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Finite Linewidths and "Forbidfien" Three-Phonon Interactions
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We have used thermodynamic perturbation theory to study the effect of the 6nite energy spread of phonon
excitations upon the possibility of three-phonon interactions which could not otherwise conserve energy.
It is shown that a proper treatment of this eBect is equivalent to a consideration of higher order processes
in which the interacting phonons occur in virtual intermediate states, but that such processes cannot in
general be adequately taken into account simply by assigning a lifetime to one or more of the interacting
phonons. It is also shown that the higher order terms of conventional perturbation theory should be modified,
whether or not the three-phonon process is energetically allowed; if it is, these modified terms should be
substituted for the three-phonon contribution rather than added to it. We give a qualitative discussion of
applications to liquid helium II and to dielectric solids.

1. INTRODUCTION

'HE problem of the lifetime of a long-wavelength
phonon due to its interaction with other phonons

is of great importance in the theory of insulating solids
and also in the phenomenological theory of liquid
helium II. Provided the medium is sufficiently pure,
this lifetime will have a dominant eRect upon sound
absorption, on neutron-scattering linewidths —which,
indeed, measure it directly —and on transport proper-
ties. Normally, the lifetime will be primarily due to
processes involving three phonons, that is, spontaneous
decay processes, A~ B+C, or "collision" processes,
A+B ~ C.

It has been noted before' that since the probability for
spontaneous-decay processes varies as the inverse
fourth power of the wavelength, collision processes
dominate the lifetime in the long-wavelength limit at
finite temperatures. However, if there is only a single
dispersion curve, and if it is convex, that is, if the
phonon velocity decreases with increasing wavenumber—as is the case for helium II—it is impossible to
conserve both energy and momentum in collision
processes. This is also true for the case of longitudinal
phonons in an isotropic solid with a convex dispersion
curve. Such processes have, therefore, usually been
neglected and it has been assumed that in solids the
dominant processes are interactions with phonons from
special regions of phase space where two-phonon
branches nearly coincide and, in liquid helium II,
"indirect" four-phonon interactions proceeding via a
virtual intermediate state. ' 4

However, a number of authors' ~ have recently

"' Present address: Department of Physics, University of
Illinois, Urbana, Illinois.

'R. K. Peierls, Qguntlm Theory of Solids (Oxford University
Press, New York, 1955).' C. Herring, Phys. Rev. 95, 954 (1954).

3L. D. Landau and I. M. Khalatnikov, Zh. Experim. i Teor.
Fiz. 19, 637 (1949) LEnglish transl. : Codeeted PaPers of I. D.
tundug (Gordon and Breach Publishers Inc. , New York, 1965),
p. 494).

e I. M. Khalatnikov, Zh. Experim. i Teor. Fiz. 44, 769 (1963)
[English transL: Soviet Phys. —JETP 17, 519 (1963)j.

'K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 26, 793, 795
(1961);K. Kawasaki and H. Mori, ibid. 28, 784 (1962).

r '= const&(ui
BRg

ks' arccot(tosors)dk2, (1.1)
19GOg

where co1 is the energy of A, k2 the wave number of 8,
and e2 the number of phonons B. We note that in the
normal treatment arccotcu~p72 would be replaced by
7r8(toss) where 8(x) is the step function $8(x) = 1,
x)0; 8(x) =0, x(0j.The conclusion is that the process
A+B —+ C is, indeed, allowed with a "weight factor"
arccotM2pT2.

Although suggestive, this approach seems to be
inadequate for several reasons: (i) the intuitive idea of
the "time for which 8 has been present" seems to be
hard to interpret on the quantum level, since 8 is one
of a set of indistinguishable phonons, whose number
does not change in time because the system is supposed
to be in thermal equilibrium; (ii) intuitively, one feels
that the "linewidth" effect must really be equivalent
to some higher order eRects involving 8, but how this

e T. O. Woodruff, Phys. Rev. 127, 682 (1962).' K. Dransfeld, Phys. Rev. 127, 17 (1962).' On close examination, the mechanisms proposed by Dransfeld
(Ref. 7) and Woodruff (Ref. 6) appear to be equivalent to ordinary
phonon interaction theory for three-phonon processes (Dransfeld
explicitly assumes the absence of dispersion).' S. Simons, Proc. Phys. Soc. (I.ondon) 82, 401 (1963).

' We use throughout units in which 8 =1.

proposed, in connection with the absorption of sound in
helium II, that if the energy uncertainty of the phonons
8 and C is of the same order as the "energy deficit"
for the process A+B —+ C, then this process can take
place and will dominate the lifetime of A. ' The most
detailed attempt to justify this hypothesis has been
made by Simons. ' Using ordinary second-order time-
dependent perturbation theory, Simons argues that the
expression for the probability that the process A+B —+

C takes place after time I, which is normally taken to
be proportional to singlet/to where to is the energy
deficit, " should be averaged over t from 0 to ~ after
having been weighted with a factor exp( —t/rs) where rs
is the lifetime of 8, since this factor gives the probabil-
ity that 8 has been present for a time t. Integrating
over to from some threshold value cosa(ks) to infinity,
Simons then gets for the lifetime v of A
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equivalence comes about is not clear and it is, for
instance, dificult to see whether the "linewidth"
effect replaces four- or five-phonon eGects, is added to
them, or is connected in an even more complicated way;
(iii) it is not clear whether the assumption of an
exponential decay of B—which is inexact at very short
times —is adequate for this problem; and (iv) it is
clearly inconsistent to take account of the finite lifetime
of B, but not of the collision product C.

In the present paper we develop a method of taking
account of the finite spread in energy of the colliding
phonons which avoids most of the above difficulties.

Basically„our method consists of using thermodynamic
perturbation theory to derive the contribution to the
self-energy of A from three-phonon processes. However,
by using, instead of free-phonon propagators for B and
C, the (unknown) exact propagators, some higher order
phonon interactions are taken into account. By a
method of successive approximations we elucidate the
relation of our approach and the conventional perturba-
tion-theory approach'" to higher order processes. It
turns out that Simons' formula is, generally speaking,
incorrect, since the assumption of an exponential
decay —or, equivalently, of a I orentzian line-shape —is
unjustified. Under certain circumstances, the generaliza-
tion of Simons' result obtained by taking account of the
lifetime of C as well as that of 8 gives the correct answer.

As a by-product we obtain in a natural way a correc-
tion, previously obtained by Carruthers, " to higher
order terms of the conventional perturbation series;
this correction eliminates the unphysical divergence of
these terms as the intermediate energy denominator
tends to zero. We show that if we consider these terms
at all, they should be substituted for the mediating
three-phonon processes rather than added to it, and
that usually, if the mediating three-phonon process is
energetically allowed, the correction obtained in this
way is negligible.

In the next section we discuss the phonon spectral
function, and in Sec. 3 we derive our basic expression for
the inverse lifetime of a phonon in terms of the exact
spectral functions —or, equivalently, the exact propaga-
tors—of the other phonons involved in the three-phonon
processes. In Sec. 4 we discuss various approximations
for the exact propagators and show the relation of our
method to conventional perturbation theory. In Sec. 5
we discuss to what extent Simons' simplified approach'
is justihed. Applications are discussed in Sec. 6, while
in Appendix A we give a justification of the Haniiltonian
used in the present paper.

2. THE SPECTRAL FUNCTION

We shall discuss systems described by the following
model Hamiltonian:

II=IIp+ V, (2.1)
1r. Pomeranchuk, J. Phys. USSR 4, 259 (1941};6, 237 (1942);

Phys. Rev. 60, 820 (1942)."P.Carruthers, Phys. Rev. 125, 123 (1962); 126, 1448 (1962).

where Ho is the diagonalized second-quantized operator

ao——Zk ~(k)av'ak,

while V is given by the equation

(2 2)

V~~ ~"——(kk'k")'"4+~+~" Xconst. . (2 4)

The quantity which plays an important part in our
considerations is the so-called spectral function, which
is essentially the Fourier transform of the expectation
value of the commutator Lao(t), apt(0) j, that is,"

~.(~) = il:Go'(~) —Go'(~)3,
with

(2.5)

dt(a, (t)a,t (0))e'"' (2.6a)

G,~(pp) = —i dt(a, t(0)a, (t))e'" (2.6b)

where the angle brackets ( ) indicate an average
over a canonical ensemble,

( )= (Tr e e~)/(Tre ~~), P=1/knT (2.7)

with kB Boltzmann's constant and T the absolute
temperature.

We note for future use the following relations"

where

A o (Qr) dM =27I,

G,~(or) =ee"G,~(&p),

G,~ (or) = —
iLrs (o))+1',(cp),

n(o)) = Lee"—1j '.

(2.8)

(2 9)

(2.10)

(2.11)

The probability that in the system described by the
Hamiltonian (2.1) a phonon of wave vector tf is created
at time t= 0 and absorbed at time t is proportional to

d(d 2

l(a, (t)apt(0))l'= —
l e(or)+1)Ao(to)e '~'

2'
(2.12)

and we thus see that A o(or) is related to the probability
of decay of a phonon of wave vector q which is added

"L.P. Kadanoff and G. Baym, Quantum Statistical Mechmucs
(W. A. Benjamin, Inc. , New York, 1962); onr notation differs
slightly from theirs (see, for instance, Ref. 14).

V= (1/'U)(1g3!)Q, , , V„.,-(a.+a,t)
X(ak+a ~')(a~-+a ~'). (2.3)

We discuss the use of this Hamiltonian both for crystals
and for liquid helium in Appendix A; 'U is the volume
occupied by the system, the a&~ and a& are, respectively,
creation and annihilation operators for bosons (phonons)
with momentum k, the curve a&(k) (for notational
convenience we shall often write cv(k)=e~) is assumed
to be weakly convex, and we assume that the Vkk. k ~

satisfy the rela, tion (See Appendix A)
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to the system in thermal equilibrium. Moreover, if
A~(cu) is of such a shape (vide infra) that it is non-
vanishing only over a range of cv values which is small
compared to k&T, we can put the slowly varying
factor n(~)+1 equal to its value at the peak of A a(~);
the required probability is then simply proportional to
the square of the Fourier transform of A ~(a&).

It is convenient to express A «(ur) in terms of two rea, l
functions of ~, A, (~) and I'~(a&) with I'~(&a) positive,
as follows

where e~ is the harmonic-approximation phonon energy.
The quantities A~(co) and I'a(ar) are related through
the dispersion relation (P indicates a principal-value
integral)"

A, (o))=—P
I', ((o')dko'

(2.14)

We shall in the next section discuss how F~(~) and
hz(&u) can be evaluated.

The special case of noninteracting phonons is reached
by letting I'~(cv) tend to zero for all values of ~, and we
then get from (2.13)

A g (GD) = 27r8 (M f q) . (2.15)

On the other hand, sometimes I', (&o) niay tend. to
zero in the region where co —e,—A~(o~) is small, even
though it remains finite in some other region, say,
above a "threshold" &oe. From (2.15) it then follows
that 6 a (a&) remains finite and varies with cg. In the region
of the "peak" where u&

—e~—D, (~) 0, A~(&u) will be
of the form

A, (o)) = &(o' —ee),
1—(rid, /Bs))

where 6q is defined by

e~ " A—a(ea)—=o;

(2.16a)

since in this case flAq/Bce is negative Lcf. (2.14)) we
find

A, ((o)= b(a) —e,); (2.16b)
I+ IaA, /a~I

that is, we find a reduction of the "strength" of the
singularity —necessary in order that the sum rule (2.8)
be satisfied. In Sec. 4 we shall discuss a situation which
closely resembles this case.

The physical interpretation of Eq. (2.16) is the
following one: The "bare-particle" excitation states
a~ Co, where Co is any eigenstate of the Hamiltonian,
are themselves not eigenstates of the Hamiltonian,
while the "dressed-particle" excitation states are
eigenstates. If we express the "bare-particle" states in
terms of the "dressed-particle" states, they will contain
an admixture of states with arbitrary energies, including

1/r =2I', (e,), (2.18)

where e~ is the position of the peak of A ~(cu).
We must note that the constant c in (2.17) is not

necessarily unity. This can be interpreted as follows:
the "bare-particle" state a~~CO contains, apart from a
single "dressed-particle" state (the amplitude of which
is less than unity), states involving more than one
"dressed particle. " The single "dressed-particle" state
will decay, corresponding to Eq. (2.17). We see thus
that (2.17) will hold for values of f larger than the
time necessary for the states with more than one
"dressed particle" to be "drained off."

Conversely, we see that for any process (such as the
absorption of sound) characterized by a "lifetime, "
we need know only I'~(e~) and it is reasonable to
approximate A, (a&) by a Lorentzian curve. Moreover,
although, strictly speaking, a departure from the
Lorentzian form should show up in neutron-scattering
experiments, which measure A~(&o) directly, the ac-
curacy of the experiment is unlikely to be adequate for
this purpose for some time to come (see also Sec. 6) so
that for a comparison between theory and experiment
it is usually the "half-width" of the peak, given by
F~(e,), which is of interest. "

If we need to know the behavior of A a(~) far from
the peak (compare Sec. 4), it may be a very bad
approximation to replace P ~ (s&) by its value at the peak,
independent of whether we use a calculated value or one
deduced from sound-absorption or neutron-scattering
experiments.

3 CALCULATION OF I'e(ro)

It has been shown in the literature" "that F~(&o) and
Aa(~) can be expressed in terms of the so-called irreduc-

'4 Note that in contradistinction to many authors (e.g. , Ref. 13)
we use Fz(~a) for the half-width and not for the full width.

"A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Method of QNuetlm Field Theory irl Statistical Physics, translated
by R. A. Silverman (Prentice-Hall, inc. , Englewood Cli6s, New
Jersey, 1.963).

those states for which co is larger than the threshold
energy cue. This is indicated by the finite values of I'~(~)
and hence of A a(&u) for u&) ~e. The threshold represents
the minimum energy for which spontaneous decay is
energetically possible (eide t'infra) At f.inite temperatures
I' also rises helot the peak, as there exists a maximum
energy below which three-phonon collision processes
are possible.

We must emphasize that Eq. (2.13) does not neces-
sarily mean that A ~(~) has a Lorentzian form. This is
only the case if h, (&o) = const—=A and I', (~)= const—=F.
In general, this will not be true. Sometimes, however,
h~(&u) and P~(a&) may be varying slowly in the imme-
diate neighborhood of the peak. In that case we find
from (2.12) that —at least for sufficiently large t

a, (f)a,'(0)) I'= ce-'&, (2.17)
with
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Approximating the second term in a similar way, we
have

S, Z„

d3
I'«(co)=«r

I Vg, ««gI'Le(«g «)
—N(«g)1

(2~)'

Comparing (3.7) with (3.5) we see that the eBect of
the "broadening" of the other phonons is to replace
the 6 function by a convolution of spectral functions.
This result can be interpreted physically as follows:
A «(a&')/2~ can be regarded as the probability that the
phonon of wavevector k has an energy ~'. In fact, in
the special case where Aq «(o&' —co) =27r5(«q «

—&u'+~),
we find from (3.7) that the contribution to I'«(e«)
from the decay q+(k —q) —+ k is simply proportional
to A~(««+«~ «), that is, to the probability that the
phonon which can conserve wavevector with q and
k—q can also conserve energy with them. One easily
verifies that in the limit when both interacting phonons
can be regarded as "free," so that we can use (2.15),
(3.7) reduces to (3.5) as it should.

We now have to add to expression (3.7) the contribu-
tion from the spontaneous decay process (see Fig. 3).
The calculations proceed as before and to (3.7) we must
add the contribution

I'«(o&) = vr «~ «I'.L~-(~~)+~~(««k)+ 13
(27r)'

A~(a)')2 «g((o —cu') . (3.8)
4m'

4. APPROXIMATIOÃ'S FOR THE
SPECTRAL FUNCTIONS

Equations (3.7) and (3.8) still involve the unknown
spectral functions A~, A~ ~, and A~ ~. If we want to
use these expressions or want to compare them with
expressions obtained by conventional perturbation
theory, we must approximate these spectral functions
in some way. In this section we shall examine two cases
in which we may make plausible approximations to
them, in order to illuminate the relation between our
approach and the results of ordinary perturbation
theory. The first case is that of a single, uniformly
convex dispersion curve; in this case, ordinary perturba-
tion theory gives a zero result for the linewidth in

Expression (3.8) also reduces to that obtained from
ordinary second-order perturbation theory if we can
use (2.15). Expressions (3.7) and (3.8) together give
us, in the approximation used, the complete expression
for I' «(ce). We have neglected (i) vertex renormalization,
(ii) three-phon on annihilation processes, and (iii)
scattering by impurities or at the boundaries.

(-L,Zx-v

Fio. 3. Contribution from spontaneous decay.

lowest order t'cf. Eq. (3.5)j while the next-order result
diverges in the limit of vanishing dispersion. We shall
see that, if reasonable approximations are made for
one or more of the A~, our method gives a result which
agrees with the ordinary higher order formula for strong
dispersion, but remains finite as the dispersion vanishes.
Our second case is a situation where the "three-phonon"
process is energetically allowed, so that the ordinary
lowest order result for the linewidth is finite; in this
case we 6nd that our method gives a result essentially
identical to the normal one.

Let us then consider Eq. (3.7); we shall assume,
unless otherwise stated, that we are interested in the
value of I'«(~) for au= ««. Moreover, we shall generally
neglect the difference between ri(~~) and n («~).

The lowest order approximation to I'«(co) is obviously
the use of (2.15) for the spectral functions. We saw in
the preceding section that we then get the usual second-
order perturbation-theory result; in particular Fq=o,
if the dispersion is normal. A better approximation is
obviously obtained by giving Az(&o')Az «(M' —~) the
value calculated by second-order perturbation theory.
The resulting expression can easily be written down;
it involves four "6ve-phonon" terms, each of which
can be seen to correspond (in a sense to be discussed
below) to a possible pair of processes responsible for
the lifetime of k and of k—q. The expressions are rather
cumbrous. As we want to compare our results with
those of ordinary perturbation theory which usually
involve four-phonon rather than 6ve-phonon processes,
we shall not give the results explicitly, but shall make
a further approximation, as follows: Let us consider
for illustration the case where the dispersion curve is
convex (0—=co+«~ «

—«q)0). In this case, in second-
order perturbation theory A&(~') has a pole at
(I'&(a&') —+ 0 there); above «z, I'&(a&') rises sharply due
to spontaneous decay processes until co'=gk', after
which it stays virtually constant. At finite temperatures,
F~ also rises below ~~ due to collision processes. Con-
sidering the convolution of the spectral functions
J'(dec'/4'')Ak(cv')Aq «(cu' —~) and setting co= ««, we

see, since by hypothesis ««+ «q «) ~q, that at the value
of a&' —&u (viz. , ~q «) for which Aq «has a pole, Aq is in
its "spontaneous-decay range, " while . at the value
where Aq has a pole («~) Aq « is in its "collision range. "
If we assume fairly weak interactions, by far the
greatest contribution to the convolution integral will
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four-phonon processes; however, it is clear that the
general conclusion stated in this paragraph is independ-
ent of this choice through the comparison with, for
instance, "five-phonon" expressions will be much more
cumbrous.

We now consider our second case. A possible advan-
tage of the procedure outlined in Sec. 3 is that it is
applicable whether or not the mediating three-phonon
process is energetically allowed —even though hitherto
we have assumed that it is not. In our derivations we
nowhere made any assumptions about the value of
Q(=co—e~+ e~ s) so that our equations are valid also in
the case when Q can vanish. I.et us, moreover, consider
for illustration the case in which one of the phonons
involved, say (k—q), is well defined in energy compared
to k, that is, I'& s((I"& everywhere in the region of
their respective peaks. In this case, it is again valid to
replace the convolution integral by

(1j2rr)LAg(re+ eg s)+&g, (es &u) j—,

where, in fact, the second term will be small compared
to the erst; note that in the limit I"i, q((F& this expres-
sion agrees with (5.1) below. Thus, the expansion in
terms of higher order processes remains valid and (4.5)
holds, in agreement with Carruther's result. "

One might intuitively think that the four-phonon
process of Fig. 4 is the one corresponding to equation
(4.5). This is, however, misleading in that (4.5) is not
an additional contribution, to be added to the usual
three-phonon process, but part of a better approxima-
tion for the latter. In the limit as T~0 it should
constitute the whole of this approximation, as then the
probability of interactions absorbing two phonons
besides q is vanishingly small compared to the probabil-
ity of those absorbing one; in that case we can, for a.

good approximation, substitute (4.1) for (4.5). Indeed,
we see that if I'& and the matrix elements vary slowly as
functions of k," (4.1) gives exactly the same result as
the ordinary expression for decay due to three-phonon
collision processes. Thus, calculating the decay prob-
ability due to four-phonon processes mediated by an
"allowed" three-phonon process is simply an improved
way of calculating that due to the three-phonon process
itself, and in general is unlikely to give very different
results from the simple, "energy-conserving, " treat-
ment of the latter.

S. COMPARISON WITH SIMONS' APPROACH

In this section we shall investigate the conditions
under which the approach proposed by Simons' is
essentially correct. I'or this purpose we consider once
more the case in which a three-phonon process which
would otherwise be an important decay mode of a long-

'~ For longitudinal phonoiis in Carruthers' fictitious isotropic
solid (Ref. 12) this is generally the case, since the process where
one longitudinal phonon decays into two transverse ones is always
energetically possible.

wavelength phonon is energetically forbidden. However,
we now relax the very restrictive assumption, made in
the first half of Sec. 4, that a single convex dispersion
curve represents the only low-energy excitations of the
systems. We shall show that under certain alternative
assumptions, a slight modification of Eq. (1.1) gives
the correct result.

It is evident from the first case considered in Sec. 4
that, if the three-phonon process is forbidden, it is i~s

general by no means sufficient to characterize the
structure of the intermediate spectral function by a
single parameter 1, set equal to the half-width at the
peak. Indeed, the very fact that the three-phonon
process is forbidden, while the four-phonon process is
energetically possible, must imply tha, t I'&(e&) is zero
while I'q(&o+eq, ) is finite, so that it is undoubtedly
incorrect to replace one by the other. In fact, if we were
really dealing with a uniformly convex dispersion curve
in the absence of other branches, impurities, etc. , this
prescription would never lead to a 6nite lifetime for
any phonon at all—to any finite order in the interac-
tion strength: to get a finite value of I' s(e,) by this
prescription we should need a finite value of at least
one of I'q(e~), I'q s(e~ s), and so we would be no further
forward. In this case, the use of a single parameter
would give too small a result; as we shall see in Sec. 6,
there are also dispersion curves for which it would give
too large a result, as there is nothing to prevent I'q(e~)
from being larger than I'q(&e+ eq, ).

In practice, of course, we never have to deal with
perfect liquids or solids with uniformly convex disper-
sion curves. In particular, it is almost certain that the
hydrodynamic model for helium II is inadequate, even
in the long-wavelength region, in the sense that there
may be present other low-energy excitations besides
phonons. Perhaps we may argue as follows: Consider
our (energetically forbidden) three-phonon process,
(q)+(p) —+ (k), in which an acoustic phonon collides
with a thermal phonon of much higher momentum,
producing another thermal phonon. The experimentally
observed linewidths of the thermal phonons may well
be due, partly or even mainly, to some unknown type of
process, which we denote by (k) ~ '?. If this is so, then
it is very unlikely that I'z(co) is sharply varying in the
regions of interest, so that it seems legitimate in this
case to approximate the spectral functions of (k) and
(p) by a Lorentzian shape and to substitute this into
(3.6). This would be equivalent to considering the
processes (q)+(p) ~ (k) —+?, which processes might
well be the most important decay modes of an acoustic
phonon (q), even though they go via a virtual inter-
mediate state (k). For this approach to be valid it is
necessary that (a) all and otsly those types of processes
which "go" at eg also go at eg+Q, where Q is again
equal to ce—eq+ e~ s, and that (b) there are no direct
processes which can interfere with the indirect ones.
The erst condition is equivalent to the statement that
I'k(re) varies slowly over a range comparable with Q.
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If these conditions are fulfilled, we can write for the integral in (3.7)

D(Q) —=

4m'
Ag(GO )Ag q(M —Gl)80)

FgF
(5.1)

In order to coiIipare our results with those of Simons, '
we put co= Gq and consider the case where Gq((kBT.
Simons has shown that in that case the integration over
angles can be turned into an integration over Q.
Instead of arccot (cd20T2) in (1.1) we now have the
integral

D(fl)dn, (5.2)

where k2=
j
k—q

~

and r ' is related to P ~(i~) given by
(3.7) through r '= 2I'~(~~). Performing the integration
in (4.8), we

find

I=arcco(M2pT2 3) where

6. SPECIFIC PROBLEMS

We have seen that by taking into account the finite
linewidths of the phonons involved in an interaction
is equivalent to considering some of the higher order
processes mediated by them. In general, these effects
cannot be adequately described by describing the
"structure" of the phonon spectral functions by a
single parameter, v-, the lifetime. However, such a
simplified treatment was seen in Sec. 5 to be justified,

&A+ &8

FIG. 5. Dispersion curve for excitations in He II.

(5.3)

where F2 and F3 are the F's corresponding to the
phonons (g—k) and (k). Since these phonons are
supposed to be of the s3me branch and close in energy,

r& and we have formally the same results as (1.1)
provided that the energies defining 0 are taken to be the
6q 1ather than the ~ ~. In conclusion we emphasize that
we obtain (1.1) only when the conditions (a) and (b)
stated above are satisfied; we shall discuss in Sec. 6 in
how far this is true for the applications considered by
Simons.

if (a) all and only those types of processes "go" at
~~—0, which "go" at ~~, and (b) there are no direct
processes which can interfere with the indirect ones.

Condition (a) is certainly never completely satisfied
for the case of a convex dispersion curve; if it were,
four-phonon processes such as the ones considered by
Landau and Khalatnikov' would never occur. Whether
we can treat it as satisfied in practice depends on the
relative importance of the various decay mechanisms for
the intermediate phonon k and on their variation over
the energy interval Q.

A simple argument shows, for instance, that it is by
no means certain that condition (a) is satisfied in
liquid helium II. Consider, for instance, a process where
a long-wave acoustic phonon A collides with a thermal
phonon 8, producing another thermal phonon C and
assume that 8 and C lie near the first maximum of the
dispersion curve (Fig. 5). This process is, of course,
energetically forbidden, as the energy deficit 0 is of the
order ~&. Now, quite an appreciable contribution to the
linewidth of C (wavenumber k) will come from collisions
with excitations (k') in the roton area. Such collisions
can take place if u(k)+a&(k') ~& &u(k+k'): the minimum

value of k' is thus given by the intersection with the
original ~(k)-versus-k curve of a similar one drawn with
C as origin (dotted line in Fig. 5). We see thus that
r, (cg) has contributions from collisions with excita-
tions of momenta greater than some critical value kc.
On the other hand, the corresponding process can
contribute to Fz(~&+0) only, if k' is greater than the
value kg at which a curve drawn with respect to C'

as origin cuts the original curve. In the case of liquid
helium kc, may be much greater than kz and may even
not exist, even if kg exists. The simplified treatment may
in this case thus give far too large a value for the width

of the acoustic phonon. Strictly speaking, a study of the
"wings" of the neutron-scattering peaks should be
sufficient to resolve this question; however, it is very
doubtful whether present data' " are sufficiently

accurate to allow us to draw definite conclusions.
At very low temperatures the "thermal" phonons are

well below the first maximum of the dispersion curve

and their decay is in all probability due mainly to the
four-phonon processes considered by Landau and

Khalatnikov, ' although not necessarily only their

"J.L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr,
Phys. Rev. 113, 1379 (1959).

"D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266
(j.961).
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process I. It is therefore a question whether the decay of
very long wave acoustic phonons may not be due
primarily to "linewidth" effects, that is, to five-phonon
processes, such as the one of Fig. 6a, which are not just
modifications, in the sense of the discussion of the
preceding section, or possible energy-conserving four-
phonon processes. On the other hand, it is a little
difficult to see why these processes should be much more
important than, sa,y, the process of Fig. 6b, which is a
modification of an energy-conserving four-phonon
process. Probably, the experimental data at present
hardly justify a, detailed investigation of this question.

Ke notice, incidentally, that according to the
theory developed in the present paper, Landau and
Khalatnikov's expression' itself is incorrect in the limit
of small dispersion. The effect of replacing their simple
energy denominator by a Sreit-signer type of expres-
sion will only be important if 0/F(1, where F is the
half-width of the intermediate state. A crude order-of-
magnitude estimate using the experimental values of I'
at the longest wavelengths measured" and the exper-
imental value of the dispersion indicates that this
condition is quite likely to be sa, tisfied; if this is so, the
Landau-Khalatnikov expression' for the phonon-
phonon scattering cross section and thus also Khalatni-
kov's expression4 for the sound absorption coefficient
are likely to be too large. The situation is, however,
complicated, as five-phonon and higher order processes
may partially compensate for this effect.

Ke must also note that at present the experimental
data" on sound absorption in helium II at low tempera-
tures are not really capable either of discriminating
between the T4 law predicted by Kawasaki' and
Simons' on the basis of "linewidth" effects and the
T' behavior derived by Khalatnikov, ' or of demonstrat-
ing that Khalatnikov's expression is too large, as we
have suggested here.

In the ca,se of phonons in solids we are on more
hopeful ground. The mechanism responsible for the
decay of long-wavelength phonons in solids at low
temperatures is predominantly collisions with phonons
from regions of phase space near "degeneracy lines. '" lt
is extremely unlikely that the possibility of these
processes is critically dependent on co, so that the
simplified approach is probably justified.

Condition (b) does not present much difhculty in
practice, at least in the long-wavelength limit. The
reason is that although there are matrix elements
connecting the "true" initial and final states, namely
those due to the quartic terms in the potential energy,
in the long-wavelength limit they vanish compared to
the "indirect" matrix elements which connect them via
an intermediate state. If we assume that the wave-
vectors of all phonons involved are of the same order of
magnitude q, that is, that we are interested in the

' C. A. Chase and M. A. Berlin, Phys. Rev. 77' 1447 (1955) j
K. Dransfeld, J.A. Newell, and J.Wilks, Proc. Roy. Soc. (London)
A243, 500 (1957).

FIG. 6. Five-phonon processes. (a) Typical process that is not a
mere modi6cation of a four-phonon process; (b) one that is.

limit q
—&0, k&T~O, q'/k&T constant, the "direct"

elements are of order q' and the indirect ones of order
q'/Q. As, in general, ' 0 q', the ratio vanishes as q

—+ 0.
In conclusion we note that there is nothing in our

treatment which limits its applicability to a system of
interacting phonons. However, there are few many-body
systems apart from the phonon system where the lowest
order collisions are forbidden; higher order effects are
therefore on the whole of less interest.
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APPENDIX A

The Basic Hamiltonian

In this Appendix we discuss the use of our basic
Hamiltonian (2.1). The derivation is a standard one
for the case of solids, if the cubic anharmonic terms are
included. Ke shall therefore consider only the case of
helium II. In that case we can, in the hydrodynamical
model, write for V the expression

1 1 App
'~'

V=- + bg+g. +g" (kk'k")'~'
3!Q~ 2c

c' (k k') 8 fc'
X 3—— +—

i

— ngug u~", (A1)
pp' kk' Bp( p

where the N~ are the displacement operators, pp is the
equilibrium density, and c'= BI'/Bp. The annihilation
and creation operators are related to the I& by I&—=a&

+a ~t. The effects we are interested in are those when
the phonons involved are nearly parallel so that we can
replace (k k')/kk' by unity, whence (2.3) and (2.4)
follow.

There is a difhculty in the case of helium II, absent
in the case of a crystal. In the effects considered in the
present paper a crucial role is played by the shape of
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the co(k) curve, and in particular by the sign of the
departure of co(k) from a linear law. In the case of a
crystal this is no problem, as owing to the finite "struc-
ture" of the lattice there is a well-defined departure
from a linear law, even in the harmonic approximation;
in fact, for all known crystals the deviation is negative:
normal dispersion.

In the hydrodynamic theory of helium II, however,
the harmonic approximation is precisely the approxima-
tion of a perfectly elastic continuum, so that exactly
co(k)=ck; the effects of the atomicity of the liquid
enter only through the anharmonic terms. To obtain
sensible results we must replace the theoretical "har-
monic" spectrum by the "experimental" elementary-

excitation curve as deduced, for instance, from neutron
scattering. This curve is almost certainly convex at
very long wavelengths. The Hamiltonian (2.1) should
thus give a reasonable description of the interaction of
long-wavelength phonons in helium II.

Strictly speaking, this approach is incorrect as
neutron-scattering experiments measure the energies ~~,
as renormalized by the phonon-phonon interactions.
We have therefore assumed tha. t the co(k) curve is
really convex in the absence of interaction but use
experimental data to determine es rather than os= co(q).
The theoretical unsatisfactoriness of this approach is an
inherent limitation of the hydrodynamic model of
helium II.
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Assuming that spin-orbit interaction is the reason for the appearance of a Knight shift in superconductors
at zero temperature, we have calculated the magnetic-field dependence of the shift caused by the depairing
effect of the Geld. Numerical results for the spin susceptibility as a function of the Geld are presented.

I. INTRODUCTION

'HE occurrence of a shift in the frequency of the
nuclear magnetic resonance (Knight shift)' in a

superconductor at zero temperature has been attributed
by FerrelP and Anderson' to the importance of spin-
orbit interaction in small specimens. Because of this
interaction, the component of the electron spin with
respect to a certain axis will no longer be a good quan-
tum number. In the superconducting state, electrons in
mutually time-reversed states will be bound in pairs.
Since this will no longer correspond to simple spin-up,
spin-down electron pairing, the electrons in a pair will
have the ability to respond with their spins to an im-
posed magnetic field. In this way a finite susceptibility
arises even at zero temperature. If the applied field is
comparable with the critical field of the sample, the
tendency of the field to break the electron pairs will
also have to be taken into account. This will a6ect the

*Work supported in part by the QfBce of Naval Research and
the National Science Foundation.

t On leave of absence from Research Institute for Mathematical
Sciences, Kyoto University, Kyoto, Japan.'F. Reif, Phys. Rev. 106, 208 (1957); G. M. Androes and
W. D. Knight, ibid. 121, 779 (1961).' R. A. Ferrell, Phys. Rev. Letters 3, 262 (1959).

s P. W. Anderson, Phys. Rev. Letters 3, 325 (1959).

response of the paired electrons to the field. Hence the
Knight shift will become field dependent.

The pair-breaking effect of the field is incorporated
into the theory by using the Green's-function formula-
tion of the Knight-shift problem as given by Abrikosov
and Gorkov. 4 The treatment by those authors, which is
valid for weak fields, will have to be generalized to
arbitrary fields. The next section deals with the details
of such a generalization. In the last section, we shall
discuss the results.

II. CALCULATION' OF THE SUSCEPTIBILITY

In the following we shall restrict ourselves to cases in
which the critical field of the sample is such that con-
tributions of the Pauli paramagnetism to the free energy
are not yet of importance. ' Furthermore, we shall
assume that the mean free path vpr between electron
collisions is much smaller than the coherence distance.
Since a Knight shift of the observed magnitude requires
a mean free path vpv. i between spin fhps of the order of

4 A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fix.
42, 1088 (1962) LEnglish transL: Soviet Phys. —JETP 15, 752
(1962)g.

'A. M. Clogston, Phys. Rev. Letters 9, 266 (1962); 3. S.
Chandrasekhar, Appl. Phys. Letters 1, 7 (1962).


