0615

&corra

—0.132—0.100—0.076—0.054—0.031—0.007
+0.018

2.3161
0.6299
0.3083
0.1920
0.1359
0.1040
0.0839
0.0703
0.0606
0.0532

—1.1803
—0.6594—0.4740—0.3767—0.3158—0.2737—0.2427—0.2188—0.1998—0.1842

1.1358
—0.0295—0.1657—0.1847—0.1799—0,1697—0.1588—0.1485—0.1392—0.1310

&Ferr

2.2502
0.2150—0.0695—0.1367—0.1526—0.1534—0.1482—0.1413—0.1344—0.1274

&Latt

1 49
0.173—0.067—0.122—0.131—0.130—0.128—0.118—0.110—0.103

a W. J. Carr, Jr. , and A. A. Maradudin, Phys. Rev. 133, A371 (1964).
b AV. J. Carr, Jr. , R. A. Caldwell-Horsfall, and A. E. Fein, Phys. Rev. 124, 747 (1961}.

the ground state is paramagnetic. To obtain the energy
of the ferromagnetic state we have to use a Green's func-
tion which is zero for, say, spin down and for spin up
has a Fermi momentum"

ke~ ——Pke, P=2'~', ke=(craer, ) ' (81)

To see that we introduce dimensionless variables as in
Eq. (56) but with ke replaced by kP. From Eq. (24) we
then 6nd for the dielectric constant

e~(q, g; r,) = e~(q, cr, ; r,p 4),

and from Eq. (73)

&carr (rs) =p &Corr (rsrp )

(84)

Substituting Eq. (85) into Eq. (71) finally gives Eq.
(83). We note that Eq. (84) is not valid if we include
higher terms in P(k, e), Eq. (24), or if we use a self-
consistent G.

Table II gives the values of the energy for the ferro-

4'Superscript l~(I') here refers to the ferromagnetic (para-
magnetic) state.

As is well known the HF expression for the energy of the
ferromagnetic state is, in Rydbergs,

c =P'( /Srr' ') —P(3/2m. crr,), (82)

which lies below the energy of the paramagnetic state
for r, &~5.45. In RPA we have the simple relation for
the correlation energy

(83)

9. ELECTRON GAS: THE M OPERATOR

The 3f operator was calculated from the equation

M(k, e) =
(2rr)'

e(k')dk' e
—id''d~/

(86)
e(k', c') e—e' —e(k—k')

cf. Eqs. (24), (41), and (56). The contour for e' runs
just below the real axis for e'& 0 and just above for &'& 0.

4' J. Hubbard, Proc. Roy. Soc. A243, 336 (1957).

magnetic state in the RPA a,s obtained from Eqs. (82)
and (83). We see that eF lies above eP (given under the
heading e inTable II) and approaches it asymptotically.
At r, = 10 the difference between the energies is only 3o/o

of their magnitude. This is a reasonable result since the
inAuence of spin orientation has to vanish when the
density tends to zero. The present results do not quite
rule out the possibility that the electron gas should be-
come ferromagnetic at some density since we know that
the RPA value for «"(r,) lies too low. On the other hand,
e~(r, ) is also too low but perhaps less so since according
to Eq. (83) the error in e.~ is only half the error in e,P.
It seems safe to predict that the electron gas does rot be-
come ferromagnetic for r, (7.

The numbers in Table II not discussed so far are self
explanatory. Ke only note that the series expansion for
e„„rapidly becomes bad for r, &3 and that our values
for e„„ap~ do not quite coincide with Hubbard's, his
values4' being between 0.002 and 0.004 Ry higher than
ours.
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Ke first separate out the HF term:

~()
P (k e)e

e(k, e)

=v(k)s "~+a(k) —1) (8))
e(k, e)

Since, according to Eq. (57), (1/e(q, u)) —1 tends to zero
as

(
u

~

' for large
~
u~, the convergence factor e "n has

been omitted in the last term of Eq. (87). We then
separate out the static approximation of the fast term
in E(1. (87), cf. Sec. 5,

W(l, e)e-*'=.(k)e-"
1

+v(k)( —1)+v(k)( —
) (&&)

e(k, p) e(k, e) e(k,p)

The contributions to 3II(q,u) from the first two terms of
Fq. (88) are easily evaluated by closing the contour for
e' in Fq. (86) in the lower half-plane, giving the Coulomb
hole plus screened exchange terms,

e(q', 0)

8(0.25 —q' —q's —2qq'$)
d$ dq' Ry. (89)

p e(q', 0)

To evaluate the contribution from the last term of Eq.
(88) we follow Quinn and Ferre114' and turn the contour
of e' in Eq. (86) to run along the imaginary axis. We
pick up a contribution from the poles of the Green's
function,

X Le(u —e(q —q')) —8(0.25 —e(q —q'))] Ry;

TAsz, z III. The Fermi energy for an electron gas,
T+3I/, in rydbergs.

T 3EHF

1 3.6832 —1.2218
2 0.9208 —0.6109
3 0.4092 —0.4073
4 0.2302 —0.3054
5 0.1473 —0.2444
6 0.1023 —0.2036
7 0.0752 —0.1745
8 0.0576 —0,1527
9 0.0455 —0.1358

10 0.0368 —0.1222

~RPA

—1.3965—0.7491.—0.5259—0.4112—0.3406—0.2926—0.2575—0.2308—0.2097—0.1925

—1.8327—0.9164—0.6110—0.4581—0.3666—0.3054—0.2618—0.2291—0.2037—0.1833

—0.4541—0.1639—0.0870—0.0546—0.0377—0.0277—0.0212—0.0168—0.0136—0.0113

—1.6267—0.9137—0.6577—0.5224—0.4375—0.3787—0.3354—0.3019—0.2753—0.2535

a The Slater approximation =1.5 M
b Screened exchange potential.
e Screened exchange potential plus Coulomb hole contribution.

M' and 3II" are real and the imaginary part of M
comes solely from M". For u=0.25 (e= h'k()s/2m), M)'
is zero as well as its first derivatives with respect to q
and u. The real part of M)'(q, q') is small. It decreases
monotonically from about 0.01 Ry at q= 0 to 0 at q= 0.5,
except for r, =1 when it has a maximum of 0.02 Ry at
q=0.2. The imaginary part of M)'(q, q') is larger as can
be seen from Table IV under the heading M2. It de-
creases monotonically from values of the order 0.1 Ry
at q=p to zero at q=0.5. The derivatives of ReMr (q,u)
with respect to u are 10% or less of the derivative of
3II(q,u) for 0.5 &~q &~0.2, but increase rapidly for
smaller q.

The first term in M'(q), the Coulomb hole contribu-
tion, is independent of q. The second term in 3II'(q),
the screened exchange contribution, is substantially
smaller than the HF exchange term as can be seen from
Table III. Comparing 3f' with M~ A in Table III, we
can see that M' has too large a magnitude and that the
Slater approximation, "which consists of an average of
3IHF over the Fermi sphere, actually is better.

3SI" can conveniently be split into three parts. The
6rst part consists of contributions from integrating u'
between 0 and 0.25 in Eq. (91). The second and third
parts come from the integration over u'&0. 25 and the
following division:

&= q q'/(qq'), (90)

l.maginary axis,

1 1 1 q 1
(93)as well as the contribution from integrating e' along the e(q& iu&), (q& 0),(q& ~u~) j e(ql p)

00 00 1
dQ

'(w I ) '(I 0))

» th«bird part, i.e., the second term of Eq. (93), the
integration over n' can be made analytically,

Q"e thus have

1 (u —(q+q')')'+u"
X- ln Ry. (91)

qq' (u —(q —q')')'+u"

M""(q u) =
2m 2nr,

dg 1—
s(q'P)

1 1+a2
X a arctan(a) —b arctan(b) ——,

' ln Ry;
VV 1+be

M(q, u) =M'(q)+M i'(q, u)+M'(q, u) . (92)

4' J. J. Quinn an(l R. A. Ferrell, Phys. Rev. 112, 812 (1958).

a =4((q+ q') '—u), b =4((q—q') '—u) . (94)

4' J. C. Slater, Phys. Rev. 81, 585 (1951).
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q=0,
q= O.i, 0.2, 0.3, 0.4,
q= 0.5, 0.6, 0.7,

u= ~0.0j..

u= q' (q+0.1)'
n=q', (q —0.1)'.

The results are given in Table IV. The values of M for
u/q' are not given directly but in the form

s '(q) =1—AM/Ae. (95)

For q=0 we have given the average of the results for
1=~0.01. To estimate how well s approximates the
limit when De~0, we compare the values of Res '
for q

=0.4, 0.5, and 0.6.They agree to about two decimal
places which, in conjunction with the fact that M(q, q )
is almost linear for these q values, shows that M(q, u)
cae be represented fairly well by a linear expressions ie q
aed n for

~ q
—0.5

~

(0.1 aed
I
I—0.25

~

(0.1, unless the

M(q, N) surface has an anomalous behavior for N(q',
q(0.5 and u) q', q~&0.5. To check Ims ' we note that
for I close to 0.25 we have from general arguments"

M" gives the main part of 3f", being about three times
as large as each of the erst two parts with respect both
to magnitude and derivatives. The essential contribu-
tion to the first part of M" comes from q'(0.8, and to
the second part from q'(2.4, I'&3, the remaining con-
tributions being small and practically independent of

q, I, and r, .
M' is easily evaluated since the integration over $ in

Eq. (89) can be made analytically. In evaluating M" we

have the advantage that e(q, iN) is much more well be-
haved than e(q, e). From Eq. (57) we see that n(q, iN)

only has three singu]ar points, N=O, q=0, ~1, while

rr(q, n) is singular along the lin. es (q&(u/q)) =+1.The
evaluation of M" involves n(q, u) but fortunately M& is
small and the relative accuracy does not have to be
pushed so far.

The integrals were evaluated for

I.O

QUASIPARTICLE ENERGY AS A

FUNCTION OF MOMENTUM

0.5—

Ry

where from Eq. (42)

ep ——M(kp, e(kp)) =y —e(kp) .

We note that Eq. (97), owing to the ep in the denomina-

tor of our Go, is different from the corresponding equa-
tion used by DuBois"

e= e(k)+M(k, e(k))(1+BM/Be) .

In particular the cancellations mentioned by him be-
tween M&'&BM&'&/Be and the noncrossed second order
term of M&" are taken into account in Eq. (97), cf.
Sec. 6. The real and imaginary parts of the last term in

Eq. (97) are given in Table IV under the headings Et
and E2. In Table IV we have also given the screened
exchange approximation MS and Pines' approximation
MP. We see that the difference between E~ and MS is
substantial; they even have opposite signs for r,)1.
Both Et and MS have a weak k dependence compared to
MP. This is also illustrated in Fig. 9.4 The almost hori-
zontal curves give Et+ ep and the dashed curves give
Pines' approximation. For comparison the kinetic
energy e(k) and the Hartree-Fock approximation for M
are also drawn. The infinite slope of the HF curve at
k= kp is barely noticeable, owing to the weakness of a
logarithmic singularity.

We note that the HF energies deviate from the true

M (q, su) =C,(N —0.25)' sgn(0. 25 —I) . (96)

The values of C, for q =0.4 and 0.6 deviate by about 20/c
from those for q= 0.5. We can also check Z at q =0 where
the calculations were made for three values of N. The
values of Ims ' agree within a few percent while the
values for Re(s '—1) deviate from their mean value by
20/~, 29% and 65'P~ at r, = 1, 4, and 6, respectively. We
conclude that M&(0,u) varies eery rapidly with u and
that our value for Res ' is not very reliable when q is
small.

To solve Dyson's equation for the quasiparticle
energies we expand

0.0 '0.5

-0.5

-I.O

'1.0
k

ko

~5

3
w2

6
5

c= e(k)+M(k, e—ep) = e(k)+M(k, e(k))
+(e—ep —e(k)) PBM(k, e(k))/Be] )

giving the solution for e

e = e,+e(k) + I M(k) e(k)) —ep]/

[1—BM(k, «(k))/Be], (97)

FIG. 9. Quasiparticle energy as a function of momentum. Above
the axis: Free-particle part= (APks/2m). Below the axis: Exchange
and correlation part. Dashed curve: Pines' approximation (Ref.
45). Curves with infinite slope at h=k0. HF. Almost Qat curves:
EI in Table IV. The r, value is indicated for each curve.

4' D. Pines, Ref. 31, p. 407. The value of p in his Kq. (8.1) is
taken as P=0.375r,'~'. This is the value used by V. Heine, Proc.
Roy. Soc. (London) A240, 340 (1957) in his calculation on Al.
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ThsLz IV. Quasiparticle energy in the momentum representation.
The full quasiparticle energy= p(k)+M(kp, p(kp))+tabulated uantity, where p(k) is the kinetic energy, (h'k'/2~a). The energies in

the table are expressed in rydbergs. The Fermi momentum is
~
kp .

M =M(k, p(k)) —M(kp, p (kp)); M in the RPA
Z '=1—8M(k, p(k))/8 ~; M in the RPA

I' =3fZ
MS =M(k) —M (kp); M from a screened exchange potential
MP =M(k) —M(kp); M from Pines' approximation' with

P =0.375'.'/'. This is essentially the same P value as used by V. Heineb in his paper on the band structure of Al.

3/Ig
ReZ'
ImZ'

p)

MS
MP
JIy.M2

ReZ'
ImZ'

p~
jv2
MS
MP

Jf2
ReZ'
ImZ'

E~ 1

MS
MP.Mg
3f2

ReZ'
ImZ'

J 1
I-'2

MS
MP
3II j
&V2

ReZ'
IIIl Z

MS
MP

Afar

3IIg
ReZ'
ImZ'

PQ
MS
MP

h/kp ——0

—0.1286
0.2323
1.270
0.186—0.0729
0.1936—0.2401—0.7208
0.0123
0.0976
1.426
0.273
0.0210
0.0644—0.0590—0.2440
0.0268
0.0534
1.521
0.313
0.0238
0.0302—0.0230—0.0998
0.0262
0.0336
1.576
0.334
0.0202
0.0170—0.0110—0.0334
0.0231
0.0230
1.602
0.347
0.0167
0.0170—0.0059

+0.0035
0.0201
0.0168
1.609
0.354
0.0141
0.0073—0.0034
0.0264

0.2
—0.1232

0.2130
1,241
0.150—0.0774
0.1809—0.2283—0.6879
0.0112
0.0882
1.413
0.224
0.0174
0,0597—0.0561—0.2276
0.0253
0.0482
1.537
0.261
0.0212
0.0278—0.0219—0.0889
0.0250
0.0304
i.629
0.282
0.0180
0.0155—0.0105—0.0252
0,0223
0.0209
1.699
0.296
0.0148
0.0097—0.0057
0.0090
0.0195
0.0152
1.753
0.305
0.0123
0.0065—0.0033
0.0234

0.4
—0.1014

0.1608
1.216
0.108—0.0711
0.1386—0.1940

—0.5860
0.0086
0.0642
1.387
0.161
0.0114
0.0450—0.0477—0.1766
0.0205
0.0350
1.525
0.192
0.0161
0.0209—0.0187—0.0569
0.0206
0.0222
1.639
0.211
0.0141
0.0117—0.0090—0.0126
0.0186
0.0154
1.738
0.225
0.0117
0.0074—0.0049
0.0057
0.0164
0.0113
1.825
0.236
0.0096
0.0049—0.0028
0.0135

0.6
—0.0735

0.0910
1.193
0.064—0.0574
0.0794—0.1403—0.4023
0.0039
0.0349
1.354
0.095
0.0047
0.0255—0.0346—0,1034
0.0132
0.0190
1.492
0.116
0.0098
0.0120—0.0137—0.0344
0.0139
0.0121
1.614
0.130
0.0092
0.0068—0.0066—0.0095
0,0129
0.0085
1.725
0.141
0.0078
0.0043—0.0036
0.0012
0.0116
0.0063
1.827
0.150
0.0066
0.0029—0.0021
0.0061

0.8
—0.0428

0.0284
1.168
0.021—0.0362
0.0250—0.0731—0.1824—0.0004
0.0105
1.318
0.032—0,0001
0.0080—0.0182—0.0489
0.0056
0.0057
1.455
0.039
0.0040
0.0038—0.0072—0.0176
0.0065
0.0037
1.580
0.044
0.0042
0.0022—0.0035—0.0060
0.0063
0.0026
1.697
0.049
0.0038
0.0014—0.0019—0.0008
0.0058
0.0019
1.807
0.052
0.0032
0.0010—0.0011
0.0017

1.0

0
0
1.164
0
0
0
0
0
0
0
1.302
0
0
0
0
0
0
0
1.429
0
0
0
0
0
0
0
1.547
0
0
0
0
0
0
0
1.660
0
0
0
0
0
0
0
1.766
0
0
0
0
0

1.2

+0.0407—0.0279
1.142
0.017
0.0353—0.0250
0.0709

0.0009—0.0105
1.275
0.026
0,0005—0.0082
0.0184

—0.0052—0.0059
1.400
0.033—0.0038—0.0041
0.0075

—0.0064—0.0038
1.518
0.038—0.0043—0.0024
0.0037

—0.0064—0.0027
1.630
0.042—0.0040—0.0016
0.0020

—0.0060—0.0021
1.738
0.046—0.0035—0.0011
0.0012

1.4

0.0459—0.0948
1.151
0.040
0.0370—0.0837
0.1339

—0.0075—0.0367
1.284
0.061—0.0072—0.0282
0.0359

—0.0147—0.0208
1.407
0.078—0.0112—0.0142
0.0149

—0.0153—0.0137
1.525
0.091—0.0105—0.0084
0.0074

—0.0144—0.0099
1.637
0.102—0.0091—0.0055
0.0040

—0.0132—0.0075
1.745
0.112—0.0078—0.0038
0.0023

a D. Pines, Ref. 31, p. 407.
b V. Heine, Proc. Roy. Soc. A240, 340 (j.957).

quasiparticle energies in qualitatively the same way for an
electron gas as for alkali atoms, though on a largely magni-
Ped scale, cf. Sec. 4.

By comparing M with E, in Table IV we 6nd that the
factor Z has a large influence. For r, =1 we note an
anomaly. E& drops sharply in going from g =0 to q= 0.1
before it starts rising again. This may be due to eithel
inaccuracies in the Z values or to a discontjpqity in the

derivative M~:(k)/Bk, . There are however no indications
of such a discontinuity in 3E(k,e(k)).

The a,ccuracy of E(q) is not good enough to permit a
more detailed statement about its second derivative
than the general observation that on the average it is
small compared to e"(q)=2(2/nr, )' Ry. This follows
from the fact that J' (0.5) is small compared to e'(0.5)
= (2/nr, ) ' Ry [see Table VI which gives E'(0.5)/e'(0. 5)
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With our present definition of f, Eq. (101), using sions for /rI" in the form
Green's functions according to Eq. (41) and dimension-
less integration variables according to Eq. (56) we have

f,'"= —U(~,0),

Z
(2)—

e

U(qi, ui)dqidui 2 V(~,0)

@] gi 2q gy Ny —
g y

—2q

dk"
(2m)'

«(k+ k")—«(k)
de

(«(k+ k")—«(k)) '+w'

X(W(k",iw) —W(k",0)) . (109)

V(qi+in:, ui) U(qi+x, u,)— We then perform a partial integration with respect to m,
(dW/dw = W'dP/dw),

ui+qi —2q qi ui —qi —2q'qi (104)

V (qi, ui)dqidui

Qy —
gy

—2Q'gy

X
—ui —qi —2q 'qi ui+qi —2q 'qi

where we have omitted the s' factors and used the
notation

16
cV"(k,«(k)) = dk" dw

(2vr) '

«(k+k") —«(k)
&& arctan W'(k",iw)

(«(k'+k") —«(k'))w&(hp
~
k'~)

dk' (110)
{f«(k'+ k")—«(k') ]'+w'} '

V(q, u) = (l~/4q'«(q, u)); X=nr, /ir = r,/6.03;
x= q —q'= (k—k')/(2hp);
~'=

2 (1—cos8) = sin'(8/2) .

(105)

The last integral in Eq. (110) can be written4'

m w k k'8(ik'i —hp)dk'
111

2h'hp k k" $«(k'+k") —«(k')]'+w'

1 'g] g9

fp
= —— V (qi, 0)dqi

K' qi (a+qi)

vi= 0(0.25 —(q+qi)') —e(0 25 —(q'+qi)')

it2
——8(0.25—(q+qi)') —0((q'+qi}'—0.25) .

(106)

Using the G defined in Eq. (41) we have from Eqs.
(27) and (28}

C,/C= 1+z —M(k, (k)) I

—«(k) . (107)
dh

'
kdh

Neglecting the z factors, the contributions to Cp/C in

Eq. (107) are identical with those in Eq. (103) according
to the following correspondences:

f,&'&, Eq. (104) —+ M', Eq. (89),

fp Eq. (104) —+ M", Eq. (91),
f,&", Eq. (106)~ M&'& Eq. (78).

(108)

As discussed in Sec. 5, we can obtain rough approxima-
tions by replacing W(k, «) by W(k, O) or, in the present
notation, replacing V(q, u) by V(q, 0). The expressions
for f,"i and fp then become,

1 2V(~,0)iti V(qi+x, 0)imp

f "&=— V(qi, Q)dqi-
qi '(ic:+q i)

When we form d/dh= (k/hp) d/dk of 3f"(k,«(k)), the
factor (k k") ' drops out and it is relatively easy to
check that we arrive at the same expression for Cp/C as
when fp of Eq. (104) is used in Eq. (103). It is easily
realized that we have the correspondence fp, Eq.
(106)—& 3II", Eq. (110) with W(k, O) instead of W(k, hv).

Thus the RPA result for the specific heat is reproduced
by f,~'~ and fp apart from a factor z. It seems probable,
although we have not been able to prove it, that if we

use Eq. (43) instead of Eq. (41) for G, the iGW expres-
sion for M will give exactly the same result for Cp/C
as f,&" and fp Lcf. the discussion in connection with
Eqs. (35) to (37)].

The numerical results for f &'~ Eq. (104) and f &"

fp Eq. (106) are given in Table V and Fig. 11.The f's
are multip]ied by sino to make it easier to estimate their
contributions in Eq. (103).The z -factor is not included
in Table V and Fig. 11.Since we have numerical results
for M"$k, «(k)] we can evaluate the contribution to
Cp/C 1 from fp, Eq. (104) and compare with the con-
tribution from the static approximation for fp, Eq. (106).
These contributions are given in Table VI under the
headings (fp, RPA) and (fp,static). We expect similar
differences between the contributions from f,&'& accord-
ing to Eqs. (104) and (106).The static approximation for
the second-order terms in f is thus fairly rough and
seems to somewhat underestimate them.

The first and third correspondences are easily checked
by straightforward differentiation of 3f' and M" . To
prove the second correspondence we write the expres-

4' We use the identity

(1/I&Ilf&&»(lkpl —I&l&~&
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TxsLE V. Qua, siparticle interactions multiplied by sin8.

r.= 1

fo f, (2)
r.=2

f0 f, (2)
r, =3

f0 f, (2)

-X0
8

1
2
3

5
6
7
7+

7+6
8

—0.0788—0.0969—0.0842—0.0656—0.0473—0.0307—0.0151

—0.0009—0.0018—0.0030—0.0043—0.0062—0.0084—0.0095—0.0091—0.0066—0.0042
0

r, =4
fo

—0.0187—0.0188—0.0112—0.0038
0.0019
0.0055
0.0063
0.0057
0.0041
0.0025
0

f (2)

—0.0869—0.1.274—0.1271—0.1081—0.0824—0.0553—0.0278

—0.0032—0.0067—0.0106—0,0152—0.0201—0.0241—0.0231—0.0202—0.0139—0.0085
0

r, =5
f0

—0.0264—0.0322—0.0217—0.0066
0.0070
0.0159
0.0171
0.0148
0.0105
0.0065
0

f (2)

—0.0900—0.1424—0.1531—0.1379—0.1095—0.0755—0,0386

—0.0069—0.0141—0.0220—0.0304—0.0383—0.0429—0.0374—0.0318—0.0211—0.0127
0

r, =6
f0

—0.0285—0.0367—0.0250—0.0044
0.0156
0.0286
0.0289
0.0246
0.0171
0.0104
0

f, (2)

1
2
3

5
6
7
7+3

7+6
8

—0.0917—0.1512—0.1706—0.1510—0.1311—0.0924—0.0480

—0.0116—0.0237—0.0363—0.0488—0.0594—0.0634—0.0522—0.0430—0.0281—0.0167
0

—0.0273—0.0354—0.0220
0.0027
0.0276
0.0432
0.0412
0.0347
0.0236
0.0143
0

—0.0927—0.1571—0.1832—0.1770—0.1486—0.1067—0.0561

—0.0173—0.0350—0.0530—0.0699—0.0827—0.0852—0.0673—0.0544—0.0349—0.0206
0

—0.0241—0.0299—0.0141
0.0141
0.0425
0.0593
0.0538
0.0445
0.0299
0.0179
0

—0.0933—0.1613—0.1926—0.1905—0.1632—0.1190—0.0633

—0.0238—0.0480—0.0718—0.0932—0.1078—0.1080—0.0826—0.0647—0.0417—0.0244
0

—0.0192—0.0214—0.0024
0.0290
0.0510
0.0767
0.0667
0.0549
0.0360
0.0215
0

From Table V and Fig. 11 we see that the erst order-
term on f is appreciably larger than the second order terms-
for the higher metaltic densities. The convergence of the
expansion for f, however, does not seem to be as good
as that for p.

From the results for f &" and for M~" (00) we can
estimate the magnitude of M&"Lk, e(k)] at k= ko. The
derivative of 3f~')[k,e(k)] relative to that of e(k) at
k=k, is roughly given by the value of (f,&o), static) in
Table VI. Taking into account that M")Lk, c(k)] should
flatten out at small k by introducing an extra factor of
0.5, we arrive at the estimate of M")[ko,e(ko)] which
was given in Sec. 8, namely 0.04—0.02 Ry for r, varying
from 3 to 6. I'or smaller r„M(') becomes larger and the
ratio M~')/3II") smaller.

The influence of the errors in the second order terms
of f is suppressed since they should cancel each other to
a large extent. This can be seen in Table VI by com-
paring the columns (fo, f,"), static) with (f,&'), RPA)
or (f„fp, static).

In I'ig. 12" " the results for the specific heat are
plotted. The series expansion in r„given by DuBois, "
starts to deviate from our result already at r, =0.5 and

'8 D. Pines, Ref. 31, p. 408, Eq. (8.4). (P=0.353r,' ').' D. F. DuBois, Ann. Phys. 8, 24 (1959).
5 S. D. Silverstein, Phys. Rev. 128, 631 (1962).
5 D. F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959).

for r, &1 it is obviously wrong. Pines result, which is
given by f,") with W(r, e) =(e'/r)S(r) and S(r) accord-
ing to Eq. (63), is qualitatively similar to ours but
exaggerates the difference between C and Co. Silverstein"
has recently tried to include the second-order term in
M by an interpolation procedure similar to that used by
Nozieres and Pines" for the correlation energy. Silver-
tein expressed Co/C —1 as an integral over the momen-
tum transfer q, using RPA for small q and unscreened
perturbation theory up to second order for large q.
His results are however more negative than the RPA
results (compare the last two columns in Table VI) even
though the second-order terms give a positive contribu-
tion to Co/C —1. This probably is due to his use of a
series expansion in q for the RPA part of his integrand
rather than the complete RPA expression. Silverstein's
result" for xo/X minus his result for Co/C are given in
the last column of Table VII. They agree roughly with
our results from f,") without the s' factor.

Since f,~') gives the largest contribution to the
specific heat as well as to the paramagnetic suscepti-
bility, it is of interest to examine how sensitive the
results are to the precise form of f,"). The series
expansion of the RPA expression for e(~,0) is easily

"S. D. Silverstein, Phys. Rev. 128, 631 (1962)."P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958).
'4 S. D. Silverstein, Phys. Rev. 130, 1703 (1963).
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Tasr, r. VI. Different contributions to (Cp/C) —1.

Fs
f, (1)

RPA

0.0489
0.0498
0.0451
0.0392
0.0332
0.0275

fo
RPA

—0.0157—0.0419—0.0712—0.1017—0.1326—0.1635

fp
static

—0.0127—0.0304—0.0482—0.0649—0.0808—0.0954

f (9)

static

0.0184
0.0351
0.0477
0.0576
0.0657
0.0726

fo, f."'
static

0.0058
0.0047—0.0005—0.0073—0.0151—0.0228

fey fp
static

0.0547
0.0545
0.0446
0.0319
0.0181
0.0047

f (1)

TF

0.0495
0.0518
0.0493
0.0460
0.0429
0.0396

f. fo
static'

0.0404
0.0322
0.0218
0.0133
0.0066
0.0015

f,(", fp
RPAb

0.0285
0.0061—0.0183—0.0404—0.0599—0.0770

Silverstein

0.029—0.039—0.080—0.125—0.179—0.232

a Including the renormalization factor z'.
b Including the renormalization factor z.

obtained from Eq. (57), and is

e(s 0) = 1+(),/Ir') (1—(s'/3) —(g4/15)
—(ir'/35) — . )i Isl(1 (112)

e(1,0) =1+-',) .

The first two terms in e(p, 0) give the TF approximation,

f &'&= —(X/4(s'+X)); ~'= sin'(8/2), (113)

while the first three terms give the same expressions as
Eq. (113) but with X replaced by )i/(1 —sX). Using Eq.
(113) for f gives

C,/C=1 —) —X() +-', ) ln() /(l. +))),
(114)

X,/X=1 —) —) 'in() /(1+) )).

(116a)

y
—'= xp/x+2 fp(8) sin8d8. (116b)

tion between specific heat and polarization propagator
which was derived from Eq. (A1) in his paper. Equation
(A1) is however not quite correct since the ti factors
should not be there.

%atabe" has recently made an analysis of the in-
huence of Coulomb correlations on metallic properties
using the Landau Fermi-liquid Theory. He approxi-
mates f by f,"i,

I
cf. Eqs. (104) and (105)$ neglecting

higher order terms and the s' factor. For e(p, 0), he takes
the limiting expression" for small r

e(ir, 0) = 1+(Xy/s'),

By comparing (f,&'&,TF) and (f, '"&,RPA) in Table VI
and (f "' TF) and f "& in Table VII, we see that the
TF expression J."'.'q. (114) gives a quite reosonrJble result

Eq. (114) can also be compared with the higli-
density results'"""

Cp/C= 1—) —)/2 ink,

Xp/X = 1—X—) '/2(ln) —1.534) .
(115)

Thus in the high-density limit the lowest order term in

f correctly reproduces the )i 1n), and ) terms. It may be
noted that while the HF expression for Cp/C diverges,
the HF expression for X,/X, namely, 1—)i, gives a
reasonable high-density description. Numerically the
expressions for Xp/X according to Eqs. (114) and (115)
are not too diferent at high densities. At r, = 1 they are,
respectively, 0.888 and 0.879.

Osaka" ha.s recently calculated C,/C in what is stated
to be the RPA. His result is identical" with that of Eq.
(114) when X is replaced by ) /(1 —) /3). He used a rela-

0.05

-0.05

"O. IO

-O. I 5

QUASIPARTICI E INTERACTION

TABLE VII. Diferent contributions to xp/x —Cp/C.

fe(l) f,(2) fe'
—0.1686—0.2459—0.2980—0.3367—0.3670—0.3915

—0.0149—0.0177—0.0070
0.0141
0.0431
0.0784

—0.1835—0.2636—0.3050—0.3226—0.3240-0.3131

—0.1355—0.1566—0.1494—0.1347—0.1176—0.1004

a Including the renormalization factor z2.

—0.1617—0.2305—0.2741—0.3049—0.3280—0.3460

—0.157—0.228—0.301—0.350—0.384—0.360

fe(», TF Silverstein
FIG. 11. Quasi-particle interaction. The quasi-particle inter-

action f is here defined by
%re'srgj (',', —),z y=... (kt, ')s„,g, )uw,

f„.=fp+(f, (')+f,('&)8, . f depends only on the angle 8 between
h and k'. In this figure, f times sin8 is plotted against 8. f, ('& is a
first-order term in 8', and fp and f, (') are of second order in 8'.
The 22 factor is not included in f.

5' M. Gell-Mann, Phys. Rev. 106, 369 (1957)."K.Sawada, Phys. Rev. 112, 328 (1958).
'7 V. Osaka, J. Phys. Soc. Japan 17, 547 {1962).

"V.P. Silin, Zh. Elrsperirn. i Teor. Fiz. 33, 495 (1957) LEnglish
transl. : Soviet Phys. —JETP 6, 387 (1958)j; S. Misawa, Progr.
Theoret. Phys. (Kyoto) 27, 840 (1962).
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SPECIFlC HEAT OF AN ELECTRON GAS same effect has been noted earlier in case of a dilute
I'ermi gas, " and is there supposed to disappear when
higher order terms are taken into account. To see if this
attraction might be strong enough to make a spherical
Fermi surface unstable, we considered the following
distortion,

1+8)k/ko) 1, 8(rj'. Sist(k, 8) = 1

1+8&k/k, &1, 8&~—q: his (k,8) =1
1&k/k, &1—-',~'8:

(its+(k, 8) =8is (k,8) = —1, 8 ~ 0, rI —+ 0.

The lowering in energy from f relative to the increase in

energy from I' then becomes ag'lnq where a, the co-
efFicient of the singular term in f, ranges between 0.015
and 0.038 when r, goes from 1 to 6. The attraction is
thus far too weak to be of any importance.

It should be pointed out that it is not clear if there
should be a s' factor in f when we use an approximation
Go instead of the self-consistent G. To see this we use the
results from Appendix 8 and write

0.90

OCC

E=Q t e(k)+ V,(((k)]+AL':,

FIG. 12. Specific heat of an electron gas. The specific heat of
an interacting electron gas divided by that of a non-interacting
or Sommerfeld electron gas (L'1+ (third column from the right in
Table VI)A 'l is plotted against r.

Since f,"i depends on e(((,0) and e(((,0) depends on f,
%atabe can write down an equation for y from a self-
consistency requirement:

~-'=1—Z—hs~ hi(X~/(1+l ~)). (11'?)

Watabe's expressions for Cs/C —1 and Xs/X —1 are the
same as those in Eq. (114) multiplied by y ' a,nd with li

replaced by )y. This is obvious from Eq. (116a).
Specifically he thus obtains X/Xs ——p. Watabe's result
for y ranges from 1.12 to 1.32 when r, goes from 1 to 5.
Our values for y as given by Eq. (116b) using fs, f.('i
and f,('i with the s' factor agree with Watabe's within
1'Po. Also Glick's result" for y at r, =2 agrees accurately
with Katabe's and ours. This is a quite remarkable
coincidence, which we cannot explain.

%e now make a few remarks on the analytical be-
havior of the different contributions to f, (8). f,"'(8)
varies between —0.25 and —0.25(l~/(1+X/2)). The slope
of f, ' (()&i8s zero at 8 and 8=rr. fs(8) and f. (8()s&start

out with finite values at 0=0 and go to infinity at 8=m
as ln(1+cos8). The coeScients of the ln term have
opposite signs and roughly the same magnitude. Ke
thus have a singular attraction between quasiparticles
of opposite momenta and opposite spin giving a tendency
towards a superconducting state. This effect does rot
come from the logarithmic singularity in e(((,0). The

gI:= (l Ly(k', G)+e*"
(2s.)'

XTr(V.((G+G 'G —1—lnGo 'G)ldk'(, l,
G (k, ) = ( —(k) —V„. (k))

—'; e(k) = (k'k'/2m) .

Suppose now that we approximate G by Go in hI&., which
since AP: is stationary might not be too serious. %e then
have

Since

I.=g e(k)+ 0 @(k'; G)dk'(, i.
(2') 4

8Gs(k)/Siss ——2s.i8(k —k') 8(e—s(k) —V,r((k)) (120)

we have that

E(k) = 8E/8ms= e(k)+M(kq e(k)+ Vgff(k)),

f(k,k') =RE(k)/its 2sss 'I(k, k');
e= c'= e(ks)+ V,(((ks) .

Suppose on the other hand that we start from

E(k) = e(k)+M(k, I;(k)),

(121)

(122)

"See A. A. Abrikosov eI gt. , (Ref. 2), p. 36.

where 3f is a functional of Gs. We then have for f
f(k,k') = 2sss 'I(k, k'); e= e = e(ks)+ Veff(kE) (123)

The equations for f, (121) and (123), may be compared
to Eq. (32). We thus get different results depending on
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which of several exact formulas we put the approxima-
tion Go in. It seems hard to resolve this ambiguity with-
out a numerical comparison with a calculation involving
some energy-dependent M in the denominator of G.

11. SUMMARY
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The main results from the formal analysis are
(1) A set of self-consistent equations for the one-
electron Green's function involving a screened potentia].
W (Sec. 3 and Appendix A). (2) A variational formula-
tion for each self-consistent equation (Appendix B).
(3) A specific approximation for the first-order equation.
This approximation has been named COHSEX and it
involves a "Coulomb hole" and a screened exchange
term (Sec. 4). (4) An expansion of the quasiparticle in-

teraction f(k,k ) of the Landau Fermi-liquid theory in
terms of the screened potential lv (Sec. 5). (5) An ex-

plicit veri6cation that for the first- and second-order
terms in IV, the quasiparticle energy E(k) and the
quasiparticle interaction f(k, k') give the same result for
the specific hea, t of an electron gas (Sec. 10).

The numerical results are primarily intended to
illustrate the convergence properties of the self-
consistent equations for the Green function. Without
actually solving the self-consistency problem, we have
been able to draw some important conclusions. These
derive mainly from calculations for the electron gas but
also partly from analysis of spectral data for atoms.
Qualitative conclusions regarding the electron gas are
expected to hold also for metals. The main conclusions
are: (1) For an electron outside a closed-shell structure,
COHSEX is expected to work well (Sec. 4). (2) The
magnitude of the quasiparticle energy E(k) for an elec-
tron gas is given quite well by the 6rst-order equation
(Sec. 8). To obtain a good representation of the k de-

pendence of E(k), we have to go to the second-order
equation (Sec. 10). (3) The expansion for the quasi-
particle interaction has much poorer convergence than
that for E(k). In particular it seems unreliable at the
alkali-metal densities (Sec. 10). (4) The k dependence of
E(k) is very small at the Fermi surface (Secs. 9 and 10).
(5) The quantitative results for f(k,k') and k dependence
of E(k) will probably be appreciably changed by carry-
ing through a self-consistent solution. This might best
be done by parametrizing the spectral function for the
Green function and using the variational formulation.
(6) The energy-dependence of the self-energy 3f(k, p) is
appreciable and cannot be neglected (Sec. 9). (7) The re-
sults largely con6rm the values of the correlation energy
for an electron gas obtained by Nozieres and Pines"
and by Gaskell. "In addition we give a discussion of the
possible errors involved (Sec. 8). (8) The electron gas
does not seem to become ferromagnetic for r, (7. For
higher r, the difference between the ferromagnetic and
paramagnetic energies is very sma]. l and no prediction
could be ma, de (Sec. 8),

APPENDIX A. EXPANSION OF THE SELF-ENERGY
M AND THE POLAMZATION PROPAGATOR

I' IN TERMS OF THE SCREENED
INTERACTION W

The results in this Appendix up to Eq. (A25) are well

known to the "Green's-function people". The present
derivation, however, utilizes only the Schrodinger equa-
tion. It constitutes a "low-brow" version of those parts
of the "high-brow" Green's-function theory that we need
here.

We write the Schrodinger representation of the
Hamiltonian for the system to be considered as

H=Hp+Hi,

H p Pt(x)h(——x)P(x)dx

1 (A1)+- Pt(x) P"(x')p(x,x')P(x') P(x)dxdx',
2

Hi = p(x) w(x, t)dx, p(x) =f'"(x)P(x),

where h and m are defined as in Eq. (2). We use the nota-
tion (1)=xi= (xi ti) = (ri pi ti). The potential w(x t) is to
be put equal to zero in the 6nal formulas. Let the
time-evolution operator for the state vectors in the
Schrodinger representation be V(t, t') when w&0, and

U(t, t') when w=—0. The Schrodinger equation then gives

V(t, t') = U(t, t') —i/h ti(t, t")H,(t")V(t",t')dt". (A2)
t'

P(x, t) = V(—Tp, t) tP(x) V(t, —Tp), (A4)

where To is large and positive. Schrodinger's equation
then gives

ih(Bg(x, t)/at) = V( Tp,t)—
XLP(x), Hp+Hi]V(t, —Tp) . (A5)

The functional derivative of U with respect to zv is

(8V(t, t')/8w(xp tp)) = —(i/h)
Xsgn(t —t') V(t, t2)p(xp) V(tp, t'), (A3)

if t& is inside the time interval determined by t and t,
otherwise 5V/8w is zero. We define the Heisenberg rep-
resentation of the field operator by
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By evaluating the commutator in Eq. (AS), we obtain

ih—h(x) —w(x, t) P(x, t) — v(x,x')Pt(x', t)P(x', t)dx'P(x, t) =0.
Bt

Using the facts that d8(t)/dt = 8(t) and ))t (x)))t t(x')+Pt(x')P(x) = 8(x,x'), we obtain from Eq. (A6)

(A6)

8
ih—h(x) —w(x, t) T(f(x,t)Pt(x', t'))— v(x, x")T(ft(x",t)P(x",t)P(x, t)P"(x',t'))dx" = ihb(x, x') h(t, t'), (A7)

Bt

where T is the Dyson time-ordering operator. The product of four field operators in Eq. (A7) can be generated by a
functional derivative. Using Eq. (A3) we have

z

(&/&w(3)) V(Tp, —Tp)T())t (1)lt t(2)) = V(T—p,
——Tp)T(gt(3)tb(3)tf (1)P"(2))

Ig

assuming t3 to be in the interval Tp —Tp. We define the one-particle Green s function by

i (1V
~
U( T(), T())—U(T(), —Tp) T($(1)Pt(2))

~
1V)

G(1,2) = ——
h (1V~ U( Tp, Tp)V(T—(), —Tp) ~1V)

(AS)

(A9)

where
~
1V) is some state of the IV-particle system with w—=0. The definition Eq. (A9) coincides with Eq. (1) when

w—=0, and
~
1V) is the ground state. From Eqs. (A7), (AS), and (A9) we have

where

8
~
i h —h(1)—V(1) G(1,2) —ih v(1+,3) G(1,2)d(3) = 8(1,2),

at, bw(3)

(1V
~
U( Tp, T())U(T—(),

—Tp)lyly(3)ly(3)
~
IV)

U(1)=w(1)+ v(1+,3) d(3),
(1V

i U(—Tp, Tp) V(Tp, —Tp)
i
1V)

1 —(xi t]+6) and v(1,2) =v(xi, xp)5(ti —tp) .

(A10)

(A11)

The second term in Eq. (A11) comes from the functional
derivative of the denominator in Eq. (A9). If we had
defined the Green's function without that denominator,
we would have had (1V~ U( Tp Tp)V(Tp Tp) ~1V)

&(5(1,2) instead of 5(1,2) in Eq. (A10). That, however,
vrould have spoiled a simple definition of the inverse of
the Green's function, Lcf. Eqs. (A14) and (A1S) below(.
We note that it is important to use v(1+,3) rather than
v(1,3) in Eq. (A10) in order to correctly reproduce the
four operators in Eq. (A7). In Eq. (A11), on the other
hand, we can replace v(1+,3) by v(1,3). From Eqs. (A9)
and (A11) we have

tor M by

M(1,3)G(3,2)d(3) = ()(1,2) . (A13)

G(1 3)G—'(3,2)d(3) = 8(1,2), (A14)

From the definition of the inverse Green's function

U(1) =w(1) —zh v(1,3)G(3,3+)d(3) .
follows the identity

A12
8G '(4 S)

G14 G52d4d5 . A15
8G(1,2)

bw(3)

8G '(42)
31(1,2) = i h v(1+,3)G—(1,4) d(3)d(4) . (A16)

Re(3)

(, ) (, )()() ( )
Tp is to be taken large enough so that all times of inter- tIw(3)
est in G(1,2) lie in the interval (—Tp Tp). Equation
(A10) can be derived from Schwinger's dynamical prin- Using Eqs. (A10), (A13), and (A1S) we can write

ciple, cf., e.g. the first or the second paper in Ref. 2. The
present derivation of the basic Ecl. (AIO) has however the
virtle of being very elementary and fairly short.

We define the self-energy operator or mass opera-



We de6ne the screened interaction 8' by

~V(2)
W(1,2) = v(1,3) d(3) .

bw(3)

we 6nally obtain the foHowing expressions for M and P:

(A17) M(1,2) = ib W(1+,3)G(1,4) I'(4,2; 3)d(3)d(4), (A23)

From Fqs. (A3) and (A11) it is easily seen that this
definition gives the same result as Eq. (9), remembering
that m has to be put equal to zero when the functional
derivative has been taken. Using Eqs. (A12), (A15)~ The functional derivatives of G and W can be written
and (A17) we can write W as

W(1,2) =v(1,2)+it& v(1,3)v(2,4)G(4,5)

8G '(5,6)
X G(6,4+)d(3)d(4) d(5) d(6) . (A18)

bw(3)

8G(1,2)
G(1,4)G(5,2) I'(4,5; 3)d(4) d(5), (A25)

8V(3)

oW(1,2) 6I'(4,5)
W(1,4) W(5,2) d(4) d(5) . (A26)

8 V(3) 8 V(3)

Using the identity

8 V(2)
d(2),

Rv(I) . 8w(1) ii V(2)

kV can be written

(A19)

Equation (A25) follows immediately from Eqs. (A15)
and (A22). To prove Eq. (A26) we write W in the form
W=v(1 Pv) ' a—nd use an identity similar to that of
Eq. (A15). From Fqs. (AZZ) to (AZ6) ioe can now gener
ate series expansions in W.

The contribution to I' of zero order in lV is

I""(1,2; 3)= 8(1,2)5(1,3) . (A27)

W(I 2) v(] 2)+ IIr (1 3)P(3 4)v(4 2)d(3)d(4) (A20) The lowest order contributions to M and P are thus

8G '(5,6)
P(3,4) =i h G(4,5)G(6,4+) d(5) d(6) . (A21)

8 V(3)

Introducing the vertex function I',

Mi" (1,2) = iAG(1, 2)W(1+,2),
P"'(1,2) = —iAG(1, 2+)G(2,1). (A28)

To obtain the first-order contribution to I' from Eq.
(A22) it is sufficient to take the functional derivative
only of the explicit G in M('&,

I'(1,2 3)= —(6G '(1,2)/6V(3))
= 8(1,2) 8(1,3)+(RV(1,2)t'8 V(3)),

I""(1,2; 3) =iAG(1,3)G(3,2) W(1+,2) . (A29)

(A22) This gives for M and P

M "i(1,2) = (i') ' W(1+,3)G(1,4)G(4,3)G(3,2)W(4+, 2)d(3)d(4),
4

Pi'i(1, 2) = —(ih)' G(2 3)G(4 2+)W(3+,4)G(3,1)G(1,4)d(3)d(4) .

(A30)

The second-order contribution to I' arises both from M(" and M('). From M&" we have

I""'(1,2; 3)= ihW(1+, 2) G(1,4)G(5,2)I'"i(4,5; 3)d(4)d(5)

and from M&')

+iAG(1,2) W(1+,4)W(5, 2)(—ih)(G(5, 4)G(4,3)G(3,5)++G(5,3)G(3,4)G(4,5+))d(4)d(5), (A31)

I'('&"(1,2) 3)= (ih)' W(1+,4)W(5+,2)(G(1,3)G(3)5)G(5,4)G(4, 2)

+G(1,5)G(5,3)G(3,4)G(4,2)+G(1,5)G(5,4)G(4,3)G(3,2))d(4)d(5) . (A32)
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The third-order contribution to I' contains 49 terms, 6
from G and 6 from W in M&", 3 from the G's and 4 from
the Ws in M "& and 30 from the G's in 3f"'.

We can obviously continue in this way and generate
as many terms as we wish. We can also generate infinite
partial summations in 8'. Thus if we, e.g. , decide to
approximate M by M(') in Eq. (A22) and to consider
only the functional derivative of the explicit G, we ob-
tain the following integral equation for r,

I'(1 2 3)= b(1,2)b(1,3)+ih W(1+,2)

&(G(1,4)G(5,2) I'(4,5; 3)d(4) d(5) . (A33)

Since Eq. (83) is satisiied for the true G, AJ' is sta-
tionary. Klein expressed C as an infinite sum of "skele-
ton" diagrams ordered after increasing powers of the
bare interaction e. If we replace this C by some truncated
expression C', we obtain truncated functionals AE' and
M' from Eqs. (81) and (82). The functional AP.' is
stationary if and only if G is a self-consistent solution
of Eq. (83), M replaced by M'.

We will now develop expressions for C, that give an
M(k; G) expanded in the screened potentia/ W. Equation
(83) then gives the self-consistent equations for G that
we derived in Appendix A and discussed in Sec. 3. We
start by writing down the expectation va1ue of thepoten-
tial energy, Eq. (7):

(84)

M(k) =
(2zr) 4

e '"~'W(k')G(k —k') I'(k, k')dk', (85)

I':q (333) .generates for P the ladder bubble -sum given in
";q. (61). When we insert this I' into Eq. (A23) we ob- (V)= ——- e"M(k) G(k) dk.

tain for M only one diagram in each order. Thus we in- 2 (2zr)'
elude the first but not the second and the third of the
third-order diagrams of Fig. 1. This doesnot seem to be a The Fourier transforms of M and P, Eqs. (A23) and
systematic improvement on M. If at all an infinite sum- (A24), «e
mation should be made, a wider class of diagrams should
be included. This conclusion is supported also by our
results in Appendix B.

APPENDIX B. VARIATIONAL PRINCIPLES

Ke start by treating the case of an electron gas. The
results are then generalized to the case of an arbitrary
system. Klein" has proved that when we express the
energy difference between the interacting and noninter-
acting ground states as a certain functional hE(G) of the
one-particle Green s function G, this functional is sta-
tionary with respect to small changes of G relative to
the true G. We write AE as"

AE(G) =i {4(k'; G)
(2zr)'

+e'"~ Tr[Gp '(k')G(k') —1

—lnGp
—'(k')G(k') j)dk'(, ), (81)

where the functional C has the property

N'(k'; G)/bG(k)dk'(, )= —M(k G)e"~. (82)

Here 0 is the volume of the system. The variable k in-
cludes spin, momentum and energy, while in k~, ~ spin
is left out. Tr stands for spin summation. The func-
tional M(k; G) becomes the true M(k) when G equals
the true G. From Eqs. (81) and (82) we see that the de-
mand that 86F(G)jbG(k) be zero for all k gives

—M(k G)+G '(k) —G '(k)=0

(p —e(k) —M(k; G))G(k) =- 1.

eo A K.lein, Phys. Rev. 121, 950 (1961),
"See P. Nozieres, (Ref. 1), pp. 221-229.

P(k') = — e" G(k)G(k —k') I'(k k')dk
(2zr) 4 .

where the vertex function I'(1,2; 3) has been regarded
as a function of x~—x2 and x3—x~ in taking the Fourier
transform. We note that the P(k) of Eq. (86) has to be
integrated over spin to give the P(k) of Eq. (24). Com-
paring Eqs. (84), (85), and (86) we see that

i 0
(V)=-

2 (27I.)4
P(k') W(k') dk', (87)

where for P(k') we have used a slightly modified
expression,

We have to choose 6' smaller than 3 since the limit
6' —+ 0 is taken before 6 —+ 0 in Eq. (84).This modifica-
tion of P(k) only influences its asymptotic behavior at
large e. It corresponds to redefining the explicit G's in
P as G"'"(k)=e"~ (G)kor G"'"(1,2)=G(1,2+). We can
consider the G's appearing in F and 8" as so modified
without changing Eq. (87). The expression for. (V) can
be written

i 0 '
v(k) TrP(k)

2 (2zr)' 1—v(k) TrP(k)
(8())

Equation (89) gives a modification of the usual rela-

P(k') =-
(2zr)'

XG(k)G(k —k') I'(k, k')dk, 6)6'. (88)
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tion" between (V) and the inverse dielectric function,
the in6nite constant being taken care of by the redefini-
tion of the Green function.

The energy shift t),E is obtained from (U) by the well-
known expression

'dP
aE= —(V),

0

(810)

+W(k) P TrP( )(k), (812)
m=o m+1

where W is defined from P=Po" P' ). To verify this we
form the functional derivative of Eq. (812),

bc ("'(k' G) 1 o 1
dk'(. )

———
bG(k) 2 =o m+1

bP - (k') bW(k')
X W(k') —mP ("'(k') dk'. (813)

bG(k) ()G(k)

where all v's in (V) are replaced Xv. If we neglect the X

dependence of P we have, from Eqs. (89) and (810),
i 0

DE= —— ln(1 —r)(k) TrP(k))dk(, ). (811)
2 (2')4

Since the imaginary part of the dielectric function al-
ways has the same sign we have no trouble with the
branches of the logarithm. The modi6cation of I', Eq.
(88), occurs only when Pi) is small compa. red to 1 and
thus has no inhuence in this question. By taking the
functional derivative of the 4 corresponding to Eq.
(811) we can find out what more terms are needed in C

to make it satisfy Eq. (82). The expressiort for C which

gir)es 3f up to (rt+1)st order in W is

1 n

C (")(k;G) = —— 1nL1 —v(k) Q TrP(")(k)]
2 m=o

The functional derivatives of the mR"s in P( ' cancel
the last term in Eq. (813), while the functional deriva-
tives of the 2(m+1) explicit G's in P( ) give —M( +".
A look at the details shows that WSP ( )/bG would not
have given 3I(" if we had had normal G's instead of
modi6ed G's in I'"'. We have actually checked Eq.
(812) only for v= 0, 1, and 2, but from the structure of
the theory we conjecture that Eq. (812) is valid for
arbitrary e.

There are a few comments that can be made in con-
nection with the important Eq. (812). We note that
there is a definite coupling between, P(" and cV("+".We
can thus not expand I' to say first order and obtain an
equation with M also of first order. It is further rot
possible to sumjust the ladder bubbles of Eg. (61).This is
clear if we look at E(2), Fig. 2, where there is a mutual
cancellation between the TV derivatives of the fust three
diagrams. Each of these gives one third the sum of the
6rst three diagrams in M(3', Fig. 1. The last three dia-
grams in E(2) on the other hand cancel their 8' deriva-
tives individually and are in one-to-one correspondence
with the last three diagrams of M(3).

So far we only know that the C of Eq. (812) obeys Eq.
(82). We have also to check that Eq. (81) is satisfMd.
It is enough to prove that X(dhE//dX) = (V) since
DE=0 for X=0. Comparing Eqs. (812), (89), and (81)
we see that X(d/dX) applied on the explicit 'Ai) of the
logarithm in Eq. (812) gives (V). The remaining X's

appear in connection with S' and G. It is easy to see by
comparing with Eq. (813) and the discussion follow-

ing that equation that these terms vanish.
The generalization of the electron-gas results to a non-

uniform system is fairly simple. In the general case we
have to take account also of the V(x) term of Eq. (7),
which vanishes identically for an electron gas in a uni-
form positive background. Glancing at Eqs. (7), (81),
and (812) we write

1
AE(G) = —— dxdx' — e"~e'"~G(x,x; e)G(x', x'; e')v(x, x')

2 2' 2'
do ( 'S—Tr~ ln(1 —P(o)v)+W(c)g —P(")(e) +i —e"~Tr(Go '(o)G(e) —1—lnGo '(e)G(o)). (814)
2~ n+1 2n

Here the quantities inside the trace are considered as
matrices labelled by (x,x') where x includes position and
spin. The unperturbed state is taken with full inter-
action between electrons and nuclei. On account of the
cyclical property of a trace we can take derivatives of
the matrices as if they were scalars. The proof that Eq.
(814) gives the correct energy shift and the correct
equation for G follows similar lines as that for the elec-
tron gas.

Equation (814) is however rather inconvenient since
Go is very different from G as soon as the nuclear charge
Z is larger than, say, 2. It is easy to realize that all

occupied functions in Go will then be closely the same as
those of an ion with charge Z. Thus, e.g., in case of a
metal, what must become conduction electrons in G will
in Go look like tightly bound core electrons. To improve
the situation we split the Hamiltonian into an unper-
turbed part

&o—— Pt(x)k(x)P(x) dx

+ )P" (x) V.ii(x, x'))P (x')dxdx', (815)
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and a perturbation

1
Ht ——) — hatt(x)Pt(x')v(x,

x')lt (x')lt (x)dxdx'
2

lpt(X) V «(X,X )lt'($ )dxdx

+-', p'z„z„.(R„,R„) . (816)

V,ff can be chosen quite arbitrary but we may think of a
Hartree potential plus Coulomb-hole and screened-ex-
change potentials. The AE(G) corresponding to Ht of
Eq. (16) is given by Eq. (814) plus two additional terms,

AE(G) =Eq. (814)+i —e"~ Tr(V, ffG(e))
2m.

+-', P'z„z v(R. ,R„). (817)

The Gp of Eq. (814) now of course corresponds to Eq.
(815). It is easily checked that Eq. (817) gives the
correct energy shift and equation for G.

The unperturbed energy corresponding to Eq. (815)
is simply the sum of the E smallest eigenvalues of the
one-electron operator h+V, «. While this generally is
not a good approximation of the true energy, it is on the
other hand not very far off. The importance of the split
into Hp+Ht ties however in the fact that Gp has now be

come quite realistic. Speci6cally, if we approximate G by
Gp in Eq. (817) we find that the V,«G term cancels
against the same term in Eo and that the last integral
in Eq. (814) vanishes. The GGv term is the Coulomb

energy and the ln(1 —Ev) term gives in the lowest ap-
proximation the HF exchange energy. If we want, we
can gradually improve U, fg to make Go more closely
like G. This is, however, only possible up to a certain
point since V,~g is energy-independent.
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Cyclotron Resonance in Cadmium
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Extensive observations at 1.5'K and both 23.8 Gc/sec and '74.2 Gc/sec of cyclotron-resonance phenomena
in cadmium are reported. One group of experiments is done with the steady applied Geld parallel to the
sample plane (Azbel'-Kaner geometry). A large number of signals are observed, only some of which are

sufficiently reliable to identify with cyclotron masses. All the masses are plotted versus the crystallographic
orientation of the steady applied Geld in three of the principal planes. The reliable, well resolved signals are
identified and associated tentatively with orbits. Most of these orbits are consistent with the current model
of the Fermi surface of cadmium, but some of them require small modifications of it. These orbits are either
on the "pillow" or on the large surface associated with holes in the second band. The masses observed with
the magnetic field parallel to the sample plane are all too large to identify plausibly with the smaller pieces of
the Fermi surface such as the "butterflies" and "cigars". It is suggested that the resonances associated
with the charge carriers of smaller mass are lost in the signals from harmonics of those of larger mass. In
another group of experiments, data have been obtained with the steady applied Geld normal to the sample
surface. Here signals are obtained at classical cyclotron-resonance Gelds equal to those observed in the
other geometry although the signals are in the anomalous-skin-effect regime and the much larger effects
associated with Doppler-shifted cyclotron resonance are at magnetic fields too high to be observed. A theoreti-
cal treatment and a discussion of the physics of these effects is given. In this geometry, a cyclotron mass of
approximately 0.22 mo is also observed. The related orbit is only tentatively identified, but it is definitely
thought to involve one of the smaller pieces of the Fermi surface.

I. INTRODUCTIOÃ

~ XTENSIVE observations of cyclotron resonance
~ in cadmium obtained by plotting the variation of

surface absorption coefFicient as a function of steady
applied magnetic field are presented in this paper and
interpreted in terms of current theoretical under-
standing of the Fermi surface. The experimental results
given here extend previously reported preliminary
studies on this metal. ' Data were obtained at 1.5'K

' J. K. Gait, F. R. Merritt, and P. H. Schmidt, Phys. Rev.
Letters 6, 458 (1961).

at frequencies near both 23.8 Gc/sec and 74.2 Gc/sec.
Most of the data were obtained at various crystallo-
graphic orientations with the steady applied magnetic
field parallel to the plane sample surface, i.e., in the
Azbel'-Kaner geometry. ' From these data, plots of
cyclotron masses as a function of crystallographic
orientation were made. In addition, data have been
obtained for selected crystallographic orientations with
the steady applied field normal to the plane sample

' M. Ya Azbel' and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 30,
811 (1956) LEnglish transl. :Soviet Phys. —JETP 3, 772 (1956)g;
J.Phys. Chem. Solids 6, 113 (1958).


