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1Vo fransifion W. e see from (6) and Fig. 1 that there
is no transition if i(t(s —Xp)+in(gs/gt) intercepts the
horizontal axis to the right of p= —'„ for then p as
determined by (6) will approach the value s smoothly
as r ~ ~. Thus there is No traesitioe if at p= ~ the left-
hand side of (6) is positive, so that
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FIG. 4. Order parameter for g0 ——g1 for second-order transition with
s/X=0. 50. For s/X=0. 51 and (0.60) there is no transition.

On comparison with (3) we see tha. t

e= 2n,. X=4n „ (22)

diA'ereuce. Thus we may write, with cx a constallt,

U= —-';1Vir ( —2p)'= ——', cVn( —4p+4p') ( )

or
lii(gp/gt) 0'0

gO+ g1

(23)

(24)

kT, = (e—-', X)/in(gi/gs), (23)

Summary.

(a) A necessary condition for a transition to occur
on our model is that the degeneracy g» of the excited
state be higher than the degeneracy g0 of the ground
state; otherwise, no transition occurs.

(b) 2 second order f-ransih'on occurs at kT, =sX, but
only if e= —,'X[1+—', 1n(gi/gs)].

(c) A first order fra-nsition occurs a,t

so tha, t (19) and (20) are consistent and give P,et=1.
An example of a second-order transition is shown in
Fig. 4 for e/X=0. 5.

provided that. e&sX[1+rs 1n(gi/gs) j, supposing always
that —',X(e. We have a supertransition if e/X&g, /
(go+gi).
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The electronic band structure of ordered beta brass (P' CuZn) has been calculated from first principles by
the Green's-function technique. Two slightly different crystal potentials of the muffin-tin type have been
tested, both based on free-atom Hartree-Fock wave functions. Each potential has yielded essentially identi-
cal results as far as the conduction bands near the Fermi energy are concerned. The diGerence between the
potentials is reflected principally in the location of the d bands relative to the conduction bands. Cross
sections of the Fermi surface have been constructed and suggest the presence of a surface which can be
generated by small modifications of the one-orthogonalized-plane-wave prototype. The 6rst (cubic)
Briltouin zone is full except for holes in the corners, and the second (dodecahedral) zone is somewhat more
than half full with measurable contact of the Fermi surface with the (1101faces of this zone. These observa-
tions agree quantitatively with the interpretation of presently available de Haas-van Alphen data. Optical
transitions responsible for the color of the alloy have been tentatively identified as occurring over an energy
range of 2.5 to 3.5 eV, from the Fermi surface to higher unoccupied levels. The band structure is also compared
with the results of electronic-specific-heat, Hall-eBect, and elastic-modulus experiments. A band calculation
of the cellular type has been carried out separately and compared with the Green's-function bands. The
stability of the beta phase is discussed in terms of the Fermi surface, and is related to the present understand-
ing of Cu and of other alloy phases of the CuZn system.

I. INTRODUCTION

t 'HE electronic band structures of many simple
metals, such as the alkalis, Cu, Zn, and Al, have

recently been determined to a relatively high degree of
accuracy, thus leading to a rather satisfactory under-

* Supported by the U. S. Atomic Energy Commission.
f This work is included in a thesis submitted by K. J. in partial

fulfillment of the requirements of the Ph.D. degree at Temple
University.

standing of many of the properties of these elements.
On the other hand, no full-scale theoretical inves tigation
of metallic alloys has been performed, although the
latter have been the objects of several qualitative
remarks and conjectures. Ke have been concerned in our
laboratory with an experimental and theoretical study
of binary beta-phase alloys belonging to groups IB and
lIH of the periodic table, including PCuZn (beta brass),
PAgZn, PAgCd, PAuZn, and PAuCd. This has led us
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FrG. 1. Cscl type of
unit cell characterizing
stoichiometric ordered
beta brass (P CuppZnpp).
At room temperature
the ordered phase is
observed over the com-
position range P'Cu~s-
Zn44 —P'Cu48 Zn52. At
temperatures of 454'C
(Cu-rich side) and 468 C
(Zn-rich side), the alloy
disorders into the bcc
structure.
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FIG. 2. Simple cubic
Brillouin zone for
ordered beta brass.
The basic symmetry
directions and points
are shown.

naturally to undertake the calculation of the electronic
structure of ordered beta brass, the prototype of this
family of alloys. We present in this paper the results of
our calculation and their physical implications.

At room temperature these alloys are ordered in the
p' phase, which is characterized by the CsCl type of
structure (see Fig. 1) and a relatively narrow range of
atomic composition in the vicinity of the P XspVsp
stoichiometry. These alloys disorder to the bcc P phase
a,t high temperatures, and are prone to martensitic
transformations. The Brillouin zone for the ordered
alloy is simple cubic and is illustra, ted in Fig. 2. Ke have
chosen p'CuZn for detailed study, first of all, because of
the availability of experimental informa, tion. Muldawer'
has observed that the alloy exhibits rather distinct
color variations as a function of both composition and
temperature. Johnson and Esposito' have shown that
these optical properties can be explained in terms of
interband transitions and plasma oscillations. Spring-
ford, Pearson, Jan, and Templeton' have recently
studied the Fermi surface of stoichiometric beta brass
using the de Haas —van Alphen effect. Measurements of
the electronic specific heat, 4 Hall effect, ' elastic moduli, '
and extended studies of the optical properties' have
also been carried out. Secondly, a knowledge of the
band structure of this alloy is of intrinsic interest. It is a
compound of two metals whose individua, l ba,nd struc-
tures and Fermi surfaces are well understood. Zn
exhibits a decidedly nearly free-electron band structure
and Fermi surface, ' while Cu departs markedly from
such behavior. ' "Finally, among the beta-phase alloys,
P'CuZn is least subject to relativistic corrections of the
band structure.

The Green's-function method has been found to be
the most appropriate one for our problem. Sha, ring with

' L. Muldawer, Phys. Rev. 127, 1551 (1962).' K. H. Johnson and R. J. Esposito, J. Opt. Soc. Am. 54, 474
(1964).

3 M. Springford, %.B.Pearson, J.P. Jan, and I.M. Templeton
(private communication).

4 B.W. Veal and J.A. Rayne, Phys. Rev. 128, 551 (1962).
'V. Frank, Danske Videnskab. Selskab, Math. -Fys. Medd.

Bo, No. 4 (1955).' G. M. McManus, Phys. Rev. 129, 2004 (1963).
~ L. Muldawer (private communication).' W. A. Harrison, Phys. Rev. 126, 497 (1962).' B. Segall, Phys. Rev. 125, 109 (1962).
' G. A. Burdick, Phys. Rev. 129, 138 (1963).

the augmented-plane-wave (APW) method a relatively
rapid degree of convergence, it has the additional feature
that the largest computational effort namely, the
determination of certain lattice sums (structure
constants), can be utilized in similar band calculations
of other materials having the same crystal structure.
The Green's-function approach to band structure was
first formulated in two alternative but equivalent forms

by Korringa" (partial waves) and by Kohn and
Rostoker" (variational principle). Raychaudhuri" and
Segall" discussed its possible extension to lattices
having more tha, n one atom per unit cell. Morse" and
Ham and Segall" applied the Ewald'~ method to the
determination of the structure constants. Using this
refinement, Segall computed the bands of Al" and of
Cu, " and Ham" computed the ba,nds of the a,lka. li

metals.
In the applica, tion of the method to a, diatomic

lattice such as beta brass, certain a.dditional structure
constants ("off-diagonal" ) appear as a consequence of
the presence of two atoms per unit cell. Therefore, it
has been necessary to modify slightly the structure
constants proposed by Harn and Sega, ll in order tha, t
these additional constants can be determined. We begin
with a brief outline of the main computational steps of
the Green's-function technique. For grea, ter detail, the
a.bove references, in pa, rticula, r 12 and 16, may be
consulted.

II. THE GREEN'S-FUNCTION METHOD

The elements of the fundamental secular determinant
of the method can be written in the form

A( .
, ' l&p'(E, k) =(4~ p Dg'u&&'pl(J', k)C'

L,M

y(Z)r~s5„„5„.5 „cot&,~ l(Z)} (1)

which clearly reveals the separation of the problem into

x' J. ~orringa, Physica 13, 392 (1947).
'p W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
rP A. Raychaudhuri, Z. Physik 148, 435 (1957).
~4 B. Segall, Phys. Rev. 105, 108 (1957).
» P. M. Morse, Proc. Natl. Acad. Sci. U. S. 42, 276 (1956)."F.S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961)."P.Ewald, Ann. Physik 49, 117 (1916)."B.Segall, Phys. Rev. 124, 1797 (1961).' F. S, Ham, Phys. Rev. 128, 82 (1962}.
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Xexp(ik R„)Y'r~(R„—a„,)
1/2

XexpL(E/4p) —(R —a )'pjdp,

~1/2 (g/~) m

DL//E (/pqr/Lo(///ro

2w =o re! (2/r/ —1)

in which g is a parameter which is adjusted for maximum
rate of convergence of the sums. The on-diagonal
(p= q) constants reduce to those described. by Ham and
Segall for monatomic unit cells. In the second summa-
tion, the R„=0 term is to be omitted for the on-diagonal
case. The constants have been programmed and
computed on an IBM '?094 computer over a wide range
of parameters E, I., and 3f for k poin. ts along the prin-
cipal symmetry directions of the cubic zone. The
quantities Cg .~. .~~ are integrals over triple products
of spherical harmonics and have been tabula, ted by
Ham. "

The phase shifts are defined through the relation

cot5g("' (E)=
r//' (/(r p)

—e/(/(r „)L/(p' (E,r„)

-j /'(/(rp) —j /(Krp)L/'"'(E, rp)- rp=b,
(3)

20 B. Segall and I. S. Ham, General Electric Research Labor-
atory Report No. 61-RL-(2876G), 1961 (unpublished).

2' I'. S. Ham (private communication).

two parts: that part which depends only on the crystal
structure through the structure constants Dr/(r(p&'(E, k),
and that part which depends only on the crystal
potential through the partial wave scattering phase
shifts 8~(»(E). For each chosen point k of the Brillouin
zone, the zeros of the determinant, properly interpreted,
yield a set of eigenenergies E&(k), E2(k),

The nature of our problem requires a large number of
structure constants for the CsCl type of lattice. Those
constants computed by Segall and Ham-" a,re for simple
fcc and bcc lattices, and, therefore, are not applicable
to our case. The constants originate as coefficients in
the expansion of the Green's function in spherical
harmonics. In the Ewald type of formulation, they take
the form of sums over the direct lattice vectors R„and
reciprocal lattice vectors K„.For a complex lattice with
a basis having a unit cell of volume r in which atoms p
and q are connected by the vector a„„each structure
constant is equal to the sum of the three quantities
(using essentially the notation of Ham and SegalP')

Dr,pl ""'"= (47r/r) (E) "exp(E/q)

~
k+ K„~ ' expLi (ky K„) ap„]xP

E (k+K„)'—
«xpL —(k+ K-)'/all'~~(k+ K.),

D (Pq/(2) ~—(/9( 2)E+I(I (E) I/2 P''~ R— a
~

I

in which L~(» (E,r„) is the logarithmic derivative of the
lth-order radial component Eq(» (E,rp) in the expansion
of the wave function around a.tom p,

lmax

P(k E,r) = Q PC/ ("' E/(»(E, rp)K/, (r„). (4)

In the last expression, E~Y (rp) is the real lattice
harmonic of /th degree which tra, nsforms according to
the o,th irreducible representation of the group of h. It is
given, in turn, by a linear combination of spherical
harmonics

&/v (r) =Z ~("'/-;&I'/-(r).

For k points on the faces of the cubic zone, an irreducible
representation appropriate to the expansion around
atom p is different from, but rela, ted to, that appropriate
to the expansion about atom q. The radial functions are
obtained by integrating the radial equation

1 d // d t(t+1)
r„' = V r„—E

r„' d";p (drp rp'

XE/(p' (E,rp) =0 (6)

for the chosen muffin-tin crystal potential V(rp) (see
below) over a range of energies, subject only to the
condition that the solutions be finite at the origin. The
radial functions are then interpolated to their values at
the radius b„of the muon-tin sphere surrounding atom

p, and their first derivatives computed. Finally, the
resulting logarithmic derivatives along with the
spherical Bessel functions j /(/(rp), their derivatives

j /'(/(rp), the spherical Neumann functions n&(/(rp), and
their first derivatives r//'(/(rp), all evaluated for /(=E'"—
and r„=f/p, are substituted into formula (3).

III. CONSTRUCTION OF THE
CRYSTAL POTENTIAL

At present there is no definitive yet pra, cticable
procedure for constructing a truly self-consistent
crystal potential in which the effects of electron-electron
and electron-ion correlation are properly included. The
Green's-function method requires a muffin-tin approx-
ima, tion to the potential, i.e., one which is spherically
symmetric within nonoverlapping spheres centered on
the atomic sites and constant elsewhere. Its exact ana-
lytical or tabulated form may be determined using in
particular our knowledge of the free-atom wave func-
tions, and adapting this information to the lattice
under consideration.

The mufFin-tin approximation is a reasonable one in
the case of beta brass. By virtue of their arrangement in
full cubic symmetry, the atoms accomplish a certain
degree of natural cancellation of nonspherical contribu-
tions in any particular atomic sphere. The spheres have
been chosen to be those inscribed to the Kigner-Seitz
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cells of the traditional cellular method (see Fig. 10),
and hence are of equal radii for Cu and Zn. This choice
is justified because of the gross similarity between the
electronic charge distributions of the free atoms.

Ke have also adopted a Wigner-Seitz-type assumption
of the electrical neutrality of each cell. At first sight,
the usual argument in its favor (in terms of correlation
and exchange) does not stand up as well in the ca,se of
the alloy as it does in that of the simple metal, mainly
because of the additional 4s electron of Zn. However,
Mott" has shown tha. t if the additional 4s electron
stays principally near the Zn atom, one may calculate
an electrostatic ordering energy which is of the order of
magnitude of the measured value. As an upper limit to
the ionicity, Mott arrived at net charges of —0.075e
and 0.075e in the Cu and Zn cells, respectively. Although
this amount of ionicity may be important to order-
disorder, it is too small to aGect the band structure
significantly, and so we have neglected it completely.
The muffin-tin approximation can then be viewed as a
crude treatment of 4s-4s correlation in the Zn cell.
The Zn~ ion potential is left completely unscreened,
but cut off at the radius of the inscribed sphere.

As a basis for the potential we used the Hartree-Fock
free-ion functions of Cu tabulated by Hartree and
Hartree" and the free-atom functions of Zn due to
Piper. '4 The "unavailable" 4s function of Cu was
obtained by calculating it in the field of the free ion.
All functions were renormalized to the equivalent
volume sphere, in accord with the assumed neutrality
of each cell. The Coulomb contribution to the potential
within each cell was determined by evaluating the
Hartree integral over the renormalized charge density.
The Slater approximation, " proportional to the cube

Cu CELL
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'' N. F. Mott, Proc. Phys. Soc. (London) 49, 258 (1937)."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
4157, 490 (1936).

'4 W. Piper (private communication).
'5 J. C. Slater, Phys. Rev. 92, 603 (1953).

FIG. 3. MuS.n-tin crystal potential chosen for p'Cu50Zn50 and
plotted in terms of the effective charge" within each atomic
sphere. The potential is based on the renormalized free-atom wave
functions. The Slater free-electron approximation to the exchange
potential is used.
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root of the charge density, was adopted for the exchange
contribution. The resulting potential is plotted in Fig. 3
in terms of the effective charge 2Z, ff(r) = rU(r)—
Because the Slater approximation is an average one,
this crystal potential can be used for all components of
the wave functions. The constant value of the potential
between muffin-tin spheres has been chosen to be the
average of the potential in this region. It is equal to
—0.758 Ry.

Beside the accurate trea, tment of correlation, one of
the chief uncertainties in the potential is the treatment
of the Cu 3d electrons. Relative to those of Zn, the Cu
3d electrons are rather loosely bound (the atomic 3d
levels are —0.24 Ry and —0.78 Ry for Cu and Zn,
respectively). This difference is reflected in the band
structures of the individual metals. In an attempt to
study the sensitivity of the bands of P'CuZn to this
particular detail, we have adopted a slightly different
potential for the l=2 component of the Cu wave-
function expansions. A potential of the type originally
designed by Chodorow, "and also used by Segall' and
Burdick, ' is purported to t"e one which more closely
approximates the field experienced by a Cu 3d electron.
It is constructed by first determining the effective
potential which yieMs the free-ion Hartree-Fock 3d
function when the latter is substituted into the Hartree
(without exchange) equation. To this is added the
Coulomb potential of a 4s wave function calculated in

"M. I. Chodorow, Ph.D. thesis, Massachusetts Institute of
Technology, 1939 (unpublished); Phys. Rev. SS, 675 (1939).

RAOIVS (A.u.j

Fzo. 4. Comparison of Chodorow potential with potential based
on Slater approximation to the exchange for the Cu cell. The
former potential is substituted for the determination of l=2
components of the Cu wave-function expansions, in order to
test the sensitivity of the d bands.
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the field of a Cu+ ion and renormalized to the equivalent
volume sphere. The resulting potential is plotted in
Fig. 4 as the dashed curve. For the sake of comparison,
the Slater-type potential for the Cu cell is shown by the
solid curve. The latter potential is used as before for
the l= 0, 1, 3, components of the Cu wave functions,
and for all the components of the Zn wave functions.

TAm, z I. Energies (in rydbergs) for high symmetry points of
ordered beta brass. Interpolation error ~0.005 Ry.

State
E(k), erst choice E(k), second choice

of potential of potential

I"1

~25
~15
~12

X1-X4.
X5-X5
X2-X3.
X3-X2

X4 -X1
X1-X4

Xg.-Xg
M1-3/Ig
kg—iV1
3fg-3I;
3f2-3f4

SIC —3fg

3II1—

Afar

3f3—3EI1

l225& R]5

+12 +12'
g] 5 g2or&

R1—E.2~

R2.—R1

—0.860—0.998—0.971
+0.219
+0.482—0.907—1.002—0.988—0.969—0.562—0.536
+0.518—1.003—0.997—0.983—0.939—0.333—0.076—0.065—1.003—0.913—0.021
~0.361
+0.377

—0.860—0.638—0.607
+0.219
+0.456—0.723—0.645—0.627—0.613—0.545—0.386
+0.521
—0.679—0.674—0.611—0.591—0.333—0.106—0.080—0.678

' —0.584—0.055
+0.361
+0.377

'7 L.P.Bouckaert, R. Smoluchowski, and E.Wigner, Phys. Rev.
50, 58 (1936).

IV. THE CALCULATED BAND STRUCTURE

Kith the first choice of potential, the bands have been
computed for the synmietry points I', X, M, and R of
the cubic zone (see I'ig. 2) and for three points evenly
spaced along the symmetry axes 6, Z, and A. A few
conduction levels have also been determined along the
edge T of the zone. The convergence of the secular
determinants has been very rapid. In the case of the
occupied bands, the first one or two nonvanishing terms
of the wave functions suffice to yield an accuracy well
within the interpolation error of +0.005 Ry. For those
excited states just above the Fermi level, the first two
or three terms are sufficient. The band profiles are
illustrated in Fig. 6. They are shown along five direc-
tions of the zone and are labeled in the BS%"notation.
The computed points are indicated by the circles.
Where computations at certain interior points have not
been carried out, the bands have been sketched on the
basis of the compatibility relations and noncrossing
rule. The squares indicate levels too close for separation
on the graph. The energies at high symmetry points are
listed in Table I.

The bands are clearly separated into two parts,
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FIG. 5. Free-electron or "empty-lattice" bands along the three
principal symmetry axes of the cubic zone. The free-electron
Fermi level for ordered beta brass is indicated by the dashed line.

namely, the conduction bands which extend upward
from the lowest level F& and the d bands which lie

approximately 0.1 Ry below the F& state. At their
widest point R, the latter bands cover an energy of
0.094 Ry. A more narrow set of d levels, not shown in

Fig. 6, has been located in the vicinity of the lower

energy, —1.75 Ry. The presence of two such d bands
is not unexpected. Consider the case where the two
atoms of the CsCl-type cell are nearly identical. Then
the cell is effectively bcc, and its first zone is a regular
dodecahedron, The cubic zone may be taken as a re-
duced zone for the bcc cell along the (100}direction.
Those sections of the bands between k= (2s-/a)(-,'00)
and k= (2s./a) (100) of the dodecahedron can be folded.

into the reduced cubic zone, yielding twice as many
bands between k= (2s/a)(000) and k= (2s-/a)(-', 00).
%hen the atoms are identical, bands having the same

symmetry properties should meet at a common point on
the cubic zone boundary. However, when the atoms are
different, as in beta brass, the two sets of bands should
separate. In the case of the more tightly bound 3d
electrons, the difference between the bands should be
determined largely by the individual atomic term
values. Therefore, the d bands shown in Fig. 6 may be
attributed principally to the Cu 3d electrons and the
lower set attributed principally to the Zn 3d electrons.

The conduction bands may be compared with those
of the empty lattice shown in Fig. 5 along the three
principal directions of the zone. Despite sizable splitting
of nonessential free-electron degeneracies toward higher
energies, the conduction bands at lower energies preserve
their nearly free-electron shape. This behavior is also
reAected by the relatively small gap between the
conduction states X4 —X~ and X~—X4. It indicates a
rather small perturbation at the {100}faces of the zone.
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FIG. 6. Energy bands of ordered beta brass resulting from that
choice of crystal potential shown in Fig. 3.The bands are indicated
for the Gve principal symmetry directions of the zone. Computed
points are represented by the circles. The squares designate two
energy levels too close for separation on the graph. The Fermi
energy is located by the dashed line.

At points 3f and E, where planes corresponding to the
second (dodecahedral) zone touch the cubic zone, the
perturbing effects of the crystal potential are more
severe.

The preservation of nearly free-electron character of
the lowest parts of the conduction bands is due prin-
cipally to the relatively low positions of the d bands.
This case may be contrasted with that of pure Cu, where
overlap between the d bands and conduction bands is
responsible for the departure from nearly free-electron
behavior. The presence of larger gaps at higher energies
in beta brass is not so much dependent upon the
relative positions of the d bands, but seems to indicate a
trend shared by the band structures of simple metals
such as the alkalis" and Al."

The conduction levels I'~ and I'~5 are, respectively, s
and p levels because their first nonvanishing wave-
function components 3=0 and 3=1, respectively, are
principally responsible for their positions on the energy
scale. In contrast, the lowest M&—M3 and X~—X4 states,
for which the first nonvanishing components are s-type,
owe their respective positions among the d bands to the
dominant effect of their second wave-function compo-
nent L= 2. The ordering of conduction states at the zone
boundaries is important because it deviates from the
normal ordering of levels in the free atom. For instance,
X4 —Xi and Xi—X4 are, respectively, p-s and s-p states.
dies —3IIs is a p level and the Mi—Ms state above it is
an s-d level. Eis—Ass is a p-d state and E,—Rs an sf-
state. Similar reversals of order are observed in the
bands of many simple metals.

When the Chodorow type of potential is used to
calculate the 1=2 component of the Cu wave functions,
the resulting band profiles are those shown in Fig. 7
along the three principal directions of the zone. A
comparison with Fig. 6 readily indicates that the chief
e6ect is the expected one, namely, the lifting and widen-
ing of the d bands relative to the conduction bands.
This behavior is consistent with the tendency of the
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FIG. 7. Energy bands of ordered beta brass resulting when
Chodorow potential is used to determine the l = 2 component of the
wave-function expansion around Cu.

Chodorow type of potential to be weaker than the Slater
type in the vicinity of the radius 0.6 atomic units (a.u.)
where the free-ion 3d function peaks. The sensitivity of
the d bands to the choice of crystal potential calls
attention to the difhculty of constructing a self-
consistent potential. A similar sensitivity of the d bands
in the case of the transition metals has been discussed
by Slater."

The overlap of the d bands with the conduction bands,
evident in Fig. 7, is large enough to distort the lowest
energy portion from nearly free-electron behavior. The
gap separating the X4 —X~ and X»—X4 states is widened
considerably. This is due to the "repulsion" of the l= 2
component of the upper X~—X4 level by that of the
lowest X~—X4 level. Despite the presence of /=2
components in the wave functions associated with the
conduction bands at the Fermi energy and higher (e.g. ,
M&—Ms), these bands are little changed by the use of
the Chodorow potential.

~8 J. C. Slater, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1963, No. 51, p. 14 {unpublished)."W. V. Houston, Rev. Mod. Phys. 20, 161 (1948).

V. THE FERMI SURFACE

In the absence of a sufficiently large number of L~(k)
values throughout the zone, a direct determination of
the density of states and the Fermi energy cannot be
carried out to the full limit of accuracy. We have
attempted to arrive at an approximate value of the
Fermi energy by two alternate methods. In the erst
of these, a technique originally devised by Houston"
was borrowed in order to fit a volume element of the
Fermi surface to an expansion in lattice harmonics
through the sixth degree along the three principal
directions of the zone. Using the band profiles of Fig. 6
shown along the 6, Z, and A directions and requiring
the volume of the Fermi surface to contain three con-
duction electrons per unit cell, we have obtained a
value of Ep= —0.205 Ry. The third decimal place is
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uncertain because of the discontinuity of the Fermi
surface across the boundary of the cubic zone into the
second (dodecahedral) zone.

An examination of the band profiles in reference to
this value of the Fermi energy indicates that the first
zone is full except for holes in the corners of the cube.
The second zone is slightly more than half full, with a
measurable amount of contact of the Fermi surface at
the twelve faces of the dodecahedron. These regions of
contact can be utilized to determine the Fermi energy
by a second method which is similar to that employed
by Segall' in the case of Cu. It depends on an approx-
imation to the volume of the Fermi surface by that of a
sphere of radius roughly equal to the free-electron
value, to which is added the volume of the neck regions
corrected for the spherical caps enclosed by the necks.
The Fermi energy is fixed by requiring this volume to
contain the proper number of conduction electrons. In
our case we have made use of the band profiles shown in
Fig. 6 along directions Z and T in order to establish
the contact area of each neck as a function of E(k).
The necks are evidently oval in cross section. We have
estimated their areas of contact by assuming them to be
ellipses, the major axes of which lie along T and the
minor axes along Z. The resulting Fermi energy is
Qp= —0.21g Ry. The contact area is 0.19&0.02, taking
the side of the cube as unity. The mean value of the
Fermi energy is indicated by the dashed line in 'Fig. 6.
The same value is indicated for the bands of Fig. 7,
although, strictly speaking, it should be computed
independently.

Ke have sketched two important extremal cross
sections of the Fermi surface by considering the inter-
section of the line E=Eg with the band profiles of
Fig. 6. In. Fig. 8, hole-like orbits in the {110}diagonal
plane of the first zone are shown. The corners of these
orbits would be considerably sharper in the free-electron
limit, and the cross-sectional area would be A ~~0

——0.124.
The calculated area is only 0.083&0.007. The rounded

X

~A

M~
Z

,V1

FIG. 9. Hole-like orbits in the {100} plane of the second (do-
decahedral) zone (folded into the cubic zone), based on the
computed bands. Contact of the Fermi surface with the faces of
the dodecahedron is revealed by the rounded corners of each
orbit. The "minor neck radius" is given by the intersection of the
orbit with the Z direction.

corners and diminished area are consequences of the
perturbing effect of the crystal potential. In Fig. 9
the hole-like orbits are somewhat analogous to the
"dog's bone" orbits of Cu in that they clearly indicate
the presence of the necks. These orbits lie in the {100}
plane of the second zone folded into the first zone.

VI. COMPARISON WITH EXPERIMENT

A. The Fermi Surface

The results of the de Haas —van Alphen experiments'
on stoichiometric beta brass agree with the assumption
that the first zone is simple cubic. They suggest the
presence of a Fermi surface which may be generated
through reasonable modifications of the nearly free-
electron surface at the zone boundaries. Contact at the
second zone boundary has also been measured.

As an example of the comparison between exper-
imental and computed results, we may consider the
extremal hole-like orbits shown in Fig. 8. The de
Haas —van Alphen measurements yield an area of 0.089.
This compares well with our computed result 0.083
~0.007. Experimental results for the orbits sketched in
Fig. 9 are not available. However, Springford" has
recently determined the neck area and reports a value
of 0.17. This may be compared with the theoretical
value of 0.19&0.02.

FIG. g. Hole-like orbits in {110{ plane of erst (cubic) zone
(repeating zone scheme), based on computed bands. The approx-
imate area of each orbit is 0.083~0.007 (taking the side of the
cubic zone as unity). This area is considerably less than the
free-electron value of 0.124, reflecting both the overlap of the
Fermi surface into the second (dodecahedral) zone and its contact
with the boundary of the latter.

B. The Oytical Proyerties

The characteristic color of beta brass, yellow gold at
room temperature, has been shown to be associated
with an increase in the absorption coefficient 47rk/)
and the conductivity ekcoj2z. in the vicinity of
2.5 eV (4959 A).' Here e and k are, respectively, the
real and imaginary parts of the complex refractive

'0 W. Springfcrd (private communication).
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index, and co is the frequency of the incident radiation.
Utilizing the band profiles, we have been able to locate
an appropriate pair of bands which most likely partic-
ipate in the transitions, provided the latter are of the
direct or "vertical" type. The particular bands are
those in the vicinity of the gap between 315—M5. and
3f&—M3 levels. The combined density of states is high
in this region, and the Fermi surface contacts the second
zone boundary.

At the onset of absorption, those transitions allowed.

by symmetry together with their vertical gaps are,
respectively, Z4 —+ Zi (2.23 eV) and Ts —+ Ti (2.18 eV),
i.e., from the Fermi surface to the next unoccupied
level. These transitions should continue to occur with
increasing probability toward higher energies, as their
origin is shifted along the Z and T directions to the high
symmetry point 3f, where the computed gap is M5-
Ms. ~ Mi Ms (3.—50 eV). This interpretation is in
agreement with the observed increase in optical absorp-
tion between 2.5 and 3.5 eV. That the transitions
originate from the Fermi surface is further strengthened
by the observation of Muldawer" that the addition of a
small percentage of Zn within the P' field has the eRect
of shifting the onset of absorption to lower energies.
The addition of a small amount of Zn should raise the
Fermi surface slightly. If this occurs without appreci-
ably altering the shape of the bands, and the transitions
do indeed originate from the Fermi surface, then the
threshold energy would be lowered.

Berglund and Spicer,"on the basis of photoemission
experiments, have recently argued that electronic
transitions of the indirect type are very important in
Cu and Ag. This is in disagreement with the original
interpretation of the optical spectra of these metals by
Khrenreicb and Philipp" in terms of direct transitions
only. The presence of indirect transitions is dificult to
ascertain on the basis of conventional optical data.
However, we cannot rule out the possibility that such
effects may contribute in an important way to the
optical properties of P'CuZn. For example, indirect
transitions from the Fermi surface to the R~~—R25 level
would be a distinct possibility. The observed tempera-
ture sensitivity of the optical properties, as described by
Muldawer, ' lends some support to the notion that
indirect transitions due to electron-phonon coupling may
be important in beta brass.

High-energy transitions from the d bands to the Fermi
surface would constitute a partial check of the compara-
tive accuracy of the two chosen crystal potentials.
The observed difference in the height of the d bands
should be optically detectable, provided measurements
are made sufficiently far into the ultraviolet. Such
measurements are now in progress. 7

At frequencies lower than those associated with the

"L. Muldawer (private communication}.
"C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030

(1964); 136, A1044 (1964).
3' H. Khrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).

onset of interband transitions, the optical properties
can be described principally by the Drude-Zener
model. '4 At such frequencies, usually in the near
infrared, the imaginary part of the complex index of
refraction has the form

k= (4rrlV, e'/CPM )' ' (oir))1), (7)

(9)

Shulz" has measured k/X of P'CuZn toward the red
end of the spectrum, 6nding a value of 6.05)(10' cm '.
If we assume relation (7) to be valid in. this spectral
region, the ratio of conduction-electron density to
eRective mass is Ã,/M. =4.11&&10"crn '

g
' On the

basis of a density of 1V,= 3/a', the mass is M, =2.86 Ms.
Cohen has shown that if interband transitions are lack-
ing in this region, which we believe to be the case in
beta brass, then 3f, is identical to the optical effective
I11ass.
@ 'Utilizing expressions (8) and (9) together with the
band profiles of Fig. 6, we have determined an approx-
imate theoretical value of M . It was computed by
first assuming the Fermi surface to be based upon the
sphere whose radius k& is given by the mean value of
the wave vector for the intersection of the line E=Ep
with the bands along the 0 and A directions. From the
area of this sphere were subtracted the areas of twelve
spherical caps associated with the contact of the surface
at the second zone boundary. To this were added a
relatively small correction due to the additional areas
of the necks and an even smaller correction due to the
gap at the first zone boundary.

In establishing the mean Fermi velocity given by
expression (9), we have first assumed the velocity to be
constant over the belly regions occupying the corners of
the 6rst zone and to be constant, but of slightly different
value, over the belly regions of the second zone. The

'4 F. Seitz, The 3IIoderrI Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 638.

"M. H. Cohen, Phil. Mag. 3, 762 (1958).
"Data of L. G. Shulz (unpublished) as reported by J.A. Rayne,

in The Fermi Surface, edited by W. A. Harrison and M. B.Webb
(John Wiley Br Sons, Inc. , New York, 1960l, p. 268.

where r is the relaxation time, E, is the conduction-
electron density, and M is the average inverse effective
mass of the conduction electrons. The last quantity has
been defined by Cohen" who showed that it can be
represented by the formula

(8)

S~ is the area of the Fermi surface, excluding those
parts covered by the zone boundaries. Sp is the area
that the surface would have if it were spherical, namely,
Sr' ——47rks', where kF is the radius of the sphere. (v)F is
the velocity of the Bloch electron averaged over the
Fermi surface, and is given by
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5 and A pro6les were utilized to determine
~
Vi,E(k)

~

for these two regions. A small correction was added in
order to take into consideration the change in velocity
in the neck regions. However, this correction is uncertain
because of the oval shape of the necks. The optical
mass computed on the basis of these approximations
has the value of M, = (1.8+0.2) Mp.

The theoretical value is considerably smaller than
that based on optical data. Discrepancies between the
theoretical and experimental optical masses, although
perhaps not so severe, have been observed in the cases
of simple metals, and are usually attributed to the
neglect of many-body effects. In the case of beta brass,
electron-phonon coupling may be of particular impor-
tance. It should be noted that it would take a consider-
ably greater amount of Fermi-surface overlap in order
to bring the two values into agreement through formula
(8) alone.

Mi/Mp= y/y', (10)

in which p' is the free-electron limit of y. With the
experimental value of y and an assumed conduction-
electron density of X,=3/a', the thermal effective mass
is %~=1.13 Mo.

Veal and Rayne have compared their measurements
with a theoretical model based on a nearly free-electron
approximation to the band structure. However, they
have completely neglected the effect of the first (cubic)
zone, and have assumed the Fermi surface to lie
continuously within the second (dodecahedral) zone.
If we take the bands of Fig. 6 to be an accurate descrip-
tion, then this approximation is not a bad one. For
agreement with the measured optical mass, they find a
gap of 4.7 eV at each face of the dodecahedron. On the
basis of this gap, using a twelve-cone model, these au-
thors have computed a neck radius of 0.530&10' crn '
(in the units we have adopted). This may be compared
with our computed gap of 3.5 eV and an associated
equivalent neck radius of 0.53&10' cm '.

Ke have calculated the thermal mass on the basis of
the band structure by making use of Cohen's" formula

M, =Akim(Sp/Si;P)(1/p) p

This formula is very similar to (8) and its evaluation
has been carried out in essentially the same way, yield-
ing the result M,= (0.7&0.2) Mp. As in the case of the
optical mass, the theoretical value is considerably less
than the experimental one. Since the discrepancy is

C. Electronic Speci6c Heat

Veal and Rayne4 have measured the electronic
specific heat of beta brass below T=4.2'K and over a
range of compositions within the P' field. For the
P'CuppZnpp composition, the measured value of the
coeScient of electronic specific heat is y=0.699 mJ
mole ' deg '. The thermal effective mass is defined
through the relation

more than likely due to the neglect of many-body
effects, an attempt to adjust the energy gaps in order to
obtain agreement with the measured thermal mass is
not justified.

It has been demonstrated that the ratio of the thermal
mass to optical mass should be less than unity when the
Fermi surface contacts the zone boundary. The exper-
imental value of this ratio is M,/M, =0.395. The
theoretical value is 0.4. Both values reQect the contact
at the second zone boundary. However, their almost
exact agreement must be considered as fortuitous, in
view of the discrepancies in the masses themselves.

D. Hall Effect

Frank' has measured the Hall coefficient of beta
brass at low temperature and determined a value of
E=—0.6)&10 ' cm' C '. The value for pure Cu is
R= —5.2&(10 ' cm' C—'. The fact that the coeKcient
for the alloy is considerably more positive relative to
that for the noble metal can be given the following
interpretation. In those regions of the Fermi surface
where one or more components of the effective-mass
tensor become negative, the Hall coeIIIicient can become
more positive without actually involving pure hole
conduction in the sense of semiconductor physics.
There are more such hole-like regions associated with
the Fermi surface of beta brass than with that of Cu,
for example, in the corners of the cubic zone (Fig. 8),
and in the "pocket" regions where the Fermi surface
contacts the second zone boundary (Fig. 9).

E. Elastic Constants

Jones" originally suggested that the stability of beta
brass can be described in terms of the large contribution
to the elastic shear moduli due to contact of the Fermi
surface with the (dodecahedral) zone boundary. More
recent measurements of the elastic moduli of this alloy
as a function of composition by McManus' have been
interpreted in terms of such Fermi-surface overlap,
coupled with second-nearest-neighbor interactions. It
has not yet been possible to separate the two contribu-
tions and account for their relative magnitudes within
the framework of the theory of elastic moduli. Never-
theless, the band-structure results are significant to this
theory to the extent of supporting the contention that
Fermi-surface overlap is indeed very important in
beta brass.

VII. THE CELLULAR CALCULATION

A band calculation of the cellular type" has also been
carried out for a few energy states of ordered beta
brass for the purpose of comparison with the Green's-
function results. The cellular method differs from that

'7 H. Jones, Phil. Mag. 43, 105 (1952).
' F. C. Von der Lage and H. A. Bethe, Phys. Re@. 71, 612

(1947).
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of the Green's function in that the Schrodinger equation
is solved directly as a boundary-value problem for the
chosen atomic polyhedra. In most other respects the
two methods have much in common. Thus, a consider-
able amount of the preparatory work for the Green's-
function calculation, such as the choice of atomic cells,
choice of crystal potential, radial equation integrations,
and construction of symmetry-adapted wave functions
can be applied to the cellular calculation.

Of the two methods, the cellular one is least con-
vergent. This is due to the fact that the Bloch conditions
are applied directly to the wave-function expansions as
boundary conditions at selected points on the faces of
the atomic polyhedra. Since these expansions are in
terms of products of radial functions and spherical
harmonics, they are least convergent at the cell bound-
ary. In other words, we solve the Schrodinger problem
as accurately as we can for the chosen potential within
each cell, but at the expense of suitably satisfying the
boundary conditions.

The calculation has proceeded in the following way.
Crystal space was partitioned into %igner-Seitz cells in
the form of truncated octahedra surrounding the atoms
(see Fig. 10). The boundary conditions were applied
at points located at the centers of the square faces
(between. like cells), and a,t points along the circles
where the sphere of radius equal to one half the lattice
constant intersects the hexagonal faces (between unlike
cells). In addition to the application of the boundary
conditions at points, the angular parts of the wave
functions were expanded in Fourier series in the
azimuthal angle n over the aforementioned circles, and
the matching carried out in terms of the Fourier
coefficients. The latter procedure provides a type of
average 6tting of the boundary conditions along the
circles.

For the maximum number of terms retained in the
wave-function expa, nsions (up to I=8), there was

generally more than one possible set of boundary
points. The "best" sets were chosen on the
basis of the "empty-lattice test, " in which spherical
Bessel functions are substituted for the radial functions
and the energy eigenvalues are those for free electrons

FIG. 10. Wigner-Seitz
cells for ordered beta
brass. In the cellular
calculation, the bound-
ary conditions are
applied at points 8 and
at points along the
circles C where the
sphere of radius equal to
one-half the lattice con-
stant intersects the hex-
agonal faces.

FIG. 11.Energy bands
at high symmetry
points resulting from the
cellular calculation. The
energies are measured
with respect to the I'&

level. The length of each
arrow indicates the
amount of variation for
the particular level at its
center, en coun ter ed
when diferent sets of
boundary points were
used.
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shown in Fig. 5. The criterion for the test was agreement;
with these energies to within one or two percent. In a
few instances, it was impossible to fulfill this criterion.

The crystal potential shown in Fig. 3 was used to
determine the radial parts of the wave functions. The
calculation has been carried out for several of the most
important levels at the high symmetry points I', M,
and X. No interior points other than F have been
considered because of the poor convergence of the
method. The results are plotted in Fig. 11.The variation
of the computed energies with the choice of boundary
points is indicated by the lengths of the arrows. All
energies have been measured with respect to the I'» level.

A comparison of Fig. 11 with Figs. 6 and 7 indicates
approximate agreement between the cellular and
Green's-function results to the extent that the ordering
and relative spacing of the levels is similar. In the
cellular bands, the d levels lie between those obtained,
respectively, for the two choices of crystal potential in
the Green's-function calculation. Because of the

significant variation of most of the computed eigen-
energies with the choice of boundary sets, it must be
concluded that the cellular method is not a suitable
one for obtaining accurate bands in a compound such
as beta brass. The chief importance of such results is
the indication of general trends without the necessity
of large-scale electronic computers.

VIII. DISCUSSION

The preceding analysis has concerned the electronic
structure of ordered beta brass as an ideal metal.
It is important that we examine the implications of this
analysis on the theory of the beta phase in its relation-
ship to the other phases of the CuZn-alloy system. In
their phenomenological theory of the IB—IIB alpha-
phase alloys, Cohen and Heine" have conjectured that
there are two principal effects of alloying on the
electronic structure of the parent noble metal. The
first is the raising of the energy of the p-like conduction
levels and the lowerirlg of the s-like conduction levels
at the zone boundary. Since B„(E,in pure Cu, the
result is to reduce the band gaps in o.CuZn, and con-

"M. H. Cohen and V. Heine, Advumces in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd. , London, 1958), Vol. 7, p.
395.
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sequently to "sphericize" the Fermi surface. The second
effect is the addition of electrons to the bands, which,
by itself, should tend to distort the Fermi surface more
severely. An actual band calculation of alpha brass has
not been carried out, so that the predictions of Cohen
and Heine cannot be tested from first principles.

As we have seen, the conduction-band gaps of
P'CuZn are smaller relative to those of Cu. The p-like
levels are below the s-like levels as in the noble metal.
Although the exact positions of the d baods are quite
sensitive to the potential, they are considerably lower
with respect to the Fermi energy than in the case of
Cu, diminishing the importance of s-d hybridization
and contributing to the reduction of p-s gaps. The
nature of these results suggests their possible interpreta-
tion in the light of the Cohen-Heine theory extended
to the limit of the alpha phase and onset of the beta
phase. Within the narrow composition limits of the
latter phase, the chief eGect of adding Zn should be to
fill the bands in rigid-band fashion. Muldawer's"
composition-dependent optical data is consistent with
this viewpoint.

Alpha brass is a true solid solution since it is stable
over a wide range of solute concentration (0—36% Zn),
or between the electron-to-a, tom ratios e/a of 1.0 and
1.36. On the other hand, beta brass is often called an
electron compound because of its very narrow range of
stability around the Burne-Rothery~ ratio e/a=1. 5.
Jones4' attempted to explain these ratios in terms of
the free-electron model and the principle of minimum
free energy. The 1.36 limit of the alpha phase was
interpreted as occurring when the Fermi sphere contacts
the {111}(hexagonal) faces of the octahedral Brillouin
zone of the fcc structure. The 1.5 value for the beta
phase was interpreted as occurring when the sphere
touches the {110}faces of the dodecahedral zone. It is
now understood that the Fermi surface of pure Cu is
considerably anisotropic, already contacting the {111}
faces of the octahedron. A more recent theory of the
alpha-phase boundary is that some "sphericization"
of the Fermi surface coupled with the filling of the bands
as Zn is added to Cu should cause the surface to make
contact with the {200} (square) faces of the zone near
the e/a value of 1.36.

We have presented evidence that in ordered beta
brass measurable contact of the Fermi surface with the
faces of the dodecahedron takes place without severe
distortion of the surface from the nearly free-electron
or one-orthogonalized-plane-wave (OPW) case. Thus
Jones' analysis appears to be correct for the P' phase.

It is this contact which most likely triggers the trans-
formation from the P' phase to the y phase when one or
two percent of Zn is added beyond the P'Cu5oZnso

composition. Although our theoretical analysis and
most of the experimental data used are for the ordered
alloy, much of what we have just said should be relevent
to the stability of the high temperature disordered P
phase. In this case, the first (cubic) zone is absent. The
relatively small energy gap evident at the faces of the
cube suggests that its complete absence should not
critically alter the measured amount of contact of the
Fermi surface with the faces of the dodecahedron, if one
assumes that the one-electron model is meaningful in
the case of disorder. Recent advances in theory, such
as those due to Edwards4' and to Phariseau and
Ziman, 4' support the latter assumption, and further-
more, suggest the possibility of detailed theoretical
treatment of a disordered alloy.

Note added ie proof. Since the submission of the
manuscript, we have received results of the APW band
calculation of beta brass carried out by Arlinghaus of
the MIT Quantum Theory Group. The conduction
bands and Fermi surface agree well with the results of
the Green's-function method. However, the Cu d bands
lie higher than those obtained by our second choice of
potential (Fig. 7). This discrepancy is due to the some-
what different potential used by Arlinghaus, adding
testimony to the sensitivity of the relative positions of
conduction and d bands to the exact nature of the
potential.
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