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Based on the previous theory of superconducting alloys in magnetic fields, we made a detailed study of
the specific heat of the mixed state in superconducting alloys. The jump of the specific heat at the transition
from the mixed state to the normal state is explicitly calculated for various values of rc, the Ginzburg-Landau
parameter. In fields just above the lower critical field II,I, we find the specific heat at lower temperature is
expressed in terms of H, I as

C = (1/4n—)T(d'H„/d T2)B+ (dH„/d T)(aB/a T),
where B= (rr/e)n (n being the number of flux lines per unit area), and the first term, coming from the free
energy associated with a Qux line, is proportional to T.

I. INTRODUCTION
' 'N previous papers' (which we shall refer to as I and
& - II, respectively), we have discussed the magnetic
properties of superconducting alloys aiid shown that
Abrikosov's theory' holds independently of temperature
with a slight modification.

The purpose of this note is, as a continuation of the
previous investigation, to study in more detail the
temperature dependence of the specific hea, t of the
mixed state in superconducting alloys.

In the next section we calculate the specific heat
of the mixed state in the immediate subcritical region
(H.s

—Ho((H, s, where H, s is the upper critical field and
Hs is the external field). It is shown that in this region
the specific heat is expanded in powers of T, the temper-
ature, thanks to the fact that the gap in the excitation
spectrum vanishes in this region. The jump in the
specific heat at the transition from the mixed state to
the norm. al state is calculated for various values of a, the
Girizburg-Landau parameter. We see that the jump in
the specific heat decreases as the temperature decreases
and vanishes as T' at T=O'K for superconductors
having a sufficiently large ~, while it diverges at a
certain temperature for superconductors with ~ satis-
fying 1.01&~&0.707 as pointed out in I.

In Sec. III we consider the situation where the ex-
ternal magnetic field is slightly above H, &, the lower
critical field. In this field region we obtain the following
expression for the specific heat of the mixed state in a
constant external field. Ho

state, 8 is the magnetic induction in a given external
field and. H, 1 is the temperature-dependent critical field.
As is well known, C, vanishes like e ""'"( 'o' ' at low
temperatures. The first term in the right-hand side of
Eq. (1) comes from the free energy associated with each
vortex line and gives rise to a term proportional to T,
which dominates at lower temperatures. The second
term is almost equivalent to one obtained by Goodman'
based on Pbrikosov's theory. This term, corning from
the intera, ction energy between Qux lines, diverges at the
first transition point. The existence of the term pro-
portional to T has been anticipated by Caroli, de
Gennes, and Matricon' through the explicit calculation
of the excitation spectrum of the quasiparticles in the
core region of a Aux line.

In the limit g —+~, using the explicit expression for
H, i(T) and 8, we calculate the temperature dependence
of C, which is in qualitative agreement with recent
experiments on the specific heat of the mixed states. '

1 (H, s—Hp)'
G. —G~= ——Ho'+-

Ssr (2xss(T) —1)P
(2)

II. THE SPECIFIC HEAT OF THE MIXED STATE
IN THE IMMEDIATE SUBCRITICAL

REGION (H.s Hp((H, sl—
In the immediate subcritical region where the ex-

ternal field Ho is slightly smaller than H, 2, Gibb's free
energy is given as'

d'H, 1 dH, j 88
C —C.= TB +-—

4m dT~ dT 8T

where C, is the specific heat of the superconducting

where the subscripts m and m refer to the mixed state

(1) and the normal state, respectively, p= 1.159,' H, s is the
upper critical field, and A:2 is a, temperature-dependent
parameter. '
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The specific heat is obtained from
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C —C = —T [G —G.],
BT

4~ [2.,'(T)—1]P

Fto. 1. The jump
in the specific heat at
the transition from
the mixed state to
the normal state is
depicted for various
values of ~, the Ginz-
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We note here that the jump in the specific heat at the
transition from the mixed state to the normal state is
given by

given in I,

dH, p)'
~C..=—

4pr [2xpP(T) —1]P dT 9

3App 2/mT ' 6 sT '
(4) H„(T)= 1—-!

2 „v'e 3(A 5 ~)

4xiP(0) 1(27rT)' 3 2n-T)4
C C„=ipmp—pT

[2xP(T)—1]P 3k App) 5 App j
27 2~T)' H, p(T) Hp—

!1——
10 happ l H p(0)

8
mp pT=

7t-(3) [2"(T)—1]P

K

for T«T p, (5)

1 28 ) 1 28
1—4 ——f (3) !e —2 ——t (3) !

H, p(T) —Hp
X for T,p T«T.p, (6)—

H, p(T)

In superconducting alloys, where the electronic mean
free path is much shorter than the coherence length, we
have

for T«T.p, (9)

12T p /1 28
0 1—!

—
,t. (3—) Ig,

mr„~'e k2 ~P i

for T,p T«T,p, —(10)

where rt,, is the transport collision time, ~ is the Fermi
velocity, and 800 is the ordering parameter at T=O'K.

In this field region the superconductivity becomes
gapless and there appears no exponential term in T in
the expression of the specific heat.

From both Eqs. (7) and (8) we see that when x is
sufficiently large, the jump in the specific heat decreases
as the temperature decreases and vanishes as T' at
T=O'K, while it diverges at the temperature deter-
mined by x&(T) = 1/K2 for superconductors with

satisfying 1.01)~)1/V2 as pointed out in I. The
numerical results of AC „ for various values of K are
depicted in Fig. 1.

III. IN FIELDS JUST ABOVE THE LOWER
CRITICAL FIELD (Hp) H, i)4~ '(0) 1 2m. T ' 3(2m T4.

AC „=pmppT
[2xpP(T) —1]P 3 App

!
5& Z„ Now let us turn to the other limiting situation where

the external field is slightly above H, ~, the lower critical
field. In this region flux lines are well separated spatially
end the free energy of the mixed state is given by'8 K 1 28

mppT 1—4 ———
l 3 8

7f'(3) PxpP (T)—17

where

p (2 ' i 1
() I

OP

G =G,+ BH,i(T) Hp+- —
for T,p T«T.p, (8) —4s 2e

3m f2~m
Ki(0) = 1.20K ) K= ! 7t (3)

2~'r„e~ pp'

the Ginzburg-Landau parameter, and 0= 1—(T/T, p).
In deriving the above expressions we have made use

of asymptotic expressions of the upper critical field

2~(P+m'+tm) ~'~'-
X P Itp ~

P+mm+im&~ 1 ~3eg )

where 8 is the magnetic induction [= (s/e)ri, where w is
the number of Aux lines per unit area and determined by
BIi/BE=0], H„(T) is the lower critical field, n ' is the
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penetration depth given by

n-'(T)=$(47r'eN/ns)'rtpdL tanh(A/2T)$-')' (12)

and Eo is a Handsel function.
In deriving the above expression we assume that Qux

lines form an equilateral triangle lattice which is the
most stable. '

The specific heat in a constant external field is
obtained by

resistance of type-II superconductivity. Caroli, de
Gennes, and Matricon4 have shown the existence of the
large low-lyiag-state density in the core region of a Qux
line. The present result is in qualitative agreement with
their theoretical prediction.

In a Geld just above the lower critical Geld, Eq. (16)
is much simplified:

1 d'H, i 2 dn dH, i31
C —C,= TB—— +—

4x dT' +dr ZT )
C„—C.= T—(G —G,),

BT

dory dH]88
T ——B+

4x dT' dT BT
(13)

1 B P~3eB3,'Is)dH0t '
+—T

I ii, (»)
2~ Ho —H, i(23rc)s) k dT

where 8 is determined by

&~here we made use of the relation,

Ho Hcl= (n'/—4s)Z (21'o(xlm)+xlmlt1(xlm) ) (14)

Ho —H, i = (3n'/2e) (7m/2)"'(2'/V3eB)""
XexpL —0s(23r/V3eB)')'). (18)

with

From Eq. (14) we have

aB 4edH, ~ 1 dn
=2B —— +- P(x, '—1)Zo(x,„)

BT - n dT n dT

Both C, and do3/dT vanish like e ~'r at lower tempera-

im
~~ n 2~ ~~ ~2 t~~~ ~

~ ~e~ II2
~

ture, and the temperature dependence of the specific
heat is determined by that of H, &.

Unfortunately no general expression for H, i(T) is
available at present, which can be calculated, in
principle, from the free energy associated with a single
Qux line.

In the following we restrict our consideration to the

(x sit (x )+2x ~ (x ))j—i (1$) case of superconducting alloys with large )0, where we
have'

Substituting this expression in Eq. (13) we finally obtain
H, i(T)= smpper3, t)'d tanh(h/2T) ln)0s(T), (19)

1
C —C,= ——TB

4m dT ~s (T)=Ks(0) L1—s (3rT/d pp)'J", for T«T,p. (20)

8edH y 2 dn
X —— +- P(x) '—1)Eo(x(„)

n dT n dT

XL P (xi '&o(xi )+2xi a(xi ))j-' . (16)

Ke assume here that the temperature dependence of
H, i comes only from )0s(T) for simplicity. Strictly
speaking H, i(T) might be affected by an additional
constant term Dndependent of ~s(T)$ as well.

Substituting Eq. (19) in Eq. (17) we obtain

As we will see below the 6rst term, coming from a free
energy associated with ea,ch Qux line, gives rise to a term
proportional to T at lower temperature. The second
term comes from the interaction energy between Qux
lines which diverges at the transition from the super-
conducting state to the norma, l state. The existence of
the term proportional to T in the expression of speci6c
heat has been suggested by Rosenblum and Cardona'
based on the experiment on the microwave surface

' A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fix.
9, 220 (1959) LEnglish transL: Soviet Phys. —JETP 36, 319
(1959)j.

8 Contrary to the statement made in Ref. 2, we 6nd that an
equilateral-triangle lattice is always stable rather than an equi-
lateral-square one. We have compared the corresponding free
energies in a given external Geld, not in a given magnetic in-
duction B.

98. Rosenblum and M. Cardona, Phys. Rev. Letters 12, 657
{1964}.

sripp 3r B 3rT)s

C = T — 1+2
3 4 H, s(0) Appi'

f&3eB~')' B 4 )~T '
+I

E2 a') 33o—3I.i3~'(0)(0o)

+O(T'), for T«T,o, (21)

where )0s(0) = 1.53)0.

Contrary to the assertion made in II, there appears a
term linear in T in the above expression.

When the external field IIO is not so large, we expect
that the above expression gives a correct coeKcient of
the linear term.

IV. CONCLUMNG REMARKS

Ke have thus far discussed the temperature depend. -

ence of the specific heat of the mixed state based on the
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previous theory of superconducting alloys. ' We have
seen that the jump in the specific heat at the transition
from the mixed state to the normal state decreases as
temperature decreases and vanishes as T' at lower
temperature, if the transition is always of the second
order. In the weak-field region we have found that there
appears a term proportional to T in the expression of
specific heat coming froni the free energy associated
with each Aux line. Since this free energy is related to
the lower critical 6eld by

e(T) =(1/4e=)-EX,t(T), ' "

we have an interesting formula:

1 O'II, t 1 8 V3eBq "(dH, r~
s

c„= —ra + r-
4s. dTs 2tr Hs H—.t 2sns1 ~ dT )

+0(e 00118&(&co/&)) for 7((7 s (23)

which may be checked experimentally.
Although most of the detailed calculations are carried

out by using expressions valid only for superconducting
alloys, we believe that, as far as the qualitative features
are concerned, the above results hold quite generally,
independently of the assumption made on the electronic
mean free path.
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The characteristics of a metal with one impurity atom are deduced with a view towards application to
dilute transition-metal alloys. We assume that the band structure of the pure metal is described by a tight-
binding approximation. The scattering problem is expressed in a new representation whose basis functions
have the symmetry of the point group of the metal. For example, it is shown that the Friedel sum rule can be
expressed with a 6nite number of phase shifts, each of them being related to one irreducible representation
of the point group. Two simple examples are studied, and detailed studies of the effects of the degeneracy
and of the potential extension are made.

INTRODUCTION

'HE dilute alloys of transition metals are studied
assuming that the d band structure is well de-

scribed in a tight-binding approximation. It is possible
to describe such an alloy with a self-consistent formaiism
if the potential V„(r) associated with the impurity atom
is assumed to be a perturbation. '%'hen this approxima-
tion is impossible, the potential V~(r) is considered
phenomenologically and is determined by auxiliary
conditions (localization, Friedel sum rule, etc.). Such a
formalism has been presented by Koster and Slater' in
the Wannier representation. However, the applications
are very dificult, not only because the band structure
of pure metals is not well known, but also because a
considerable mathematical complexity is involved in
solving the Slater-Koster equations. The only case

' F. Gautier, Ann. Phys. (Paris) 9, (1964).
s G. F. Koster and J. C. Siater, Phys. Rev. 95, 1167 (1954).

which has been completely solved is obtained by assum-
ing that a matrix s band is perturbed by a localized
potential extending only over the impurity atomic cell.
This model is not directly valid in the case of transition-
metal alloys.

We note that it is possible to solve much more general
cases using a new representation which takes into
account the symmetry properties: This is because the
potential V„(r) induces transitions only between the
basis functions of the same irreducible representations
of the point group.

The first section of this paper is devoted to general
considerations; in the second section the new represen-
tation is shown with some simple applications. This
general formalism is erst applied to the eGect of a po-
tential localized on one atomic cell; the eGect of the
degeneracy on the wave functions and on the displaced
charge is studied (Sec. IC). In the following section the
eHect of a potential extending over the impurity atom
and its nearest neighbors is discussed.


