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Extending the technique presented in our earlier work, the correlation-function expression for the sheai
viscosity is evaluated up to the first-density correction for a classical system of particles interacting with
pair and three-body forces of short range which may have attractive parts and may allow for bound states.
The results contain new terms as a result of the existence of bound states, in addition to those obtained
for the first-density correction to the shear viscosity for the case of purely repulsive forces. In particular,
q~p, g~~, and qgp involve genuine three-body dynamics and give rise to finite contributions to the first-
density correction. Diagrams are provided which help to visualize the various processes contributing to the
shear viscosity. Finally, higher order density corrections and unstable clusters are brieBy discussed.

l. INTRODUCTION

'N our previous work on the transport coefficients of
- - dense gases, ' we presented a method of obtaining a
density expansion for the shear viscosity of classical
simple gases starting-from the autocorrelation function
expression. The method which is a generalization of
Zwanzig's work' employs the resolvent operator ex-
pression of the original correlation-function formula
and the binary-collision expansion for the Ã-body
resolvent operator. Inverting the resulting expansion
series in a way that will avoid singularities arising from
infinite time integrals, we are able to obtain a density-
expansion series for the shear viscosity.

One advantage of this method is that we can avoid
any assumption of a statistical nature such as
Sogolyubov's' or some other kind of molecu)ar chaos
assumption which has been used in other theories. '
Thus, although in I we have restricted ourselves to the
case of repulsive intermolecular forces, our method is
not limited to this case, and in this paper we present
an extension of our work to systems with attractive
forces and bound molecular clusters.

The reasons for choosing this particular problem are
the following: (1) It is impossible to deal with this
problem by the transport-equation approaches so far
proposed. because these theories are based on the fact
that the multiplet-distribution functions asymptotically
become products of singlet-distribution functions. This
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seems to have been justi6ed for systems with repulsive
short-range forces only. ' ' Since the correlation-function
approach is free from this sort of statistical assumption,
it has many advantages. (2) Bound molecular clusters
are supposed to play an important role in the transport
coeflrcients (especially the thermal conductivity) of
dense gases at low temperatures (say, below the Boyle
point), ' as well as in the understanding of the tem-
perature dependence of the first density correction to
the shear viscosity even at higher temperatures. ' The
existing theories ' ' are all based on intuitive models
and it is rather dificult to assess their validity. Thus
it is highly desirable to take a more fundamental ap-
proach to this problem. We might also mention that
the anomalies in the transport coeKcients observed
near the critical region are also attributed to molecular
clusters, '0 although we are still far away from under-
standing such interesting phenomena.

In this paper, we shall consider a system of particles
obeying classical mechanics and interacting with each
other through pair and three-body potentials with a
finite range. We have included the three-body potential
because such many-body forces are expected to be
important when we have bound molecular clusters.

In the next section we shall present a correlation-
function expression for the shear viscosity which in-
cludes the three-body forces and we shall introduce an

' References 1 and 2 of I. D. K. HoBman, University of Wis-
consin, 1964 {unpublished), and the references cited therein;
D. K. Hoffman and C. F. Curtiss, Phys. Fluids 7, 1887 (1964).' D. K. HoGman has improved this by adopting a more general
factorization condition for the multiplet distribution functions
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extent as to allow for the bound states in the transport coe@cients.' F. Waelbroeck, S. LaQeur and I. Prigogine, Physica 21, 667
(1955);F.Waelbroeck, Proceedings of the International Symposigm
on Transport Processes in Statistical Mechanics, Brussels, edited byI. Prigogine (Academic Press Inc. , New York, 1958), p. 382.

8 D. E. Stogryn and J.Q. Hirschfelder, J. Chem. Phys. 3$, 1513
(1959);33, 942 (1960).

e S. K. Kim and J. Ross, J. Chem. Phys. 42, 263 (1965).'e J. V. Sengers, thesis, University of Amsterdam, 1962 (un-
published); A. Michels, J. V. Sengers and P. S. van der Gulik,
Physica 28, 1201, 1216 (1962). A. Michels, J. V. Sengers andI .J.M. de Klundert, ibid 29, 149 (196.3).
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expansion of the LV-body resolvent operator which
generalizes the binary-collision expansion. We shall
also show that the binary-collision operator has
certain singularity for e —+ 0+ arising from the bound
states. In Secs. 3, 4, and 5 we shall present a detailed
calculation of the first-density correction to the shear.
viscosity. Because of the singularity in the binary-
collision operator mentioned, the k representation used
in our earlier work is not always convenient, and q~~,
p«, zz& as well as pU& contribute to the first density
correction. " In Sec. 6 we give a new expression for the
shear viscosity up to the first density correction and
present a diagrammatic representation of the processes
contributing to the viscosity. The density dependence
of contributions from various processes becomes. im-

mediately apparent. In the final section, we shall
discuss brieAy higher density corrections and unstable
molecular clusters.

2. PRELIMINARIES

g(c) =—(VICT) '(IG~(e)I). — (2.2)

G~ denotes the resolvent operator for N interacting
particles, and ( - ) denotes the average over the
equilibrium ensemble. The dynamical Aux I is given by

.V iv

I=K x(p)+2 4'(~j)+ 2 4'(~jk) (2 3)

where

p(ij)= r; Bu(ij)/Br;;"—,
/(ij k)= r;;*Du(i j7i)/Br@——r;&*Du(ij k)//8r, p—

rI,; 8u(ij k)/—arl„",

(2.4)

(2.5)

"We use mostly the same notation as in I.
"Although the three-body potential I(ijk) is a function of two

independent vectors r;; and r;&, we have, for symmetry, expressed
it as a function of three vectors r;;, r;I„rf,;.

"We refer to the equations in l in this manner.

We first present the correlation-function expression
for the shear viscosity which is valid in the presence of
shor t-range three-body intermolecular potentials in
addition to short-range pair potentials and obtain an
expansion for the resolvent operator G~ which is a
generalization of the binary-colli, sion expansion in I.

The system we consider consists of )V classical mon-
atomic particles contained in the volume U which
interact with each other through the three-body inter-
molecular potentials" u(i jk) as well as the pair
potentials u(ij). Here i, j, k, denote particles as
well as their coordinates. Then the correlation-function
expression for the shear viscosity" )I(2.1)—I(2.13)j is

g = lim lim q(e), I (X/ V) = co?lstantj (2.1)
e~0+ X, V—~~

where

where the last term in (2.3) is due to the three-body
forces.

Since we have three-body interactions, the binary-
collision expansion for G~ used in I is not applicable,
and it is necessary to generalize it. This can be done
most easily by separating the various processes con-
tributing to G~ into those involving no interactions,
those involving single-binary collisions, those involving
two successive binary collisions, those involving triple
collisions and so on. '4 The processes not explicitly
mentioned above involve more than three particles.
More explicitly, we can write

tv=Go Q'GoT Go++ P' GOT GOTpGp

Gor (ijk)Gp+ (terms dc'cribing processes
i&j'&A:

involving more than three particles), (2.6)

where T is the binary-collision operator defined in I,
and r(ijk) represents the triple collision of the particles
i, j, and k. The explicit expression for r(123) can be
obtained by considering (2.6) for a fictitious system in
which interactions exist only among the particles 1, 2,
and 3. Thus, we have

r(123)= —G 'G (123)GO-'+G ' —Q T.

+P P' T GOTp, (2.7)

where the summations are over the pairs chosen from
the particles I, 2, and 3, and exclude consecutive
appearances of the same pair.

For repulsive short-range interactions, we have
shown in I that the quantities VT (k~~k'~) are
nonsingular as e ~ 0+ due to the fact that two particles
initially within the range of intermolecular forces will
later be far away from each other. This property has
been used in the analysis in I. For attractive forces
where there is a possibility of the formation of bound
molecular clusters, this property need not apply. We
define bound molecular clusters in the following sense:
a bound molecular cluster consisting of the particles 1,
2, 3, - . -, s at the time zero is meant to designate a state
of motion at the time zero in which every one of these
particles ahvays stays within the force range of the other
particles of the set when the motion of these isolated s
particles is followed from the time zero into the infinite
future. (An equally satisfactory definition is obtained
by following the motion into the infinite past. Our
choice here is due to the fact that we are choosing the
direction of time such that all the interesting events
occur in the past. In general, these two definitions are
equivalent. )

' The term "collision" is used here in a broader sense includil'lg
the processes that involve bound states.
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l= (k,+k,) (p,+p,)/2+ P k,'p;
2=3

= (ki'+k2') (pi+p2)/2+2 k''. p'&0.
4=3

This enables us to restrict our considerations to the
case l= 0 when VT12(k~

~

k'~) can be written as
VT12(k

~

k'), where k—= (ki—k2)/2 and k'—= (ki' —k2')/2.
(2) VT12(0~0) has a vanishing contribution from

bound states of motion of particles 1 and 2.
(3) VT12(0~k) and VT12(k~0) where k/0 have in

general finite contributions from bound states of motion.
(4) UT12 (k

~

k') where k,k'QO in general has a
singular contribution of the form e ' from bound states
of motion as e —+0+.
As we shall see in Appendix A, the last result is obtained
by averaging contributions oscillating in time which
describe the internal degrees of freedom of the bound
pair. Because of the property (4), terms additional to
those derived in I appear in the formal expression for
the first density correction to the shear viscosity.

Before embarking on the actual calculation we shall
review the method we have employed in I and are
going to use in this paper, and make some general
remarks. Use of the expansion (2.6) in (2.2) yields 2)(e)
as a sum of expressions of the following type:

dx'
p'" Jib(o)J2 (r= 1, 2, 3),

V
(2.8)

where Jy and. J2 are appropriate functions of x» g»
*„where x;=r;, p;, and where h(e) is an operator
expressed in a formal density series as

h(e) = e '{1+p(e 'hio+hii)
+P'(e 'hso+e 'h21+h22)+. }) (2.9)

where the h's are finite as e —+0+. Since this series
contains powers of e ', we cannot take the limit c ~ 0+
at this stage. Instead, we invert the series. That is,
writing (2.8) as

dS.
J LB '(o)j 'J (2.10)

V

we expand 8—'(e) in p, and ascertain that the resulting

Here we have de6ned bound states in a rather strict
sense: All the bound states have infinite lifetimes if
they are left alone. Recently, however, the importance
of metastable or quasibound states with finite lifetimes
has been pointed out. ' We shall discuss this question
in the final section.

Returning now to the binary-collision operator, the
d.etailed investigation of the properties of T,2 as e ~0+
given in Appendix A has shown that:

(1) VT,2(k~~k'~) is nonsingular if

3. CALCULATION OF g~~

Since many of the calculations can be carried over
from I, we shall be rather brief in presenting the calcu-
lations except for the differences arising from the bound
states of motion. The general expression for the kinetic
part of the shear viscosity is given by I (3.3) and is

P
nxx(e) = E&*(k'—) dp"x(pi)&(0~k")

gT kN

where
&&f1+(»—1)(P»)x(pi)C (p"), (3.1)

Corresponding to the expansion (2.6), we can write

(3.1) as

rex (e) = rixx' (e)+2)xx' (e)+nxx'(e)
+nxx" (e)+ . (3.2)

"J. A. McI.ennan and R. J. Swenson, J. Math. Phys. 4, 1527
(1963);S.Ono and T. Shizume, J.Phys. Soc. Japan j.8, 29 (1963).

"In view of this, the statement in the paragraph preceding
(3.29) in I that the part involving more than three particles does
not contribute is wrong. In actual calculations there, we did sot
neglect such contributions. A siimiiar remark applies to l(4.14)
and I(5.7). This by no means a6ects the validity of our calcu-
lations. We also note that the T in I in the paragraph preceding
I(2.27) should read 2' (k~)k'~).

series

h (c)—e P (bio+ chil)+P Lhlohll+hllhlo h21

+e—'(bio' —boo)+«(hit' —h22)7+ . (2.11)

has a well-defined limit as e —+ 0+.Namely, as e —+ 0+,
& '(0+) = —p(hio)++p'(I 1)++ . , (2 12)

where
Iil=~lohll+~llhlo h21+2 (~10 h20) (2.13)

is nonsingular as e —+0+. (See I, Ref. 15, for the
notation. ) However, the procedure, for instance, of
terminating the series in (2.12) at the first term is
justifiable only if all the terms of order of e '(p/e)"
(22=0,1,23. . .) in (2.9) are correctly represented by
Le—PIrioj '. This has been proved in certain cases."
Here we shall assume that this procedure, from which
we obtain a well-defined density expansion for the
transport coeS.cients, is valid. In Sec. 6, we shall make
this more convincing by a diagrammatic representation
of the contributing processes.

From the foregoing it is now clear that, in the formal-
density expansion resulting from substituting (2.9) into
(2.8), we have to retain the terms of order (p/e)" with
v=0, 1,2, . to get the shear viscosity in the low-

density limit, and must retain the terms of order
P(P/e)" with 22=0,1,2, for its erst density cor-
rection. "This is in accordance with the fact that e ' is
eventually "renormalized" to become proportional to
p

' (see Sec. 6).
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(3.3)
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where
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P

(3.5 nxx(p) =

where

dpix(pi) B(p)x(yi) v (Pi)+o(t ') (3 12)
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resolvent operators corre
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of these particles, the motions which involve single
binary collisions and those involving two successive
binary collisions, have been subtracted. Thus, we have
to consider only (a) the triple collisions where no bound
states are involved, (b) the triple collisions involving
one bound pair of particles where creation or destruction
of the pair„or the destruction of one pair and creation
of another, may occur, (c) the three-particle bound
states. Some typical triple collision processes are shown
schematically in Fig. 1. (For simplicity, in this and.

other diagrams we have not included processes involving
the so-called "hypothetical collisions. ")

%e now study the contribution of these three types
of motion to t"(pi) which we rewrite as

OQ

t" (pi) = —— dysdpse' dte "8(p',—t)
2 J 0

y, (1+(p„+(p„)q (p,) s (p,), (3.20)

where

drsdrsS 4"(123) exp{—PU(123)) (3.21)

and 5 4"(123) is the contribution to the three-particle
streaming operator coming from the three types of
motions (a), (b) Durther subdivided into (bt) —(b4)],
and (c) occurring during the time interval ( t, 0);—
5 4"(123) is defined explicitly by Eq. (84). For the
process represented by Fig. 1(a) the region of the co-
ordinate space rs which contributes to B(y', t) consists
of a cylinder of the length tempt

—ysL/4N with cross
section of the order of the square of the force range
plus two end sections which do not increase indefinitely
as t increases or, loosely speaking, which are 6nite for
large t. For fixed r2, the contributing region of r3 stays
finite for large t Thus B(y'.; t) contains a term which
grows linearly in t for large t. This term produces a
finite contribution to t"(pi) for e —+0+ due to the
equality

2 512
time 0

(a) (b1) (bp) (bs)
time -t

(by) (c)

FIG. 1. The processes contributing to the triple collision t".
Here and in Figs. 3, 4, and 7, the time runs from bottom (—t)
to top (0).

Therefore, this process also produces a 6nite contri-
bution to t"(pi). Finally, for the process Fig. 1(c), the
contribution comes entirely from the 6nite region
around ri, and contains no term in 8 (y', t) which grows
linearly in t for large t. Therefore, this process should
not contribute to t"(pi) as e-+ 0+. Thus we have been
able to verify that t"(pi) defined by (3.19) is a non-
singular operator as e~0+. For repulsive pair po-
tentials of short range, the finiteness of t"(pi) follows
immediately from the finiteness of T and from I (3.30)
and I (3.31) by noting that the terms for which at
least one of the Gs in I (3.31) equals e ' give contribu-
tions of order X ' for e/0 and vanish as E~ .

In Appendix 8 we obtain explicit expressions for
t+"(pi) in the form of five-dimensional surface integrals
as has been obtained by Green" recently for the case of
repulsive intermolecular forces.

'gKU(e) =
YET

d* x(yi)G~

(X—1)(S—2)
X (&'—1)it (12)+ 4 (23)

2

4. CALCULATION OP g~U AND gU~

Since &pal equals pzU for classical systems, ' we shall
consider only one of them, namely, g~U. For the
moment we do not consider the part of the dynamical
Aux I which involves the three-body forces Lthe third
term of (2.3)g. Then, considering the identity of par-
ticles, g~~ can be written as

Q2 e "tdt=1. (3.22)

Evidently in this limit the remaining term in 8(p'; t)
which stays finite for large I, gives only a vanishing
contribution to t"(pi). A similar analysis can be applied
to the processes of Fig. 1(bi), (bs), and. (bs). The con-
tributing region of r2 space is a small sphere around ri
of diameter about equal to the attractive force range,
whereas that of r3 space contains a cylinder whose
length grows linearly in t, and thus gives rise to a 6nite
contribution to t'(yi) as e~0+. For the process of
Fig. 1(b4), when rs is arbitrary, the region of rs that
contributes is a cylinder with one end at r& which
increases its length as t. If we 6x r2 somewhere in this
cylinder then the contributing region of r3 is fixed
within the distance of intermolecular force range.

where by I (4.5) and I (4.10) we find

r)KU'(e) =o, (4 3)

p2

'VKU (e) dxtdxsx (pi) 7 isGsf(12)

Xexp( —PN(12))e(p')+0( -'ps), (4.4)

"M. S. Green, Phys. Rev. 136, A905 (1964).

Use of the expansion (2.6) yields the following ex-
pansion for rfKU(e):

gKU(e) =r)KU'(e)+gKU'(e)+rfKU"(e)+ . , (4.2)
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gKU
ICT

dp, dx2y (p,)X,(12)e&y2), 4.22
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Al{pl} = ~ ' —~ PZ{P1)A1{P1)

&)(pt'I = & 'ti+e 'px(p, j] '-+p zq(p)} as e ma+
~{P1) "—-1

1
Pg{P))${P1)

P ~+{PI) {c}

FIG. 5. The processes contributing to the zeroth order
term in density of the shear viscosity.

is independent of p becomes apparent when the
factors appearing in Fig. 5(c) are multiplied.

Before turning to the first-density correction we
discuss the meaning of the modified propagator. The
unmodified propagator e '= Go(0

~
0) describes the

motion of the noninteracting particle 1 in a homo-
geneous, spatially uncorrelated situation, and e ' can
be looked upon as the lifetime of such a state of motion
in the absence of interactions among particles; thus it
can become infinite as e —+ 0+. The modification of the
propagator introduces the collisions, and thus makes
this lifetime finite. In other words, the modified
propagator p '2 '(pi) canbe considered tobe ameasure
of the mean free time between collisions of particle 1.
It is well known that Z(pi), the linearized Holtzmann
collision operator, is positive definite except when
operating on the collision invariants. "

Turning now to the first-order. -density correction,
similar considerations enable us to construct the
diagrams for p"' as we see in Fig. 6. qggg"' is repre-
sented by Fig. 6(a), where a pair of wavy lines repre-
sents the propagation of a freely moving, spatially
correlated pair of particles created by Fo(r») in ti~ (3.6).
The square represents the source of the spatial cor-
relation, here Fp('pi2). Figure 6(b) describes gird„"'
where the circle represents the triple collision. . g~U

"~

is represented by Fig. 6(c) where the hatched part is
the modified propagator of the pair of interacting
particles which is represented in Fig. 6(d). There a
pair of helical lines represents the unmodified propa-
gator for the pair of interacting particles. This pair
of particles can undergo repeated colEsions with other
particles (actually triple collisions) giving rise to the
modified propagator for the pair in just the same way
as we obtained the modified single-particle propagator
in Fig. 5(b). The modified propagator for the pair is
again the measure of the mean free time between
collisions for. the pair. Finally Fig. 6(e) d.escribes
qUU&ii(c). The p dependence of q "i again becomes
apparent by multiplying the factors appearing in each
diagram.

Let us now go brieQy to the case of repulsive inter-
molecular forces. Figure 5 and Fig. 6(a,), (b) remain
unchanged. Since two particles cannot stay close
together, the modified two particle propagator splits
into two lines, and Fig. 6(c) reduces to Fig. 6(c'). For
the same reason, no contribution is expected from Fig.
6(e) representing iliiii&" in agreement with I.

P
'Z-' P't1+X4

-1 2 r -1 -1pZ+p t pg.

{b)

~ .r r r r r r r r r r r r r r r r r r r r r r r r r r r r g

p {o1VTGof+ lo)4

{c)

A (12)EG~(12) = 6 (12) —6 pI (12)A (12+6 (12)

A2(12) = C 1+& pl (12) ~p T+ '(12) OS E' ~O+

lVZTs r~ r r r r r r r r r"r771'rgb r r r r r x

P ~+ P &62/8+4 '

I IG. 6. The various processes contributing to the
first-density correction to the shear. viscosity.

"I.Waldmann, EIandblch der Physik, edited by S. Fluggc
I',Springer-Verlag, Berlin, 1958), Vol. XII, p. 365.

'7. CONCLUSION AND SOME REMARKS

In the foregoing sections we obtained an explicit
expression for the first density correction to the shear
viscosity for systems with attractive forces including
the bound states. %e assume that at densities of interest
the numbei of bound clusters is small (becoming
smaller as the size of the clusters becomes larger)
compared to X.%e have seen that only the bound pairs
contribute to the first density correction. In higher
density corrections, bound states involving more par-
ticles contribute. In the mth density correction the
largest bound cluster involved consists of e+ 1 particles.

In the present work, we have defined. the bound
states in such a way that they have infinite lifetimes
when left isolated. However, recently Kim and Ross'
have pointed out that the states in which the particles
stay close together for a long but finite time, the so-

called "quasibound. " and "metastable" states, cannot
be ignored in understanding the temperature de-

pendence of the first density correction to the shear

viscosity. In our theory, we have classified these clusters
with finite lifetimes as unbound states. Such a classifi-

cation is justified in obtaining the entire density
expansion of q(p) in a strictly mathematical sens'e. In
practice, however, we are more interested. in the
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density expansion as an approximation for. 1)(p) for a
small but finite p. Then our classification, in effect,
completely neglects the collisions of these clusters
(while they form "quasi" or '"metastable" bound
states) with other particles. This is only justified if
the average lifetime of these clusters is sufficiently
small compared to the mean free time between their
collisions with other particles. In the opposite case,
these clusters behave as though they are true bound
states because they undergo a great many collisions
before spontaneous disintegration. ' This situation can
be treated if we relax the definition of bound clusters
so as to include those clusters whose lifetimes are very
large compared to the mean free time between collisions.

If these two time scales are of the same order of
magnitude, the situation becomes more subtle. As an
illustration, we consider the contribution of these
"metastable" or "quasi" bound states with natural
lifetime ro to p«. Roughly speaking this contribution
would have a form

const. &&p2(np+r2 ') ', (7 1)

where (np) ' designates the mean lifetime of the bound.
states due to collisions with other particles. In a strictly
mathematical sense there is no first density correction
arising from these bound states. However, for np& ro ',
the convergence of the density-expansion series will
become very poor and may, in fact, diverge. Thus in
this case a separate treatment which does not make
use of density expansions is required. When ap))70 ',
(7.1) is proportional to the density and produces a,

contribution to the f)rst density correction to r) (see
Refs. 8 and 9). It is clear that the resulting term
cannot be looked upon as part of an analytic expansion
in powers of the density since (7.1) is proportional to
p' for small enough p.

APPENDIX A: SOME PROPERTIES OF THE
BINARY COLLISION OPERATORS

Here we discuss the properties of the binary-collision
operator T12 in the limit a~ 0+. In I, we have shown

by using the formula

~ (kA
~
V[/ (2) S (0)]

~

k'N)

X [&+i(P~ k"v/m)]. (A3)

Since interactions exist only between the particles 1
and 2, we can separate out the relative motion of the
particles 1 and 2 from the rest. The rest consists of the
motion of the noninteracting particles 3 Ã and the
center of mass motion of the particles 1 and 2, and
gives rise to a factor e '" in the integrand, where

i=—(k1+k2). (F1+1)2)/2+2 k. u'.
s—3

Note that k,'+k, '= k,+k, and k =k;, i=3, 4, . ..&'.

Therefore, when l~0, the integrand has an oscillating
factor in time, and no singularity appears as e ~ 0+.
This enables us to limit our consideration to the case
1=0, and to the relative motion of the particles 1 and 2.
Writing explicitly only the relative wave vector
k—= (k1—k2)/2, and introducing the relative momentum
p—= (p1—p2)/2 and the reduced mass p= m/2, we have

VT 2(k~k)=— dte —"(e+ip k/p)

)& (k
~
V[S,&2) —5,&')]

~

k') (a+ip k'/p) . (A4)

According to the definition of the matrix element [see
I(3.2)j, the above expression actually involves an
integral over the relative coordinates r~2. For small
enough values of the relative momentum p, the region
of x~2 splits into the region in which the particles 1 and
2 form a bound cluster and that in which these particles
remain unbound. Corresponding to these two regions
we write

VT12 (k
~

k') =- VT12' (k
~

k') + VT12"(k
~

k'), (AS)

resolvent operators. The general matrix element of
(A2) is [see I(3.2), I(3.7), and I(3.8)j

pX, QX-
(Ae ' 6+2

7Ã

T12 812 ~12G2(12)012 (A1) where
that in the absence of bound states, T&2 is nonsingular
as e ~ 0+ simply because the two particles 1 and 2
initially within the range of mutual interactions will
6nd themselves far apart after a sufficient lapse of time.
Obviously, one cannot expect this if one allows for
bound molecular clusters, and thus a separate investi-
gation is necessary.

We shall start with an alternative formula for T~2

dte "G '[S,")(12)—S &~ ]Go ' (A2)
0

which follows from I(2.25) and the definitions of the

dte "(e+ip k/p)

)& (e+ip k'ip), (A6)

where E1,(12) is a function of the relative coordinates
and momerita of particles 1 and 2 which takes the value
1 when these particles form a bound pair and is zero
otherwise. VT12"(k~k') has the same form as (A6)
except that E2(12) is replaced by 1—E2(12). Since
VT»" (k~k') is nonsingular, we need examine only the
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where Z(yi) is the Boltzmann collision operator defined

by (3.5). This result can be applied repeatedly to (C5)
to yield

~„(1,) = dI,LZ(P,)]-V(OI.G, (»)y(12)

Xexp( —PN(12)} ~0)C(y')+O(e). (C10)

Thus, in qxz we can replace I'(12) by Z(yi) and obtain

dyidp2Z+
—'(y, ) dr2LeG2('12)]+

Ke shall denote these operands in general by a symbol
Z(12). We now divide Z(12) into two terms: one having
contributions only from the bound states of the pair 12
at the time t=0, the other from unbound states at the
time t= 0. The former can be generally expressed in the
form:

eG2 (12)Z p(12) (C13)

XP(12) exp( —PN(12)}C&(p') (C11)

which reduces to I(4.16) and I(4.17) if we notice that
eG2(12) here can be replaced by —Ti2Go because of
(4.12).

We now turn to the case with attractive inter-
molecular forces. Since we need I'(12) in (4.20), (4.21),
(4.23), (5.8), and (5.9), and also considering the remarks
made at the beginning of this Appendix, we must
consider I'(12) operating on expressions of the form:

I'"(12)eG~(12)P(12) exp( —Pu(12) }C(p') . (C12)

since in this ca,se the interaction between the pair
persists after collisions. Here Zt, (12) is nonvanishing
only in the region of bound pairs, and we have ignored
the three-particle bound states because they do not
contribute to (C12) for n, =1 as e —& 0+. That this is
also true for e) 1 can be seen by repeated application
of the result we shall obtain for I'(12) below. Then, we

can write
Z(12) = eGg(12)Zg(12)+Z„(12), (C14)

where Z„(12) is the contribution from the unbound
states.

Now, we can show that

I'(12) eG2 (12)Zg (12)

is nonsingular as e ~ 0+ in exactly the same way as
we have shown the finiteness of c'gxp"(e) in Sec. 4.
Next, we consider

I'(12)Z„(12).

This contains two kinds of processes as typified by
Figs. 1(a) and 1(b4), respectively. The former involves
no bound states and can be treated as though no
attractive forces exist. This case was discussed earlier
in this Appendix, and no singularity appears for F(12)
as a~0+. In the latter kind of processes which

accompany formations of bound pairs, for Axed p3, the
contributing region of r3 is confined to a finite volume
and no singularity is expected in I'(12) as e —+0+.
Thus, we have been able to show that in each case of
interest I'(12) remains finite as &~ 0+. As a conse-
quence of these results, we can express X(12) introduced
in (4.22) and (4.23) in the same form as (C14) namely,
by (4.24).


