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Extending the technique presented in our earlier work, the correlation-function expression for the shea:
viscosity is evaluated up to the first-density correction for a classical system of particles interacting with
pair and three-body forces of short range which may have attractive parts and may allow for bound states.
The results contain new terms as a result of the existence of bound states, in addition to those obtained
for the first-density correction to the shear viscosity for the case of purely repulsive forces. In particular,
nKU, MUK, and nuv involve genuine three-body dynamics and give rise to finite contributions to the first-
density correction. Diagrams are provided which help to visualize the various processes contributing to the
shear viscosity. Finally, higher order density corrections and unstable clusters are briefly discussed.

1. INTRODUCTION

N our previous work on the transport coefficients of
dense gases,! we presented a method of obtaining a
density expansion for the shear viscosity of classical
simple gases starting from the autocorrelation function
expression. The method which is a generalization of
Zwanzig’s work? employs the resolvent operator ex-
pression of the original correlation-function formula
and the binary-collision expansion for the N-body
resolvent operator. Inverting the resulting expansion
series in a way that will avoid singularities arising from
infinite time integrals, we are able to obtain a density-
expansion series for the shear viscosity.

One advantage of this methol is that we can avoid
any assumption of a statistical nature such as
Bogolyubov’s® or some other kind of molecular chaos
assumption which has been used in other theories.!
Thus, although in I we have restricted ourselves to the
case of repulsive intermolecular forces, our method is
not limited to this case, and in this paper we present
an extension of our work to systems with attractive
forces and bound molecular clusters.

The reasons for choosing this particular problem are
the following: (1) It is impossible to deal with this
problem by the transport-equation approaches so far
proposed because these theories are based on the fact
that the multiplet-distribution functions asymptotically
become products of singlet-distribution functions. This
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seems to have been justified for systems with repulsive
short-range forces only.%¢ Since the correlation-function
approach is free from this sort of statistical assumption,
it has many advantages. (2) Bound molecular clusters
are supposed to play an important role in the transport
coefficients (especially the thermal conductivity) of
dense gases at low temperatures (say, below the Boyle
point),”8 as well as in the understanding of the tem-
perature dependence of the first density correction to
the shear viscosity even at higher temperatures.® The
existing theories 7 are all based on intuitive models
and it is rather difficult to assess their validity. Thus
it is highly desirable to take a more fundamental ap-
proach to this problem. We might also mention that
the anomalies in the transport coefficients observed
near the critical region are also attributed to molecular
clusters,” although we are still far away from under-
standing such interesting phenomena.

In this paper, we shall consider a system of particles
obeying classical mechanics and interacting with each
other through pair and three-body potentials with a
finite range. We have included the three-body potential
because such many-body forces are expected to be
important when we have bound molecular clusters.

In the next section we shall present a correlation-
function expression for the shear viscosity which in-
cludes the three-body forces and we shall introduce an
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expansion of the N-body resolvent operator which
generalizes the binary-collision expansion. We shall
also show that the binary-collision operator has a
certain singularity for e — 04 arising from the bound
states. In Secs. 3, 4, and 5 we shall present a detailed
calculation of the first-density correction to the shear
viscosity. Because of the singularity in the binary-
collision operator mentioned, the k representation used
in our earlier work is not always convenient, and nxx,
nuk, nxu as well as nyy contribute to the first density
correction. In Sec. 6 we give a new expression for the
shear viscosity up to the first density ‘correction and
present a diagrammatic representation of the processes
contributing to the viscosity. The density dependence
of contributions from various processes becomes im-
mediately apparent. In the final section, we shall
discuss briefly higher density corrections and unstable
molecular clusters.

2. PRELIMINARIES

We first present the correlation-function expression
for the shear viscosity which is valid in the presence of
short-range three-body intermolecular potentials in
addition to short-range pair potentials and obtain an
expansion for the resolvent operator Gy which is a
generalization of the binary-collision expansion in I.

The system we consider consists of IV classical mon-
atomic particles contained in the volume V' which
interact with each other through the three-body inter-
molecular potentials® #(ijk) as well as the pair
potentials #(ij). Here 4, j, &, --- denote particles as
well as their coordinates. Then the correlation-function
expression for the shear viscosity’ [1(2.1)—1(2.13)] is

n=1lim Lm 7(e¢), [(N/V)=constant] (2.1)
e—-0+ N, Vo
where
n(e)= (VKT)IGn(e)). (2.2)

Gn denotes the resolvent operator for N interacting
particles, and (-:-) denotes the average over the
equilibrium ensemble. The dynamical flux I is given by

1= Z x(p1)+Z Y(ij)+ <):< Vv(igk),  (2.3)
1<J 1<J
where
x(p)=ppi¥/m, (2.4)
Y (i5)=—ry7ou(if)/dry,
ll/(’b]k)E -—rij’”au (ij/a)/anjﬂ— r,-kzau(ijk)/ar,'ky (25)

- rkfau(ijk)/arkiy 5

11 We use mostly the same notation asin I. .

12 Although the three-body potential «(ijk) is a functlon of two
independent vectors r;; and rjx, we have, for symmetry, expressed
it as a function of three vectors ri;, ¥jx, T&i.

13 We refer to the equations in I in this manner.
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where the last term in (2.3) is due to the three-body
forces.

Since we have three-body interactions, the binary-
collision expansion for Gy used in I is not applicable,
and it is necessary to generalize it. This can be done
most easily by separating the various processes con-
tributing to Gy into those involving no interactions,
those involving single-binary collisions, those involving
two successive binary collisions, those involving triple
collisions and so on.* The processes not explicitly
mentioned above involve more than three particles.
More explicitly, we can write

=2 GoTGot+2 2" GoT oGoT 4Gy
@ a B

b
— 2. Gor(ijk)Go+ (terms describing processes
<<k
involving more than three particles),

(2.6)

where T, is the binary-collision operator defined in I,
and 7(77k) represents the triple collision of the particles
i, j, and k. The explicit expression for 7(123) can be
obtained by considering (2.6) for a fictitious system in
which interactions exist only among the particles 1, 2,
and 3. Thus, we have

r(123) = — Gy 1G5 (123)Gy 1 +Gi ' — 3 T

+Z Z@ TuGoTs, (2.7)
where the summations are over the pairs chosen from
the particles 1, 2, and 3, and exclude consecutive
appearances of the same pair.

For repulsive short-range interactions, we have
shown in I that the quantities VZ,(k¥|k'Y) are
nonsingular as e — 0+ due to the fact that two particles
initially within the range of intermolecular forces will
later be far away from each other. This property has
been used in the analysis in I. For attractive forces
where there is a possibility of the formation of bound
molecular clusters, this property need not apply. We
define bound molecular clusters in the following sense:
a bound molecular cluster consisting of the particles 1,
2,3, ---, s at the time zero is meant to designate a state
of motion at the time zero in which every one of these
particles always stays within the force range of the other
particles of the set when the motion of these isolated s
particles is followed from the time zero into the infinite
future. (An equally satisfactory definition is obtained
by following the motion into the infinite past. Our
choice here is due to the fact that we are choosing the
direction of time such that all the interesting events
occur in the past. In general, these two definitions are
equivalent.)

14 The term ‘““collision” is used here in a broader sense including
the processes that involve bound states.
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Here we have defined bound states in a rather strict
sense: All the bound states have infinite lifetimes if
they are left alone. Recently, however, the importance
of metastable or quasibound states with finite lifetimes
has been pointed out.? We shall discuss this question
in the final section.

Returning now to the binary-collision operator, the
detailed investigation of the properties of Ty, as e — 0+
given in Appendix A has shown that:

(1) VT1,(k¥|k'Y) is nonsingular if

1\7
I= (ky+ko)- (pr+p2)/2+ 2 kieps

=3

N

= (ki'+ky)- (pi+p2)/2+ 2 ki'-p#0.

=3

This enables us to restrict our considerations to the
case [=0 when VTy(k¥|k’Y) can be written as
VTi2(k|Kk'), where k= (k;—k»)/2 and k’'= (k,/—k')/2.

(2) VT12(0|0) has a vanishing contribution from
bound states of motion of particles 1 and 2.

(3) VT12(0]k) and VTi2(k|0) where k40 have in
general finite contributions from bound states of motion.

(4) VTio(k|kK’) where kk'#=0 in general has a
singular contribution of the form ¢! from bound states
of motion as e— 0.

As we shall see in Appendix A, the last result is obtained
by averaging contributions oscillating in time which
describe the internal degrees of freedom of the bound
pair. Because of the property (4), terms additional to
those derived in I appear in the formal expression for
the first density correction to the shear viscosity.

Before embarking on the actual calculation we shall
review the method we have employed in I and are
going to use in this paper, and make some general
remarks. Use of the expansion (2.6) in (2.2) yields 7(e)
as a sum of expressions of the following type:

dx"
pf/flé(e)JZ-I}— (r=1,2,3), (2.8)

where Jy and J, are appropriate functions of x1, %3, - -
%, where x;=r; p;, and where 8(e) is an operator
expressed in a formal density series as

8(e)= e {1+ p(err0+111)
+p2 (e 2hoot € thorthoe)+- - -}, (2.9)

where the 4’s are finite as e— 0-. Since this series
contains powers of ¢!, we cannot take the limit e — 0+
at this stage. Instead, we invert the series. That is,
writing (2.8) as

g d
v JLE O (2.10)

we expand §(e) in p, and ascertain that the resulting
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series

&71(e) = e—p(h1o+ €h1) +p*[ hok1r+hurlio— hot
+ e (hio*— hao)+ (a2 —hag) |+ -+ (2.11)

has a well-defined limit as e — 0--. Namely, as e — 0+,
E1(0+)=—p(ho)4+p* (b))t - -, (2.12)

where
= hiohut+huko—hate? (h102—h20) (2-13)

is nonsingular as e— 0+4. (See I, Ref. 15, for the
notation.) However, the procedure, for instance, of
terminating the series in (2.12) at the first term is
justifiable only if all the terms of order of €!(p/e)"
(n=0,1,2,3---) in (2.9) are correctly represented by
[e—phio]t. This has been proved in certain cases.’®
Here we shall assume that this procedure, from which
we obtain a well-defined density expansion for the
transport coefficients, is valid. In Sec. 6, we shall make
this more convincing by a diagrammatic representation
of the contributing processes.

From the foregoing it is now clear that, in the formal-
density expansion resulting from substituting (2.9) into
(2.8), we have to retain the terms of order (p/e)” with
n=0,1,2, --- to get the shear viscosity in the low-
density limit, and must retain the terms of order
p(po/e)* with #=0,1,2, --- for its first density cor-
rection.!® This is in accordance with the fact that e is
eventually “renormalized” to become proportional to
o~ (see Sec. 6).

3. CALCULATION OF 9xx

Since many of the calculations can be carried over
from I, we shall be rather brief in presenting the calcu-
lations except for the differences arising from the bound
states of motion. The general expression for the kinetic
part of the shear viscosity is given by I (3.3) and is

(= ¥ P () ] dp™x ()G (0 k)
KT xy

X[+ @W=1Deux(@)2®Y), G.1)

where

@(pn)zé o(5).

Corresponding to the expansion (2.6), we can write
(3.1) as

kg () =nrx’(€)+nxx! (6)+nxx*(e)
+rx(e+---. (3.2)

15 7. A. McLennan and R. J. Swenson, J. Math. Phys. 4, 1527
(1963) ; S. Ono and T. Shizume, J. Phys. Soc. Japan 18, 29 (1963).

16 In view of this, the statement in the paragraph preceding
(3.29) in I that the part involving more than three particles does
not contribute is wrong. In actual calculations there, we did not
neglect such contributions. A similar remark applies to 1(4.14)
and I(5.7). This by no means affects the validity of our calcu-
lations. We also note that the T, in I in the paragraph preceding
1(2.27) should read To (k¥ |kY).
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The terms not explicitly written in (3.2) describe
processes involving more than three particles.

In I [(3.10) and (3.22)] we have shown that

nxk’(€) = é /dplx (P2 o(p1), (3.3)
nrk' (€)= é / dpix (p1)[—pe 2L (p1)— pe 41 (p1) ]
Xx(p)e(p), (3.4)
where
(o= / dpV T1(0]0) (14O e(ps)  (3.5)
and

h(p)= / dpa(0] VTGoFo(r)|0) (14 G1) o (p).  (3.6)

£(p1) is the linearized Boltzmann collision operator
and £(p1) and ¢;(p1) are nonsingular as e — 0+ because
of the properties (1)-(4) of Sec. 2.

Use of these properties also yield for nxx®(e) the
expression which is formally the same as that obtained
in I, (3.26), and is given by

p
nrx*(e)=—— / dpix (p1){p*€ a1 (p1) 4 o€ 2t22(p1) }
KT

Xx(p1)e(p1),

where f1(p1) and f22(p1) are nonsingular operators as
¢— 0+ and are given by I (3.27) and I (3.28), namely,

(3.7)

tos(pr)= //dpzdngTm (0]0)
X[VT13(0]0)+ VT23(0]0)]

X (14C13+®a3) o(p2) 0(ps) ,  (3.8)

lya(pr)= / / dpadpsVT15(0]0)

X (0|[VT15GoF o(r15)+ VT 25GoFo (r23) ]| 0)
X (14 @+ Pas) o (p2) 0(p3) -

Finally, the term involving the triple collision is
written as

(3.9)

P o,
(9= / dplx(pl)l:——e;t <p1>]x<po«:<zn>, (3.10)

where

1
iT(Pl)EE //dxzdxsz(123)Go(1+@12+(913)

Xexp{—BU (123)} o(p2) o(p3) ,
U(123)=u(12)+u(23)+u(31)+u(123)

(3.11)
with
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and
B=(KT)™.
The factor exp{—BU (123)} is retained here because of
the possibility of bound states of motion. We shall show
later in this section that £*(p,) is nonsingular as e — 0+
whether or not bound states are present.
Thus, using (3.3), (3.4), (3.7), and (3.10), nxx(e) is

written as in 1(3.32) and I(3.33) except that ¢ is re-
placed by #r. That is

k(9= / dprx ()G (x(p) () +O(), (3.12)

where
Gle=e—p(e2L+e )
+0* (e *at e Hon—e 7). (3.13)

Since the equality which was proved in I [see 1(3.43)7],
namely,

[6‘1(£2—t21)+£tl_t22]£“1X(pl)§0(Pl)=0 (314)

is still valid here, the same manipulations of G(e) as in
T which are discussed in Sec. 2 yield for

(3.15)

NKK= lim NKK (é)
€04

the following result up to the first-density correction:

nxx=1xxP+pmrx®, (3.16)

where nxx @ is the Chapman-Enskog result given by
I1(3.41) and I(3.46), and nxx® is the coefficient of
the first-density correction given by

1
= / I @)W ® (pr) o (pr), (3.17)
with
L4 POW k@ (p1) o (p1) = — L1 (P1)x (P1) 0 ($1)
— L (p)W O (p1)x (p) 0(p1).  (3.18)

Thus the only way this ngx differs from that for the
case of repulsive forces is that here we have the modified
triple-collision operator Z, instead of #”. We now
study #r in more detail and shall show that it is non-
singular as e — 04. Use of (2.7) in (3.11) gives

1
fr(p1)=——2- //dxzdx;ﬁ

X[Gs—Go+2 GoToGo—2_ 2 GoT GoTsGo ]
a a §

X (14 @12+ C13) exp{—BU (123)} p(p2) 0(p3). (3.19)

The operator in the square bracket represents the
motion of the three particles 1, 2, and 3 from which the
resolvent operators corresponding to the free motion
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of these particles, the motions which involve single
binary collisions and those involving two successive
binary collisions, have been subtracted. Thus, we have
to consider only (a) the triple collisions where no bound
states are involved, (b) the triple collisions involving
one bound pair of particles where creation or destruction
of the pair, or the destruction of one pair and creation
of another, may occur, (c) the three-particle bound
states. Some typical triple collision processes are shown
schematically in Fig. 1. (For simplicity, in this and
other diagrams we have not included processes involving
the so-called “hypothetical collisions.”)

We now study the contribution of these three types
of motion to #7(p;) which we rewrite as

1 00
f’(px)=—§ [ / dpadpsé’ / die=<'B(p*; 1)
J 0

X (14-@19t+®13) o(p2) 0(p3) ,  (3.20)

where

B(p; )= / / dradrsS_(123) exp{—BU(123)}  (3.21)

and S_;7(123) is the contribution to the three-particle
streaming operator coming from the three types of
motions (a), (b) [further subdivided into (by)— (b4)],
and (c) occurring during the time interval (—¢,0);
S_¢7(123) is defined explicitly by Eq. (B4). For the
process represented by Fig. 1(a) the region of the co-
ordinate space r, which contributes to B(p?;?) consists
of a cylinder of the length ¢|p1—p:|/m with cross
section of the order of the square of the force range
plus two end sections which do not increase indefinitely
as ¢ increases or, loosely speaking, which are finite for
large ¢. For fixed rs, the contributing region of r; stays
finite for large ¢&. Thus B(p?;¢) contains a term which
grows linearly in ¢ for large ¢ This term produces a
finite contribution to #(p;) for e— 0+ due to the

equality
e2/ e cidt=1.
0

Evidently in this limit the remaining term in B(p?;¢)
which stays finite for large ¢ gives only a vanishing
contribution to #(py). A similar analysis can be applied
to the processes of Fig. 1(by), (b2), and (bs). The con-
tributing region of r, space is a small sphere around r;
of diameter about equal to the attractive force range,
whereas that of r; space contains a cylinder whose
length grows linearly in ¢, and thus gives rise to a finite
contribution to #(p1) as e— 0+. For the process of
Fig. 1(bs), when r; is arbitrary, the region of r, that
contributes is a cylinder with one end at r; which
increases its length as £ If we fix r; somewhere in this
cylinder then the contributing region of r; is fixed
within the distance of intermolecular force range.

(3.22)

A 6353

XOORK

T1c. 1. The processes contributing to the triple collision #r.
Here and in Figs. 3, 4, and 7, the time runs from bottom (—1)
to top (0).

Therefore, this process also produces a finite contri-
bution to #r(ps). Finally, for the process Fig. 1(c), the
contribution comes entirely from the finite region
around ry, and contains no term in B(p?; ¢) which grows
linearly in ¢ for large ¢. Therefore, this process should
not contribute to #7(p;) as e — 0+4. Thus we have been
able to verify that 7(p1) defined by (3.19) is a non-
singular operator as e—> 04-. For repulsive pair po-
tentials of short range, the finiteness of ¢"(p1) follows
immediately from the finiteness of T, and from I (3.30)
and I (3.31) by noting that the terms for which at
least one of the Gy in I (3.31) equals ¢! give contribu-
tions of order N for e#0 and vanish as N — o,

In Appendix B we obtain explicit expressions for
£.7(p1) in the form of five-dimensional surface integrals
as has been obtained by Green!” recently for the case of
repulsive intermolecular forces.

4. CALCULATION OF nxv AND nux

Since nux equals nxu for classical systems,! we shall
consider only one of them, namely, nxy. For the
moment we do not consider the part of the dynamical
flux I which involves the three-body forces [the third
term of (2.3)]. Then, considering the identity of par-
ticles, nxu can be written as

N
i (€)= —— / dxVx ()G
VKT

N—1)(N-—2
x[(zv—1>w<1z>+(——l—(j'—)¢<zs>]

Xp(¥)2(p").

Use of the expansion (2.6) yields the following ex-
pansion for nxy(e):

(4.1)

nxu(€) =nxv’(e)+nxv'(e)+nxv™()+---, (4.2)
where by I (4.5) and I (4.10) we find
1x0’(€)=0, (4.3)
nKUl(e)=_€;T //dx1dx2x(p1)leGo¢(12)
Xexp{—pu(12)}2(@)+0(c'p*), (4.4)

17 M. S. Green, Phys. Rev. 136, A905 (1964).
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@ .l F1e. 2. A new process con-
3 3 3 tributing to kv from bound
states.
Tz3 T13 T12 qIKIZ)E—EUHZ)

and further

o da
nry” (€)= — / —x (p1) €G3 (123)
2¢KT 14
X[ (23)+¢(31)+¢(12)]
. Xexp{—BU(123)}2(p*), (4.5)
with
G5 (123)=G3(123) —Goy+Go 2, TG,

(@=23,31,12). (4.6)
The difference here from the case of the repulsive
forces is that nxy”(e) involves real three-body dynamics.
This arises from the bound particle pair scattering the
third particle. The process contributing to (4.4) or to
(4.19) below is represented by Fig. 3(d).

The necessity of including the processes which involve
more than successive binary collisions of the kind con-
tained in I1(4.16) and I(4.17) becomes apparent by
noting the properties of the T',’s discussed in Sec. 2.
As an illustration, consider the process represented by
~—G()Tsz()T:nG()leGo. We replace G371(123) by this
operator in (4.5) and consider the ¥(12) term. This
term contains a process in which first the spatial cor-
relation between the particles 1 and 2 is created by
¥(12) exp(—BU (123)) (namely k;=—k,=k>%0), fol-
lowed by a collision between the pair 12. Then the
particle 1 collides with the particle 3 followed by a
collision between the pair 23. This is represented
schematically in Fig. 2 where wavy lines represent
spatially correlated freely moving particles, the straight
lines the spatially uncorrelated ones, and the circles the
binary-collision processes. For bound states of the
particles 1 and 2, Ty, has a singularity of the form e
as e— 0+ because of the property (4) of Sec. 2, and
thus this term cannot be thrown away as in I.

By the same kind of arguments as we have used in
studying #7(p:) in Sec. 2, one can verify that the co-
efficient of p3/€? in (4.5) is nonsingular as e — 0+4. As
an illustration, take the term with ¢(12) and consider
the expression

//drgdrge"’G;;T'(123)://(12) exp{—pBU (123)}

= e"’/ dit exp(—el)B'(p*; 1), (4.7)

Jo
where

B (p%; )= / [ dradryS_ 7 (123)9(12)

Xexp{—BU(123)} (4.8)

AND 1I.
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and"S_,'(123) is the streaming operator for the three-
particle motion which excludes those processes in which
no collisions or single binary collisions occur during the
time interval (0, —¢), which means that the particle 3
must be involved in collision at least once. Because of
¥(12), the particles 1 and 2 must be close to each other
at the time —¢. The contributing processes can be
classified as (a) those which involve no bound states,
(b) those involving only one bound pair of particles,
and (c) those involving three-particle bound states.
Typical examples of these are shown in Fig. 3(a), (b),
and (c), respectively. By an analysis of the same sort
as that given for #"(p;) in Sec. 3, we can demonstrate
that the volumes of the regions in r; and rs space which
contribute to B’ (p*), (4.8), grow linearly in time for
the processes (a) and (b), but stays finite for the
process (c) for sufficiently large ¢ Thus because of
(3.22), only the processes (a) and (b) give finite con-
tributions to (4.7) or to the coefficient of €2 of ngy*(e),
(4.5).
We now rewrite (4.5) as

0 da?
WKUT(f)‘_— /‘_X(P1)€2<1+@23+6’13)
28KT V

X[G5(123)—G2(12) W (12) exp{—pu(12)}

X2[@)+0(ep’). (4.9)
In obtaining (4.9) the following considerations have
been used: (1) The region of coordinate space in which
the three particles are close together at the time —¢
in (4.7) does not contribute to the first term in (4.9) for
the same reason that the three particle bound states
are neglected in #(p;). Therefore y (i) exp(—BU (123))
in (4.5) can be replaced by y¢(i7) exp(—pBu(if)).
(2) We note that (4.6) can be written as

Gy (123)=G3(123)—G2(ij) +Go(Tu+ T1;)Go  (4.10)
and consider the expression
ar®
(4.11)

_I}_GOT{/ch//(ij) exp{-ﬁu(’L])} y

where i, 7, k is a permutation of 1, 2, 3. The expression
(4.11) (in which we first integrate over r;) vanishes
because

/ W(i) exp{—Buis)}drs,

a
=B‘1/r¢jx Fo(h]-)dri,-——-o. (412)
.Y

7 ij

Therefore, it is legitimate to replace Gy (123) in front
of ¢ (i7)in (4.5) by

G5(123)—Ga(ij) .



TRANSPORT COEFFICIENTS OF DENSE GASES. II.

We now introduce a generalized: collision operator
T(12;3) by

G5(123)=G2(12)—G2(12)T(12; 3)G5(12) . (4.13)

T(12; 3) has a simple interpretation if the particles 1
and 2 form a bound cluster. In this case, 77(12; 3) is a
binary-collision operator for a collision between the
bound pair of the particles 12 and the remaining particle
3. When there are no three-body forces, we can re-
arrange the series for the binary-collision expansion of
G3(123) in a manner similar to that used to obtain
I (IV.5), and get the following explicit expressions for
T(12;3):
a$12 a$12

G2(12)T(12;3)=Go 2= Ta—Go 3, X' TsGoT«
a a 8

a+12

+Go 2 XY TG TsGoTa— -+ (4.14)
a B 7
or
aF12 aF12 f412
T(12;3)= X To— X X' ToGoTs
a a B
a¥12 y+12
+Z 2 Z ToGoTGoTy— "+,

(4.15)
B .

where the summations are over the pairs of particles
(12), (23), and (31) with the restrictions indicated and
consecutive appearances of the same pair excluded.
The last expression can be further re-expressed as

T(12;3)=3""T\—2" 3" TsG2(12)Ts
a a B8

+2 X X TG (12)ToGo(12) T~ -+, (4.16)
a 8 Y

where the 3" are summations over the particle pairs
(13) and (23) excluding the appearance of consecutive
T’s referring to the same pair. Equation (4.16) has a
particularly revealing form in the light of the meaning
given to T(12; 3) earlier.

With (4.13) in (4.19), we obtain

o
nxy’ (€)= ——— //dpzdrgx(pl)l‘(ﬂ)
eKT

X eG2(12)Y(12) exp{—pBu(12)}
X®(p)+0(pY/e), (4.17)
where
1
I’(IZ)E; /dx3€(1+0>23+@13)
. XGo(12)T(12; 3) ().  (4.18)

Since the coefficient of e2 of nxu”(e) and EG2(12)1//(12)
Xexp(—Bu(12)) are nonsingular as e— 04, I'(12) is
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F16. 3. (a), (b), and (c) describe the processes contributing to
KU (e) and (d) describes that contributing to nxu!(e).

(d)

also expected to be nonsingular in this limit. In Ap-
pendix C we show that I'(12) can be in fact regarded as
a nonsingular operator for our purpose.

Combining this result with (4.4) which can be re-
written as

2
- / / dprdeax (p2)<Ga(12)9(12)

nxu' (€)=
&

Xexp{—Bu(12)}2(p*)+0(p*p"/e), (4.19)
we obtain
nxu(e)=nxv' ()+nxu’(e)
=e:T //dpldmx(pl)':l—gf(ﬂ)]
X eGa(12) exp{—pu(12)}®(p?), (4.20)

where we have omitted the terms with higher powers
of p. We can now replace 1—e%I'(12) by

(14l (12) ]
in (4.20) and take the limit e — 04, and obtain

= | [dpdeaor-+ (126202 w12
. Xexp{—pBu(12)}®(p?). (4.21)

In another form, this becomes

P
N / / dpsdox (p) X+ (12)B(p), (4.22)
KT

where X is a function of x; and x, which has the same
tensor property as x(p1), and satisfies the following
equation:

I'(12)X (12)®(p?) = eG2(12)y (12)
Xexp{—Bu(12)}2(p).

The result (4.22) and (4.23) is a generalization of
1(4.16) and I(4.17). In fact, for repulsive forces, the
former reduces to the latter as we demonstrate in
Appendix. C. There we also present an argument Wthh
enables-us to wrlte X (12) in the form"

(4.23)

X(12)= (1) X, (12)+ Xu(12),  (4.24)
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where X;(12) is nonvanishing only for bound states of
the pair 12 for which X,(12) vanishes.

We now turn to the contribution from the part of
the dynamical fluxes containing three-body forces,
which by (2.2) and (2.3) we can write as

P
Angy(e)=— [ dx"x(p1)Gy
KT

(N—1)(N—2)
X {————¢(123)

(=)= (V—3)
N 6

.;(234)}

Xp(r¥)2(pY).

Corresponding to the expansion of Gy, (2.6), we split
up AnKU(e) as

Angy (€)= Anku®(e)+Ankuv'(€)4-Ankuv(e)
+ (terms involving more than three
particles).

(4.25)

(4.26)

Angy®(e) involves an integral of the form

/dPIX<D1)‘P([’I)

which obviously vanishes, and so does Anxy°(e). The
next two terms in (4.26) become

o
(9= ——— [ ap
eKT
X//drgdrax(pl)T12G0¢(123)
Xexp{—BU(123)}®(p*) (4.27)
and
o
Anky' (€)= / dp?
2eéKT

X / f dradrx (p1) @Gy (123)9/(123)
X exp{ —BU (123)) ()

where we have left out the terms of higher order in p
coming from the configurational distribution function.
In (4.27), Gy is, in general, not equal to €, except for
one term which gives a contribution of O(N-1), and
T2 is nonsingular as e — 04-. Therefore Anxy(e) is of
the order of €7'p%. By an analysis similar to that given
for Anxu”(e), (4.5), we easily see that the coefficient of
e 2in (4.28) goes to zero as e — 0+ simply because the
particles 1, 2, and 3 must be close to each other at the
time —? because of the presence of ¥(123). Thus
Anky(e€) is at most of the order of €'p%. Therefore, we

(4.28)
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conclude that the part of the dynamical fluxes con-
taining the three-body potentials does not give a first
density correction to nxy. This and the similar result
for nyv obtained below is what we would expect from
the general remarks made in Sec. 2.

5. CALCULATION OF nyu

If for the moment we restrict our considerations to
that part of the dynamical flux which contains only
pair potentials, the expression for nyu(e) given by
I (5.9) becomes, by making use of the identity of the
particles,

iV
'fIUU(é) =
2KT

/’de¢<12>GN{¢(12>+<N—2>

X[Y(A3)+¢(23) [+3[ (V-2 (V—3) ¢y (34)}

Xo(@M@(Y). (5.1)
We split up (5.1) as
v (e)=nvv’(e)+nuv'(e)+nuv™(e)+ (terms
containing more than three particles), (5.2)

which corresponds to the expansion (2.6). nyy°(e) is
obtained by replacing Gy by G,. It is of the order of
€’p? and does not contribute to the first density cor-
rection. nuy'(e) involves single binary collisions and
can be written as

o
2¢KT

o' (€)=

/ / dpdray(12)eG2(12)¢/(12)

Xexp{—pu(12)}2(p*)+0 (%) .

The coefficient of ¢! above is

pe
[ / dp?‘dl‘zé
2KT

X / “a exp (— e (12)S_,® (12)¢(12)
' Xexp(—Bu(12)}8(p?) (5.4)

and the contributions in the time integral come from
very large values of ¢ of order ¢*. Thus only the bound
states of the pair 12 give finite contributions to (5.4)
as €— 0+. nyy”(e) is the remainder which involves
three particles 1, 2, and 3, and can be written as

o
2CKT ///dp3dr2dr3¢(12)03"(123)
€

X{Y(12)+¢(23)+¢(31)}
Xexp{—BU(123)}2(p"), (5.5)

where G5’ (123) is defined by (4.6). Making use of the
same kind of transformations which lead us from (4.5)

(5.3)

nuy”(e)=—
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to (4.17), (5.5) becomes
o
2¢¢KT
X G2 (12)¢(12) exp{—Bu(12)}
X2(p)+0(s%/¢), (5.6)

where T'(12) is defined by (4.18) and is regarded as a
nonsingular operator for e— 0+-.
From (5.2), (5.3), and (5.6) we obtain

: 2
2:;{1“ / f dpzdrz\l/(IZ)[l—-—SI‘(lz):l

X G2 (12)¢(12) exp{—pu(12)}2(p)

-+ (terms involving more than

nuv' (€)= —

/ / dpdrap(12)20(12)

nUU(é) =

three particles). (5.7)

Here we have left out the terms of the order of €%? and
€ which do not contribute to the first density
correction. Again replacing 1—2¢%I'(12) by

[14 260 (12) T

and taking the limit e — 0+, we arrive at the following
contribution to the first density correction to the shear
viscosity:
p
4KT

nv=

/ / dpdrap (12)[T(12)eG2(12) 1+

X¥(12) exp{—pu(12)}2(p*).

The same sort of arguments given for Anxy(e) in
Sec. 4 can be applied to the contribution of the part of
dynamical fluxes containing the three-body forces to
nuu. We find that these terms do not contribute to the
first-density correction to the shear viscosity. We have
represented the processes contributing to nuy!(e) and
nuv”(€) by Figs. 4(a) and 4(b), respectively.

(5.8)

6. THE RESULT AND ITS DIAGRAMMATIC
REPRESENTATION

Summarizing the results of the preceding sections,
(3.16), (3.17), (3.18), (4.22), (4.23), and (5.9), we
obtain the following expression for the shear viscosity
up to the first density correction:

7=nO+pm®, (6.1)

where

1
e / i) @x(p)e(p)  (6.2)

and

10 =nxx1 Y+ &8P+ 10 P+ OV +90v®  (6.3)
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(o)

Fi1c. 4. (a) describes the
process contributing to
nuvt(e) and (b) describes
those  contributing to
nuy”(€).

with

1
nxx1® E—E / dpix (p1) L7 (P1)tay- (p1)

Xx(@)e(py), (6.4)

1
O = — f dpox(p2) £+~ (014" (pr)

X & (pox () e(p1), (6.5)

1
ﬂKU(1)=71UK(1)EEZ"//dpldx2x(l)1)

X[T(12)eG2(12) 11¥(12)
Xexp{—pu(12)}2(p"),

1
ﬂUU(I)EE //dp1dx2‘/’(12)

X [T1(12)€G2(12)119(12)
Xexp{ —Bu(12)}2(p*).

We now present a rather intuitive interpretation of
the various contributions with the help of diagrams
which describe various collision processes contributing
to the shear viscosity. To begin with, we consider the
Chapman-Enskog result (6.2). As we have discussed
in Sec. 2, the operator £,71(p;) appears when e 1—¢e 2
XL(p1) is replaced by e '[14eL(py) ]! and the
limit e— 0+ is taken. Implicit in this procedure is the
fact that the term of order e!(p/e)” is simply
e[ —pL(p1)/e]*. Since £(p1) describes a binary col-
lision of the particle 1 with another particle, this term
represents # successive binary collisions of the particle
1 with # other particles. This situation is represented
in Fig. 5(a) for n=3, where a straight line represents
the free particle propagator 1/¢, a circle represents a
binary collision, and a cross means that we integrate
over the phase space of the particle represented by the
line with the cross. One can see now that these are the
only processes that give rise to contributions of order
(p/€)* to n(e). These processes are then summed over
all # to yield the modified one-particle propagator
o1& 1(py) as e— 0. This is described in Fig. 5(b)
where the thick line represents the modified one-
particle propagator which is temporarily denoted by
A1(py). The whole process contributing to 7 is repre-
sented in Fig. 5(c) where another factor p comes from
the NV possible choices of the particle 1. The fact that

(6.6)

(6.7



A 658

ﬁ’\cé/% (o)
NN
+
; § (b)

Aylpy) = €7 =€ pLipy) Aylpy)
Alpy) = €"‘E+€"1p1(p|)]“->p_ll:_l(p,) as € o+

2t(P1) e px(P) $(py)
1 P4ff+,(p|) PE(P) @ (py (c)

F16. 5. The processes contributing to the zeroth order
term in density of the shear viscosity.

7© is independent of p becomes apparent when the
factors appearing in Fig. 5(c) are multiplied.

Before turning to the first-density correction we
discuss the meaning of the modified propagator. The
unmodified propagator e 1=Go(0|0) describes the
motion of the noninteracting particle 1 in a homo-
geneous, spatially uncorrelated situation, and e! can
be looked upon as the lifetime of such a state of motion
in the absence of interactions among particles; thus it
can become infinite as e — 04-. The modification of the
propagator introduces the collisions, and thus makes
this lifetime finite. In other words, the modified
propagator p—1£71(p1) can be considered to be a measure
of the mean free time between collisions of particle 1.
It is well known that £(p;), the linearized Boltzmann
collision operator, is positive definite except when
operating on the collision invariants.!

(a)
72y X
x PP (b)

Py P2 A

ip-l g
” FIE  ReGyePlo

”‘qu;l 2201VTGoye Pl

-
=m+12ﬁ§mm )

AZ"Z)EGZ(? = Gyu2) ~ €7 Tu2)A,020€6,012)
Agi2) = € [i+€pTn2] "' >5'T12) 0s € >0+

lo)®

¥ oz i ) ()
FTs pze(;z\pe“ﬁ“‘b

F16. 6. The various processes contributing to the
first-density correction to the shear viscosity.

181,. Waldmann, Handbuch der Physik, edited by S. I'liigge
(Springer-Verlag, Berlin, 1958), Vol. XTI, p. 365.
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Turning now to the first-order density correction,
similar considerations enable us to construct the
diagrams for n® as we see in Fig. 6. nxx1® is repre-
sented by Fig. 6(a), where a pair of wavy lines repre-
sents the propagation of a freely moving, spatially
correlated pair of particles created by Fo(r12) in £14 (3.6).
The square represents the source of the spatial cor-
relation, here, Fo(r12). Figure 6(b) describes nxx,®
where the circle represents the triple -collision.. nxy®
is represented by Fig. 6(c) where the hatched part is
the modified propagator of the pair of interacting
particles which is represented in Fig. 6(d). There a
pair of helical lines represents the unmodified propa-
gator for the pair of interacting particles. This pair
of particles can undergo repeated collisions with other
particles (actually triple collisions) giving rise to the
modified propagator for the pair in just the same way
as we obtained the modified single-particle propagator
in Fig. 5(b). The modified propagator for the pair is
again the measure of the mean free time between
collisions for. the pair. Finally Fig. 6(e) describes
nuuv® (). The p dependence of 7 again becomes
apparent by multiplying the factors appearing in each
diagram.

Let us now go briefly to the case of repulsive inter-
molecular forces. Figure 5 and Fig. 6(a), (b) remain
unchanged. Since two particles cannot stay close
together, the modified two particle propagator splits
into two lines, and Fig. 6(c) reduces to Fig. 6(c’). For
the same reason, no contribution is expected from Fig.
6(e) representing nyy® in agreement with I.

7. CONCLUSION AND SOME REMARKS

In the foregoing sections we obtained an explicit
expression for the first density correction to the shear
viscosity for systems with attractive forces including
the bound states. We assume that at densities of interest
the number of bound clusters is small (becoming
smaller as the size of the clusters becomes larger)
compared to N. We have seen that only the bound pairs
contribute to the first density correction. In higher
density corrections, bound states involving more par-
ticles contribute. In the nth density correction the
largest bound cluster involved consists of 741 particles.

In the present work, we have defined the bound
states in such a way that they have infinite lifetimes
when left isolated. However, recently Kim and Ross®
have pointed out that the states in which the particles
stay close together for a long but finite time, the so-
called “quasibound” and “metastable’ states, cannot
be ignored in understanding the temperature de-
pendence of the first density correction to the shear
viscosity. In our theory, we have classified these clusters
with finite lifetimes as unbound states. Such a classifi-
cation is justified in obtaining the entire density
expansion of 7(p) in a strictly mathematical sense. In
practice, however, we are more interested in the
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density expansion as an ‘approximation for: 5(p) for a
small but finite p. Then our classification, in effect,
completely neglects - the collisions of these clusters
(while they form “quasi” or “metastable” - bound
states) with other particles. This is only justified if
the average lifetime of these clusters is sufficiently
small compared to the mean free time between their
collisions with other particles. In the opposite case,
these clusters behave as though they are true bound
states because they undergo a great many collisions
before spontaneous disintegration.® This situation can
be treated if we relax the definition of bound clusters
so as to include those clusters whose lifetimes are very
large compared to the mean free time between collisions.

If these two time scales are of the same order of
magnitude, the situation becomes more subtle. As an
illustration, we consider the contribution of these
“metastable” or “quasi” bound states with natural
lifetime 7o to nuv. Roughly speaking this contribution
would have a form "

const. X p? (ap+ 7517, (7.1)

where (ap)~! designates the mean lifetime of the bound
states due to collisions with other particles. In a strictly
mathematical sense there is no first density correction
arising from these bound states. However, for ap> 757,
the convergence of the density-expansion series will
become very poor and may, in fact, diverge. Thus in
this case a separate treatment which does not make
use of density expansions is required. When ap>>7¢7,
(7.1) is proportional to the density and produces a
contribution to the first density correction to % (see
Refs. 8 and 9). It is clear that the resulting term
cannot be looked upon as part of an analytic expansion
in powers of the density since (7.1) is proportional to
p? for small enough p.

APPENDIX A: SOME PROPERTIES OF THE
BINARY COLLISION OPERATORS

Here we discuss the properties of the binary-collision
operator T, in the limit e — 0-+. In I, we have shown
by using the formula

T12= —012—"012G2(12)012 (Al)

that in the absence of bound states, 71, is nonsingular
as ¢ — 0+ simply because the two particles 1 and 2
initially within the range of mutual interactions will
find themselves far apart after a sufficient lapse of time.
Obviously, one cannot expect this if one allows for
bound molecular clusters, and thus-a separate investi-
gation is necessary.
We shall start with an alternative formula for T

Tip=— / dle= G [S_,® (12)— S_, @G, (A2)
0

which follows from I(2.25) and the definitions of the
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resolvent operators. The general matrix element of
(A2) is [see 1(3.2), I(3.7), and 1(3.8)]

o .pN,kN
die ¢ e1————

m

VTV k'V)= —/

X (Y| VLS. @ =S @ ]|k™)
X[eti(p¥ k'Y /m)].

Since interactions exist only between the particles 1
and 2, we can separate out the relative motion of the
particles 1 and 2 from the rest. The rest consists of the
motion of the noninteracting particles 3---N and the
center of mass motion of the particles 1 and 2, and
gives rise to a factor ¢~ in the integrand, where

(A3)

N
I= (k1+k2) : (p1+p2)/2+§: ki'pf—
i=3

Note that k1/+k2/=k1+k2 and k¢/=ki, ’L=3, 4, IR
Therefore, when /0, the integrand has an oscillating
factor in time, and no singularity appears as e — 0.
This enables us to limit our consideration to the case
1=0, and to the relative motion of the particles 1 and 2.
Writing explicitly only the relative wave vector
k= (k;—k3)/2, and introducing the relative momentum
p= (p1—p2)/2 and the reduced mass u=m/2, we have

VT(klk)= —fw dte=<t (e+ip-k/u)

0

X (k| VIS =S_ O]k (et+ip-k'/u).  (A4)
According to the definition of the matrix element [see
I(3.2)], the above expression actually involves an
integral over the relative coordinates rj2. For small
enough values of the relative momentum p, the region
of ry, splits into the region in which the particles 1 and
2 form a bound cluster and that in which these particles
remain unbound. Corresponding to these two regions
we write

VT]z(k\k’)z Vleb(klk,)'+— VTmu(klk,) y (AS)
where
VT (k| K)=— / dle—t(etip-k/u)
0
X (k| E,(12) V[S_,®—S_,@][k')
X (e+ip-k'/u), (A6)

where E3(12) is a function of the relative coordinates
and momenta of particles 1 and 2 which takes the value
1 when these particles form a bound pair and is zero
otherwise. VTi,*(k|k’) has the same form as (A6)
except that £,(12) is replaced by 1—E,(12). Since
VT19*(k| k') is nonsingular, we need examine only the
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various matrix elements of V70(k|k’).

(a) VTu"(Ol 0)
=— ez(ol 14 f i dte=<F4,(12)

X VS, @—5_,]

0) , (A7)

=—¢(0| VE,(12)[8.®—8.©7|0), (A8)

where we have introduced the notation

S.= dte“‘S_t// die=<t=¢G(e). (A9)
0

0

For the unbound states, S. reduces to S_, as e— 04,
whereas for bound states S, reduces to the average of
S_¢ over a period of the relative motion. Since bound
states come from a finite region in the relative co-
ordinate space, the operator in the bracket in (A8) is
nonsingular as e— 0+, and in this limit V733%(0|0)
vanishes. We note that only V7,(0|0) appears in the
Boltzmann collision operator, and therefore the bound
states do not contribute to the Boltzmann collision
operator, as was first noted explicitly by Kirkwood.*®
(b) VTw*(0lk)

=— (0| VE;(12)[S.®(12)—S.@]|k)

X (etip-k/u), (k=0). (A10)
Asin (a), the operator in the bracket is finite as e — 0+,
and the bound states give a finite contribution to the
matrix element V7T1,%(0|k). The same is true for
VT12%(k|0). This property also follows from (Al).

(€) VTit(k|k')

=—e(etip-k/u) (k| VE;(12)
X[8®(12)—8.OTk') (e+ip-K'/u),

(k, k’#0). (A11)
Here again the operator in the bracket is nonsingular
and is finite in general as e¢— 04, thus we should
expect a singularity of the form 1/e for V7'0(k|Kk’) as
€¢— 0. As one notes from (A1), this is a consequence
of the fact that in the bound states, particles stay close
together for indefinite lengths of time.

APPENDIX B: SURFACE INTEGRAL FORMS
FOR THE TRIPLE COLLISION OPERATOR

Here we shall rewrite the triple-collision operator
which appeared in Sec. 3 in terms of the streaming
operators and surface integrals.

1 J. G. Kirkwood, J. Chem. Phys. 15, 72 (1947).
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Consider the operator on the momenta py, ps, and ps,

J ()= / / dradr;@[Gs(123)— Go+ 3 GoT oGo
- zﬁ GoT'(GoTpGo] exp{—BU (123)}, (B1)

where the summations have the same meaning as in
(3.19). First we eliminate T, in terms of G2() to obtain

J(p*)= //drgdrgez[(}g—z );:' Gy (a)Go™Go(B3)
+33 Gala)—4Go] exp{—BU (123)}. (B2)

Expressing the resolvent operators in terms of the
corresponding streaming operators, (B2) becomes

J(p*)= / / drydr;ze / i dt exp(— e£)S_;7(123)

00

Xexp{-—ﬁU(123)}=e2/ dtexp(—et)B(p*; 1), (B3)

0

where

S_r(123)=8_,®(123) -3 ¥’
a B

t

S—t4:® (@)
0

X (e+iLo)S_+® (B)dr+3 2 S_® () —4S-.@ (B4)

and B(p®;¢) is given by (3.21). In Sec. 3 we have seen
that B(p®;¢) has the form

B(p*; )=tC(p*; )+D(*; 1),

where C(p*;¢) and D(p?;¢) stay finite for large values
of ¢, and that only the first term contributes to (B3) in
the limit e— 04-. Therefore, neglecting D(p?;¢), we
can write (B3) as

(BS)

J (@) =(C(*; 1))*,

where the symbol { )¢indicates a certain time average
defined by

(C(p%t))ezv/dO d[te““C(p"‘;t)//m dite=<t. (B7)

0

(B6)

When no bound states are involved, C(p*;¢) has a
well-defined limit at =, and we obtain

lir§1+ J(p®)= ltim C(p%; 0). (B8)
When there are bound states at large ¢, C(p®;{) con-
tains contributions oscillating in time, and (B7) implies

that the time average should be taken over such
oscillating contributions as in Appendix A.
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Explicit expressions for C(p*;#) are obtained by
transforming the six-dimensional coordinate integral
over r; and r; into a five-dimensional surface integral
as has been done by Green for the case of repulsive
interactions.'” Since different transformations are
necessary for the regions of configuration space with
and without bound states, we shall discuss these two
separately.

We first consider the contribution from the regions
with no bound states at the time /=0. Here the trans-
formation is exactly the same as in Green’s paper. The
volume element for r, and r; can be rewritten as

dradrs= (| pa—p1|/m)dls1dbo

X (|ps—p1| /m)dtsdby, (BY)
where fp; and by; are the time of collision and the
collision parameter for the pair 12 and #3; and bs; have
a similar meaning for the pair 13.2 We now write
dtsidts; as dtdr where 1=ty and 7=#3,—fy;. Changing ¢
with fixed 7, bz, bs; merely changes the time at which
the whole event occurs. Thus the integration with
respect to ¢ produces a term proportional to ¢ plus a
term which stays finite for large ¢ and is of no interest
to us. Therefore, by (B3), (BS), and (B6) we obtain
the desired surface integral form for J (p®) in the absence
of bound states,

p—p1| |ps— 11|
db2ldb31

. |
lim 7.(0")= [ N

Xdr lim S_7(123) exp{—BU (123)}, (B10)

where J,(p®) is the part of J(p®) in which no bound
states are involved at =0 and E,(123) is a function
of x1, x2, and x3; which takes the value unity when the
point (x1,2,%3) involves no bound states, and otherwise
vanishes.

Next we consider the cases where bound states are
involved. Since the three-particle bound states give
only vanishing contributions, it is sufficient to consider
the case when one of the pairs, say (12), forms a bound
state at the time {=0. Since for fixed r;, ry describes
the internal configuration of the bound pair, we have
to consider the transformation of r3, which can be done
by considering the process as a binary collision of 3 with
the bound pair (12). That is

drs=|ps/m— (pr+p2)/2m|dbsdts,  (B11)

where bs is the collision parameter and #; is the collision
time.?! The integration over 3 again produces a term
proportional to ¢ and a term finite at large ¢ Thus by

2 For the precise meaning of these new coordinates, see Ref. 17.
21 b; and #; can be conveniently defined by replacing the pair
(12) by a single particle at the center-of-mass point of the pair.

A 661

(B3), (BS), and (B6), we obtain
Ps Pitpe

lim ]b(p3)=/Eb(12:3)
Ceas m  2m

X(S_7(123))*+ exp{—BU (123)} , (B12)

where J3(p?) is the part of J(p?) involving the bound
pair (12) at ¢=0 and E,(12:3) is a function of x;, xs,
and x; which is equal to unity for those points (xy,%s,x3)
in which only the pair (12) forms a bound state and
vanishes for other points.

When the intermolecular forces are repulsive and of
short range, exp{—RU (123)} in (B2) can be replaced
by unity (see I Sec. III). Then, we can replace G¢* by
¢, and (B2) becomes

db;;d!' 2

T(p‘*) = //drzdfséztGal— € Z Z’ G2I (a)G2' (ﬁ)] y (B13)
a B8

where
GalEGs—" Z G2 (a) + 2G0 s
“ (B14)

G:!’ (Ot) —362 (Ol) — Go .

Introducing appropriate streaming operators U_; by

Gy'= / dtetU_,(123),
’ (B15)
Ga’(a)=/ dfe_“U_t(Ol).
J 0

Equation (B13) can also be written as

J(p3)=e2/eo dte—“//drzdrs{U_,(lz.’S)

t
2% [ ot 0@ @)
a B 0
The second term can be transformed by integrating by

parts with respect to time and by making use of the
fact that U_,=0 for {=0 to yield

J(p¥)=¢ / dte—<t f / drdr;S_(123), (B17)
0

where
S'_.g”(123) = U_¢(123)

t d
_ry f U @U_.(8). (B1S)
a B 0 dt

By making use of the same transformation that leads
us to (B10), we obtain from (B17)

|p2— 1| [ps—pu]
lim J(p3)=/// P dba1dbs;
0+ m m

Xdr lim S_7(123). (B19)
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If we note that (B18) can be also written as

S_r(123)=U_,(123)
t/2 d
‘—Z Z,/ dTl:—U_,-_g/z(Ol):'Uq-*t/z(ﬁ) y (B20)
a B J_ym dr

we see that our result (B19) is equivalent to the ex-
pression obtained by Green.!”

APPENDIX C: SOME PROPERTIES OF I'(12)

Here we shall first discuss I'(12) for the case with
repulsive pair intermolecular forces of a finite range and
consider nxgv given by (4.22) and (4.23). As we have
discussed in Sec. 2, in obtaining these results we first
replaced 1—e%pI'(12) by

[4 el (1) =143 (—p/T(12) (C1)
n=1

assuming that the higher order terms in p/e in the
operator appearing in nxy(e) could be represented by
the above expression. Thus, we have to consider the
operators

Tolp)= /'dpgv(mr"<12>ec:2(12>¢<12>
Xexp{—Bu(12)}|0) ¢ (p2)
=/dp2VZ (0[T*(12) |k, —k) (k, —K|

X eG2(12)(12) exp{—Bu(12)} | 0) ¢ (p2).
The matrix element
(k, —k|eG2(12)¢(12) exp{—pu(12)} |0)
=eg(k, —k) (k, —k|[1—T1:Go ¥ (12)
Xexp{—Bu(12)}|0)
and since the coefficient of e is nonsingular for k>0,

this expression vanishes as e — 04 for k>%0. Thus (C2)
becomes

(C2)

yn(p1)=/dp2(0[F"(12)[0)V(O|e62(12)x//(12)
Xexp{—Bu(12)}|0)¢(p)+-0(e).  (C3)

Next we consider (k, —k|I'(12)]0) which according to
(4.14) and (4.18) contains an expression of the form:

e(k, —k|G2(i/)T(i7:1)|0)=eg(k, —k)

atij az+1j

Xk, —k|{X Ta— X X TGoTot---}10), (C4)
a @ 8

where (4,7,l) is a permutation of (1,2,3) and the sum-
mations are over the pairs (12), (13), and (23) with the
restrictions indicated. For k0, this term does not
contribute as e — 0+, since the number of terms which
contains Go= ¢! is smaller by a factor N~ Thus (C3)
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reduces to

olpD) = [ dpa(0[T(12)|0)"V (0] G2 (12)9(12)

Xexp{—pu(12)}|0)2(p>)+0(e). (C5)
We now consider the case k=0 of (C4) with (4,7,
= (1,2,3) which is,
V(0]G2(12)T(12:3)] 0)

12 12

=VOHX T.— X Zﬁ TsGoTw

a+12

+ 2 XX TGl sGoTa— -} ]0)

8 v

a+12 a+12

=3 VT.(0]0)—et 3 Zﬁ:' VT5(0]0)T4(0]0)

+§§ T VO TG TG Ta— -~} [0). (C6)

If we remember the properties of 7,(0|0) and
(0| T+GoT 5GoT | 0), the second and the third terms of
(C6) are of relative order of N compared with the
first term and can be ignored. Thus we obtain by (4.18)

|
(()|I’(12)|0)=~/dng(l-i—(Pm—FG’ls)
2

X{T15(010)4T53(0]0)} o(ps). (CT)
We now consider
/dpg(O[F(IZ) |0)a(12)® (p2)
1
:5 //dpzdpav{Tw(OiO)‘l" T23(0’0)
+[T12(0]0)4T25(0]0) J02s
+[T15(0]0)+T12(0]0) J®15}a(12)®(p*), (C8)

where @(12) is a function of p; and p, and has the
property a(12)=a(21). If we further note that

1(3.15)

//dpzdp;;Vng(OlO) =0

and use the symmetry property of ¢(12), (C8) reduces
to

/ dps(0|T(12)|0)a(12)8(p)

_ / Ipe(pa(18(?),  (C9)
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where £(p;) is the Boltzmann collision operator defined
by (3.5). This result can be applied repeatedly to (CS5)
to yield

(o) = / dpL £ (p) ]V (0] Ga(12)0(12)

Xexp{—Bu(12)}|0)@(p>)+0(e).
Thus, in nxy we can replace I'(12) by £(p1) and obtain

(C10)

p
= / / dprdpai () / L G(12)T,
KT

X (12) exp{—pu(12)}@(p?) (C11)

which reduces to 1(4.16) and 1(4.17) if we notice that
€G5(12) here can be replaced by — 715Gy because of
(4.12).

We now turn to the case with attractive inter-
molecular forces. Since we need I'(12) in (4.20), (4.21),
(4.23), (5.8), and (5.9), and also considering the remarks
made at the beginning of this Appendix, we must
consider I'(12) operating on expressions of the form:

T7(12)eGo(12)9(12) exp{—Bu(12)}®(p).  (C12)

We shall denote these operands in general by a symbol
Z(12). We now divide Z(12) into two terms: one having
contributions only from the bound states of the pair 12
at the time /=0, the other from unbound states at the
time {=0. The former can be generally expressed in the
form:

€G2(12)Z,(12) (C13)
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since .in this case the interaction between the pair
persists after collisions. Here Z;(12) is nonvanishing
only in the region of bound pairs, and we have ignored
the three-particle bound states because they do not
contribute to (C12) for =1 as ¢ — 0+4. That this is
also true for #>1 can be seen by repeated application
of the result we shall obtain for I'(12) below. Then, we
can write

Z(12)= G2 (12) Z(12)+ Z,(12) (C14)

where Z,(12) is the contribution from the unbound
states.
Now, we can show that

T'(12)eG(12)Z5(12)

is nonsingular as e — 0+ in exactly the same way as
we have shown the finiteness of exy”(e) in Sec. 4.
Next, we consider

ri2)z.(12).

This contains two kinds of processes as typified by
Figs. 1(a) and 1(by), respectively. The former involves
no bound states and can be treated as though no
attractive forces exist. This case was discussed earlier
in this Appendix, and no singularity appears for I'(12)
as e— 0+4. In the latter kind of processes which
accompany formations of bound pairs, for fixed ps, the
contributing region of r; is confined to a finite volume
and no singularity is expected in I'(12) as e— 04-.
Thus, we have been able to show that in each case of
interest I'(12) remains finite as e— 0+4-. As a conse-
quence of these results, we can express X (12) introduced
in (4.22) and (4.23) in the same form as (C14) namely,
by (4.24).



