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A formal treatment of a traveling-wave optical maser is presented in which. an assumed electromagnetic
field in a rotating cavity, obeying Maxwell's equations, nonlinearly polarizes the moving gaseous atoms.
The interaction is treated quantum mechanically in the frame of the moving atom. The resultant polariza-
tion, statistically summed over all velocity ensembles, is used as a source term in Maxwell's equations. The
self-consistency gives a set of equations which determine the amplitudes and frequencies of oscillation
of the modes of the independent oppositely directed traveling waves in terms of the parameters of the
system. The results reduce to those obtained by Lamb for the case of a standing-wave optical maser with a
stationary cavity. In addition, stability conditions on the oppositely directed waves are obtained for the
cases where the active medium is a single isotope and a mixture of two isotopes.

1. INTRODUCTION where the waves running in each direction are inde-

pendent, one cannot - use Lamb's standing-wave
formulation.

What will be presented in this paper is a modiGcation
of Lamb's formalism to allow treatment of both the
traveling and the standirig-wave optical maser (SWOM).
The results agree with those obtained. by Lamb for the
SWOM case. For the TWOM, one obtains, in addition
to the expected type of phenomena obtained by Lamb,
conditions on the stability of the two independent
counter-rotating beams. Taking for example, the single-
longitudinal' mode case; it is shown that, on a rotating
frame and for a single isotope, as the oscillations are
tuned across the Doppler linewidth of the atomic tran-
sition, one of the two independent beams i.s extin-
guished. The beam that is extinguished depends on the
sense of rotation and the direction of tuning. It is also
shown that the presence of a small amount of an addi-
tional isotope maintains stability for both oscillations. '
Equations are developed which give the relative in-

tensity of each beam and the bandwidth of the unstable
region.

''N a past paper, ' Lamb derived a technique for
~ - describing the operation of a multimode gaseous
optical maser. '' He considered a semiclassical model,
in which the electromagnetic Geld obeyed Maxwell's
equations while the gaseous atoms obeyed. the laws of
quantum mechanics. The treatment was a self-con-
sistent one, in which an assumed electromagnetic Geld

(standing wave) in the cavity polarized (nonlinearly)
the moving gaseous atoms. The macroscopic polariza-
tion was then considered as a source term in Maxwell's
equations. The derived Geld was equal to the original
assumed field in the cavity. The self-consistency gave
conditions on the amplitude of the field and the fre-
quency of oscillation. The latter equations gave con-
ditions on threshold, output power as a function of
cavity tuning ("Lamb Dip"), frequency pulling and
pushing, combination tones and the related phenomena
of frequency locking.

The nonlinear contribution to the polarization arose
from a third-order perturbation term in which the
atomic system was considered to have interacted three
times with the radiation field. Each interaction involved
a Doppler phase shift such that at the time of observa-
tion the net phase shift was zero. The standing wave
was considered to have been decomposed into two
traveling waves and the atomic system interacted with
the traveling waves, twice with the one going in one
direction and once with the one going in the other
direction. Since the empty-cavity normal modes were
chosen to be standing waves, a standing-wave-type
radiation field was necessary to obtain the correct con-
tribution to the third-order polarization.

In the traveling-wave ring optical maser4 (TWOM),

2. MODIFICATION OF THE LAMB MODEL

As in the Lamb model, a self-consistent approach is
used. An electromagnetic Geld is assumed to exist in the.

cavity. The interaction of the radiation with the eri-

semble of atoms having axial velocity components
within an incremental velocity around velocity e is con-
sidered. This ensemble sees a Lorentz-transformed
radiation field. in its stationary frame. Thus the inter-
action between the cavity radiation Geld and the moving
atoms is reduced to an interaction between a Doppler-
shifted radiation Geld and an ensemble of stationary
atoms. In the Lorentz transformation, amplitude trans-
formations are neglected. Only frequency transforma-
tions are considered. .

In the frame of the moving atoms, the radiation Geld

polarizes the atoms. By application of the inverse

"To be submitted in partial fulfillment of the requirements of
the degree of Doctor of Philosophy at New York University.
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4 W. M. Macek and D. T. M. Davis, Jr., Appl. Phys. Lette
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Lorentz transformation, the polarization is transformed
back to the cavity frame. The polarization in the cavity
frame is then averaged over all velocity ensembles. The
macroscopic polarization is then used as a source term
in Maxwell's equations to calculate a reaction held. For
self-consistency the calculated reaction held must equal
the original assumed radiation field in the cavity. This
self-consistency gives a condition on the amplitudes and
frequencies of the modes of the radiation field.

3. ELECTROMAGNETIC FIELD EQUATIONS

of equations:

d' lo d —(A„(t)) ooot'E„(t))
+——+11„2

/

d22 Q„dt kA „(t)j &, EP„(t)i
with

P„(t)= (2/L) P(s, t) U„(s)ds,

P„(t)= (2/I) S(s,t) V„(s)dh.

(9)

(10)

From Maxwell's equations the electric field in the
nonrotating cavity is obtained from the approximate
wave equation (mks):

8A MBA,—6pIJ,p-
Bso Q Bt

l3 E—
Eppp = —Ij,pM P.

BP

In Eq. (1) only the axial variation of E has been con-
sidered. The passive Q of the system has been obtained
from the fictional conductivity as

In Eq. (9) the Q of each mode has been subscripted for
greater generality.

As discussed by Lamb, for the case of theprincipal
mode separation being much greater than the passive
cavity width such that time-dependent Fourier com-
ponents of A„and P„which are far removed from the
cavity resonance can be neglected, one can write

A„(t)=E,„(t) cos[oo,.t+C,„(t))
+E2„(t) COS[lo2„t+4 2„(t)], (12)

Q= oooo/o .

Since the macroscopic polarization is nearly mono-

chromatic, the second time derivative of P has been
replaced by —oPP. Consistent with the approximation
of considering only frequency changes arising from
Lorentz transformations, magnetization terms have
been neglected in the source term in Eq. (1).

For the case of an empty lossless cavity containing
two oppositely directed traveling waves, the solution of

Eq. (1) gives

P„(t)=Sl„(t) sin[ool„t+C l„(t)]
+Cl„(t) cos[a&l„t+C l„(t)), (14)

P„(t)=Sl„(t) sin[&el„t+4 l„(t))
+ C,„(t)cos[~,„t+C,„(t)). (15)

In Eqs. (12)—(15) the time-dependent coefficients are

slowly varying with respect to optical frequencies. The
form of Eqs. (12) and (13) is such as to reduce, in an

empty cavity, to two oppositely directed traveling
waves.

Substituting Eqs. (12)—(15) into Eq. (9) and equating
coefficients of sin[col„t+Cl„) and cos[col~t+C'l ] to
zero, self-consistency equations are found as

E(s,t) =El sin(Es+Qt)+E2 sin(Es —Qt) . (3)

This leads one to expand the solution of Eq. (1) into
the set of empty-cavity normal-mode eigenfunctions
(ECNME)

E(s,t) =g„[A„(t)U„(s)+A„(t)V„(s)), (4)
(16)El-+ 2 (~/Q-)K~= —-,'(~/&o)[Sl~ —Cl~) ~

(ill.—~l.—c l.)K.= ~(oo/oo)[Cl. +Sl ) )

with
(17)

(5)U„(s)=sinE„s,

V„(s)=cosE„s. ~..+-, (-/Q. )~..= —:(-/")[(S.+C.) - ~.
+ (Cl„—5l„) sing„], (18)

(6)

For a ring cavity of length i., the function E(s,t) satis-

hes periodic boundary conditions, giving the wave

number
(f12' ol2m 4 2n)L 2m g (M/oo)[(Sln+Cln) slnlf m

—(Cl„—Sl„) cosf ), (19)

(2) A. „(t)=El (t) sin[ool, t+4 l„(t))
—E2„(t) sin[ooo„t+C2„(t)], (13)

E„=22r22/L.

The ECNME satisfy the equation

(7) where

f„=(a)2„—CO,„)t+C2„(t)—Cl. (t) (20)

is a slowly varying function of time. In Eqs. (16)—(19),—
r -( )~

8
second derivatives of the amplitudes have been ne-

glected, as well as relative terms of Q„—'.
To allow for the description of a cavity located on a

Making use of the orthogonality properties of the rotating frame, which is of course the usual case for an

ECNME, Eqs. (1), (4), and (8) give the following set experiment on the surface of the earth, the ECNME
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frequencies have been subscripted for the oppositely
directed waves. '

4. POLARIZATION OF THE MEDIUM

This section closely parallels the corresponding sec-
tion in Lamb's paper' in basic format.

Consider an ideal two-excited-level system. Atoms
are excited to either of levels a or b (Energy AW )AWb)

at some time to. The atom can decay spontaneously at
rate y, y~, respectively, or, owing to the presence of the
radiation field, undergo a stimulated transition. For
oscillation to occur, it is assumed that a population in-

version exists. Expanding the state of the atomic system
in terms of the unperturbed set of states of the atom,
here taken as only levels a and b, the equation of motion
for the expansion coe%cients is' '

where X (tp, z,v) is the rate per unit volume of exciting
atoms having velocity component v, to state 0. at posi-
tion z, at time to. Equation (25) contains a trivial inte-
gration containing a delta function over all the initial
excitation points for the velocity ensemble. This occurs
because the interaction is treated in the stationary atom
fr arne.

The cavity field as given by Eqs. (4), (12), and (13)
is seen by an atom at time t and at position s in a moving
frame as

E(z,v, t) =Q„({E,„cos[pii„(1+v/c)t+C i„]
+Ep„cos[p~p„(1—v/c)t+C o„]}U„(z)
+(Ei„sin[oui„(1+v/c)t+C'i ]

E&„sin[&—o&„(1—%)t+C»„]}V„(z)) . (26)

where

(~o +l ) (paa pub)

(ha* bb*) EP b„Pbbs

W. V,b(t) )II=
/

EVb. (t) Wb I
I'=/ /. (23)

f'r-

&0 Pbi

p= i[II,p] (1"p+8—'),

P (z,v, t) =p b.p, b(z, v,t)+c.c. . (27)

The coordinate system has been chosen as to arbi-
trarily cause the velocity ensemble to see the traveling
wave E~„and I:2„as being Doppler-shifted up and
down, respectively. The E„ in the ECNME are still
given by Eq. (7) as 2~m/I-.

The contribution to the polarization by the moving
atoms at position s is

The matrix element between states a and b of the inter-
action is given as

The Fourier components of the polarization due to
all the atoms in the velocity ensemble located at
point 8 ls

It V.b(t) = —tb. bI~;(z, v,t), (24)

where p,,~ is the matrix element of the electric dipole
moment taken between states a and b and F.(z,v, t) is
the electric field as seen by the atom. It is this point in
which the formalism differs from that as presented by
Lamb. ' Since the atom is described in its own Lorentz
frame, the atom always remains at the point where it
was excited. Collisions are neglected. Thus p is char-
acterized by the following parameters: to and s, defined
in the moving frame; v, the axial velocity components
of the atom with respect to the cavity; o.=u, b, the state
to,which the atom was initially excited at time to,' t,
the time at which we wish to observe the system. Since
the atoms are of thermal velocity, simple Calilean
transformations are used so that atom time is simul-
taneous with cavity time and atoms in all frames see
the same cavity length. The p which describes the total
ensemble of atoms excited to either state at position s,
having velocity component v is written as

P„(v,t) = (2/I. ) P (z,v, t) U„(z)dz,

P„(v,t) = (2/I. ) P(z, v, t) V„(z)dz. (29)

The macroscopic Fourier components of the polar-
ization are obtained by transforming P„(v,t) and

P„(v,t) back to the cavity frame and averaging over all
velocities. In performing the transformation it is first
necessary to group P(z,v, t) into terms having the form
of oppositely directed traveling waves. The terms will

be of the form expi[&Ez —p~i„(1&v/c)t —Ci„]. Thus
to make the inverse Lorentz transformation, it is sufIi-

cient to multiply each term by exp(Wiopi„tv/c), re-
spectively. This will be more clearly shown in what
follows.

p(z, v, t) = dzo dto& (to,z,v)p(n, tp, z,v, t)8(z—zp),

S. CALCULATION OF POLARIZATION
FOR SINGLE MODE

(25)

'This has been shown by C. V. Beer, Phys. Rev. 134, A799
(1964). Refer to Appendix I for a formal derivation using the
traveling-wave formalism as presented in this paper.

VV. E. I.amb, Jr., and T. M. Sanders, Jr., Phys. Rev. 119,
~90~ (~WO~.

The solution of Eq. (21) for p(a, to,z,v, t) is obtained
by treating the interaction between the radiation field.
and the atomic system as a perturbation and expanding
p(n, to,z,v, t) in orders of the interaction. This has been
done by Lamb' and will not be repeated here.

For a single mode the interaction is obtained from
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where

F (&,) =exp( —PP) dz expx', (33)

2 =
i tj,.g i'Ã(t)/(AEu),

5'= (~'—~)/(Eu) .

(34)

(35)

In writing Eqs. (31) and (32), it has been assumed
that the Doppler width

a(o = 2 (ln2) O'Eu,

is much larger than the natural width. In Eq. (34),
N(t) is the average excitation inversion density.

Equations (31) and (32) are the standard threshold
conditions for independent oscillation. For the case of
a SWOM, Eqs. (31) and (32) reduce to those obtained
by Lamb. '

6. POPULATION INVERSION

A second-order perturbation expansion gives the
average population inversion of a given velocity en-
semble as (details are in Appendix III)

Ap(v, t) =E(t)w(v)
XL1—2IgZ ($g+ v/u) —2I22 ($2—t/u)), (36)

where W(w) is the normalized velocity distribution.
The dimensionless intensity of each beam is

Eqs. (24) and (26) as

V.p(t) = —(p.b/h) [LE~ cos((~~+En)t+C, )
+E2 cos((~2—En)t+C, ))U„(s)
+LE~ sin((a&~+En)t+C»)

E, si—n((~,—Ev)tye, ))V„(s)]. (30)

In Eq. (30) the distinction between the ECNME and
oscillating wave number has been neglected. The mode
subscript on the amplitudes has also been dropped.
Calculating the erst-order polarization by evaluating
the integrals in somewhat the same manner as pre-
scribed by Lamb' (details are to be found in Appen-
dix II), the conditions on the amplitudes and frequen-
cies of oscillation of the oppositely directed traveling
waves are found as

—DO+Et)'—2I2 1+
A g DM&

(40)

» Eq. (40) pulling effects have been neglected and for
a first approximation AQ=co2 —co&. Thus, the depth of
each hole is determined by the intensity traveling in
each direction and the width is equal to the natural
width of the atomic transition. For the case when

0(AQ(&GO M]
&

the holes are located on opposite sides of the inversion
curve. As the oscillations are tuned through the center
of the atomic transition such that AQ=(d —~& one of the
holes is found to be symmetrically placed on the inver-
sion curve. As this point is passed it is found that both
holes are centered on the same side of the inversion
curve. It is in this region that strong mode-competition
effects are expected, although mode-competition effects
are present at any point of oscillation. Mode competi-
tion is at a maximum when the two holes completely
overlap, which occurs when 60=2(~—a&~). At this
point the two oscillation frequencies co~ and co2 are
symmetrically loca, ted about the atomic transition
frequency or.

At erst sight it is not even obvious that two inde-
pendent oppositely directed traveling waves can exist
at any frequency. This question will be considered after
the calculation of the third-order Fourier component of
polarization, which will allow calculation of the inten-
sities I~ and J2.

It should also be noted that Eq. (40) gives the va-
lidity condition on the strength of the Geld such that
convergence of the perturbation expansion occurs.
Physically it says that the relative depth of the hole
burnt into the inversion curve is small, or Jl, I2«1.

It should also be noted that Eq. (40) is what would.

be calculated using Lamb's formalism for the case of a
SKOM if AQ=O and

of average population inversion versus velocity en-
semble shows the Gaussian velocity distribution with
two Lorentzian holes "burnt" into the curve. This can
better be seen by writing Eq. (36) in the non-normalized
foriIl

M —
Goy

—E'v
Dp(v, t)=E(t)W(v) 1—2I, 1+

~ AM&

I,= (p. )'E /(2tt'y. y ) . (37) (I~=I2)TwoM= &IswoM ~ (41)

The Lorentzian function Z($) is deined as

~(k) = I:1+(5/~)'7-', (»)
where q is the ratio of the natural to Doppler vvidth, or

rt =y.p/Eu= -,'A(u /(Eu) . (39)

Equation (36) shows the saturating effects of the oscil-
lations on the unsaturated population inversion. A plot

7. THIRD-ORDER POLARIZATION

The expression for, and the details of the calculation
of the third-order Fourier components of the polariza-
tion are found in Appendix IV. The expression is similar
to that as derived by Lamb, ' except for the Lorentzian
operator necessary to transform the polarization con-
tribution of a single velocity ensemble from the moving
atom frame to the cavity frame.
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In the "Doppler limit" the self-consistent equations
can be approximated as

El+ 2 (K/Ql)11= g (td/EO)7f AE1

X[Z'(5 )/Z'(0) —I ~ p(—5 ')
—I, exp( —~,')Z(~)), (42)

R+k(~/Q2)&2= 2 (~/~o)~'"A&2

X [Z;($q)/Z, (0)—I2 exp (—b')
-»-p(-&')~(&)), (43)

(M1+C'1 Ql) 2 (M/EO)A

X [Z„(~,)+I,(~/&) z(t)Z, (p,)), (44)

&2+42 02= 2 (CO/60)A

X [Z.(k2)+Ii(k/n)~($)Z. (hi)) (45)

where Z„and Z; are the real and imaginary parts of the
"plasma dispersion function, "as defined in Appendix II.

For the case of a SWOM, Eqs. (42)—(45) reduce to
those derived by Lamb, except for the added expo-
nential factor exp( —fP) next to each dimensionless in-
tensity factor I,. As shown in Appendix IV, the expo-
nential factor arises from the evaluation of the integrals
without the delta-function approximation. The physical
significance in being able to insert or omit the expo-
nential factor. arises in the criteria for. the validity of the
perturbation expansion. The exponential factor becomes
significant for large p;, or for operation "away" from the
center frequency of the atomic transition. This implies
a gain/loss value such that as the oscillation frequency
is tuned through the Doppler center, the depth of the
hole will be great enough such as to invalidate the per-
turbation expansion. Hence, the solution is expected to
be most valid in the region where the exponential divers
little from unity. However, when the effect of multiple
isotopes upon the operation of the. system is considered
it will be essential to keep the exponential factor.

From a study of the form of the interaction which
leads to Eq. (IV.3), it is seen that the dominant con-
tribution to the polarization occurs when the accumu-
lated Doppler phase shift cancels. This corresponds to
the case of pure inhomogeneous broadening and the
third order contribution to Eqs. (42)—(45) contain only
this dominant part of the interaction. The third-order
polarization occurs due to' the atom undergoing three
stimulated interactions with the net radiation field at
times 3"'(3"(t'. The choice of the traveling wave with
which the atom interacts is not arbitrary. From the form
of Eqs. (IV.3) and (IV.4) it is seen that for the domi-
nant contribution to the polarization, the- atom's first
two interactions are with the same traveling wave,
while the third interaction may be with either of the
two traveling waves. This order of interaction also
applies for the case of a SKOM.

From the case of broadening somewhat between pure
inhomogeneous and pure homogen'eous, contributions
to the polarization can occur when the accumulated

Doppler phase shifts are not zero. Some of these con-
tributions have been evaluated in Appendix IV,
although they have not been included in the self-con-
sistent equations (42)—(45), and have been shown to be
of higher order in the parameter (natural width/
Doppler width).

8. STABILITY FOR SINGLE ISOTOPE

At steady state, Eqs. (42) and (43) give two simul-
taneous equations for the dimensionless intensities I&
and I2, which can be solved to give

I =-pR')[H(~ )—~(&)H(~.))[1—~-'(&))-', (46)

exp@2 )[H($2) ~(k)H(k&))[1 ~ (5)) (47)

where

H(~ ) =Z'(~')/Z. (0)—~.-', '=1, 2,

and X; is the ratio of the excitation inversion density to
the threshold value of the excitation inversion density
taken for oscillations at the center frequency of the
atomic transition. . Thus H($, ) -is proportional to the
depth of the hole produced by the radiation $;. Since
Z($) approaches unity as ( approaches zero, Eqs. (46)
and (47) contain a singularity. But, depending on the
direction of tuning, one of the'numerators of Eqs. (46)
and-(47) goes to zero before the average of the oscil-
lating frequencies passes through the center of the
atomic transition. At this point, one of the two oppo-
sitely traveling waves is extinguished and this deter-
mines the range of validity of Eqs. (46) and (47). For
example, consider the case of tuning in the direction of
increasing frequencies. Before the oscillation frequency
is tuned through the Doppler center and for the case of
losses for radiation traveling in either direction being
equal, H(&2) is just slightly greater than H(P&). Then,
from Eq. (46) the radiation oscillating at (& will ex-
tinguish. If the oscillation frequency were to be tuned
in the direction of decreasing frequencies, it would
again be the radiation oscillating farthest from the
Doppler center (I2 in this case) which would extinguish.
It is interesting to note that if the direction of rotation
of the rotating frame were reversed (perform the ex-
periment in the southern hemisphere) the traveling
wave that wouM be extinguished as we tuned through
the Doppler curve would be the opposite of the one that
was previously found to be extinguished.

A calculation giving the point where one of the modes
is extinguished gives

I
6'~(

I
= (4»2) (~~„/~~)'X/(~ —1),

where
&~=!(~-~) (50)

For the Ãe 1.15-micron transition and for a, gain/loss
ratio of 2,

0 026$ . . (51)

Thus both the oppositely traveling waves can oscillate
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GAIN/LOSS = 2 q=0.08
2 Ir ~ O.OI (IOMc)

isotope will remove the singularity from the intensity
equations.

OA-

0.2—

O.I—

"IO

05-

I I I I
-8 "6 -4 -2

$ IN UNITS OF O. l = 50 Mc

9. STABILITY—TWO-ISOTOPE CASE

Consider the addition of a second isotope to the
system such that the ratio of atoms of each type is
f/(1 f).—Let primes signify quantities pertaining to be
second isotope. Then the excitation inversion density
for each velocity ensemble is

N(s, tr t) = fN(s, t)W(tr)+(1 —f)N(s, t)W'(tr) . (52)

In analogous fashion to the single-isotope case, the self-
consistency amplitude equations, correc t to the third
order, are found to be

Er+-', (or/Qr)Er ———', (or( ep) rr're Er
X(f[exp(—)r') —Ir exp( —&r')
—I -p(—b')~(l)j
+ (m'/m)'"(1 —f)[exp (—&,'-')

Ir exp( —$r—'s)

p(—k ")~(k') j) (53)

0.4-

03-

0.2-

0 t.. . l 1 r. t t t 1

-Io -8 -6 -4 -2 0 2 4
& IN UNITS OF IO = 500 Kc

(b)

t . t t

8 IO

Fxo. 1. Plot of intensities of oppositely directed travehng waves
versus tuning of degenerate cavity frequency through single-

metric about the Doppler center with the role of I1 and I2 inter-
changed. Figure (b) is a blowup of the center region. The separa-
tion between the curves of Fig. (a) has been exaggerated.

d. Auntil the holes are almost completely overlappe .
plot of Ij and I2 as the frequency of oscillation is tuned
through the atomic transition gain curve is shown in
Figs. 1(a) and 1 (b). A splitting of d $=0.01 (10 Mc/sec)
has been chosen for the KCNME frequencies. For high
values of

I P ~, both modes are extinguished as they fall
below threshold. As the oscillation frequencies are
tuned through the center of the atomic transition, the
roles of I~ and I2 are interchanged. As the tuning moves
through the unstable region, the beam which does not
ex inguis et' h (determined by the direction of tuning will

n uickl fall toremain essentially constant and then quic y a o
zero as the other beam takes over. Then the intensities
will follow the curves plotted in Figs. 1(a) and 1(b).

It should be emphasized that the consideration of the
single isotope case is similar to discussing forced oscil-
lations without damping. As v ill be shown in the next
section, the presence of even a trace of an additiona

Es+ s (or/Q2)E2 s (or/ep)rr AE1

X{f[exp( 4 ) Is exp( 4 )
—I exp( —5')&(t)3
+ (m'/m)'~'(1 —f)[exp(—Ps")

Is exP(—Ps's)—
—I exp( —

$ ")&(e)j) (54)

The ratio of the masses of the two isotopes arises from
the difference in Doppler widths for each isotope. Com-
paring qs.E (53) and (54) to the amplitude equations

ouldfor the single isotope, it is seen that the equation cou
easily be generalized for any number of isotopes. Like-
wise, the frequency equations could be written by in-
spection of the equations for the single-isotope case, A
steady state the intensity of both traveling waves is
found from Eqs. (53) and (54) as

Ir ——Num. /Den. , (55)

and
f'= (m'/m)'t'(1 —f) . (58)

The intensity I2 is obtained by interchanging the
subscripts 1 and 2 in Eqs. (55)—(57).

Note that as mentioned, the two-isotope case differs

where

Num. =[fexp( —Prs)+ f' exp( —Pr's) —X&
—')

X[fexp b'-+ f' exp —$—s"j
—[fexp( —$s )+f exp( —

$2 )—+2
X[fexp( —~,')ZR)+f exp( —P, )~(~')), (56)

D .=f'"p(-&'—&')[1—~'(&)j
+f"e p(—~

"—5 ")L1—~'(5')3
+ff'[1-~(~)~(e)j

X[exp(—&rs—Ps")+exp(—&r"—&s')j, ( )



THEORY OF TV. AVELING-XVAVE OV.rlCAL MASER

05-

0.4-

1

0.3-

0.2-

O.I-

GAIN/LOSS = 2 q = 0.08
f = 0.910 Af -" O.OI {IOMc)

The gain curve is obtained from the right-hand sides
of Eqs. (53) and (54), although strictly speaking the
amplitude equations only give the condition that gain
equals loss, at the frequency of oscillation. It is the
interpretation of the equations that determines gain at
a frequency other than the frequency of oscillation. In
addition, for a TKOM located on a rotating frame, the
gain proile versus frequency in the presence of oscilla-
tions at a 6xed frequency is diferent for radiation

0 I

"IO "8 "6 "4 "2 0 2 4 6 8 IO

f IN UNITS OF O.l = 50 Mc 0,5

GAIN/LOSS = 2 st = 0.08
f = 0.999999 Ag = O, IO (IO Mc)

Pn. 2. Intensities versus tuning for natural neon. 0.4

from the single-isotope case that in Eq. (55) does not
contain a singularity. Figure 2 shows a plot of intensity
versus tuning for natural neon. The effects of Ne" have
been neglected. The separation of the transition of
Ne" has been taken as 260 Mc/sec. ' The crossover
point where the two intensities are equal is seen to have
shifted approximately 40 Mc/sec above the center fre-
quency of Ne'. In addition, a slight bump in the curves
is seen at the center frequency of Ne".

Figures 3 (a), 3 (b), and 3 (c) show the effect of a trace
of isotope Ne" on the stability of both traveling modes.
For a concentration of 99.9999/0 Ne'-' it is seen that
there exists a narrow gap where both beams are stable,
inside the region of instability. Figure 3(b) shows the
case of 99.99% Ne-'. It is seen that there is no region of
instability and that the crossover point is starting to
move to higher frequencies. In Fig. 3(c), for the case
of 99.9'Po Ne", it is seen that there is essentially a
smooth transition through the center of the Lamb dip.

The average population inversion as a function of
velocity ensemble is obtained to second order as

d p(e, t) = fN(t)W(e)$1 —2IIZ(gr+n/u)
—2Is2(&s—e/I) j+ (1—f)N(t) W'(e)

XL1—2II&(tt'+&/I) —2Is& ($s'—&/ll) j (59)
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I) ip
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CO. GENERAL DISCUSSION

For the single isotope, the population inversion curve
versus velocity ensemble and the gain curve versus fre-
quency are quite similar in shape (the hole width in the
gain curve is twice, in comparable units, the hole width
in the population inversion curve) and it is easy to
confuse the meaning of each. For the two-isotope case,
the curves are radically different. From Eq. (59) the
population inversion curve is composed of two velocity-
distribution functions, each located symmetrically
about the v=0 axis. The two holes burnt into each curve
are of diferent depth and are located at different dis-
tances from the e=O axis. There is no significance to
the superposition of the two curves.

' A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).
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FxG. 3. Intensity versus tuning in region of Doppler center
for Ne'0 vrith an added trace of Ne".
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traveling in different directions. As an illustration,
consider the gain pro6le from the point of view of
radiation traveling in the same direction as the radiation
oscillating at tds (ce. (See Fig. 4 (a).) Then at res there will
be two holes, one in each of the single isotope Gaussian
gain profiles. The holes due to the radiation oscillating
at tdr will burn image holes at —$i and —(t', respec-
tively. From the Lorentzian functions in Eqs. (53) and
(54) it is seen that the width of the holes burnt into the
gain curve is twice the width of the holes burnt into

the population inversion curve. In the plot of gain
versus frequency of oscillation the superposition of the
gain profiles of the individual isotopes gives the re-
sultant gain curve. Thus, in Fig. 4(a), there will be
three holes burnt into the resultant g'ain curve. At the
frequency of oscillation, the gain-equals-loss condition
will be satisfied by the hole being burpt into the re-
sultant gain curve down to the loss line. As the fie-
quency of oscillation is tuned across the atomic tran-
sition, the depths of the holes burnt into the sirigle
isotope ' gain profiles, will vary. as, determined by
Eqs. (53) and (54) such as to alwa, ys maintain the gain-
equals-loss condition at the frequency of oscillation in
the resultant gain pro6le. If the gain pro61e is con-
sidered from the point of view of radiation traveling in
the opposite direction (same direction as' radiation
oscillating at tet) then the hole burnt into the resultant
gain curve will satisfy the gain-equals-loss condition at
frequency &ei. See Fig. 4(b). The image holes will now

correspond to the radiation oscillating at frequency cv2.

It is interesting to note that the above interpretation
of the gain profile as a function of frequency and both
the amplitude equations and frequency equations can
be obtained using Sennett's" "hole burning" model.
The width of the holes. are taken as twice the natural
width and the partial depth only due' to the radiation
which causes the burning of each hole, is given as the
dimensionless intensity multiplied by the gain. at the
point where the hole is burnt. The total hole burnt into
each single isotope curve includes the contribution due
to the I,orentzian tail of the image hole.
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APPENDIX I

Cd
) tilp OP

(b)

FREQUENCY

FIG. 4. Figure (a) .is the gain profile for a test signal traveling
in the same direction as the radiation oscillating at co2, for two
isotopes having relative concentrations of f and f'. The resultant
gain curve is the superposition of the single-isotope gain curves.
At ca& the resultant gain equals the loss. Figure (b) is the gain
profile for a test signal traveling in the same direction as the
radiation oscillating at co~.

From Beer', Maxwell's equations on a frame rotating
with angular velocity —0 in the direction of the normal
to the plane of the cavity, are, for the electric field
linearly polarized in the direction of —8, -

BE/8s+ BB/Dt= 0, (I &)

(I 2)

(I.3)

(I.4)

BH/its+ BD/Dt+ J=0,
B=ttsH —uE,

D= esE+P aH, —
J= o.E.

where L is the optical path of the cavity and A is the

W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962); Quantum
Eleetrortees Paris 19tf3 (—Columbia University Press, New York,
1964), p. 441.

(I.5)

The Poynting vector lies in the s direction and

tt = 238/ (I.c'), (I.6)
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MAX» 8 A 2

—2g
BSBtQ Bt Bt z

= —pphPP . (I.7
Bs

xp
'

I
' . (I.7) into the set of

4 —8 d ki of h
lution of Kq. . i

hey q()-
orthogonahty o

E coeKcients are found to etime- e-dependent KCNME coe cien

n2' (od23„(v dA„

dt' Q dt

O'A co dA„

dt2 0 dt

For an empty lossless cavity,

(I.10)P„=P„=Q '=0.
re „ in the form as given y q .m e

' E s. (12)E ressing A „and 2 „m e
an ( ) ~ g

I.10, it is foun uponq (.
efficien s ot f sinM&~t and cosM]& 0 z

p
tlons

'—0 '—2aE~c'co2„= 0~2n (I.11)

(I.12)M —Q +2GE„C M)„=0.ln n

Since
co' —Q' = (o)—Q) (~+Q) = 2(g (a&

—Q),

Eqs. (I.11) and (I.12) become

(uz„=Q„+aE c',
21m= n„=0 —aE„c .

(I.13)

(I.14)

em t -cavity normal-mode eigen-d, „are the p y-
functions Q~„an
respec ivectively. The cavity sp i

Q,„—Q „=(2 )4A8/(I. ),„) . (I.15)

APPENDIX II

g
E (30) the first-order Fourier corn
polarization are g

~ ~

iven by

2i I) .b I'P„i') (t)
iV(v)dvT(r)

P n)(t)

X iY (z,t)dz

00

dr' exp —(y, ),+i&a 7.

X
"' ., -.((-,+ .)+.,)
V.(z)

Zz cos((~2—Ev)t'+Cz)}U„z

+ (E:) si)) ((o)i+jI:i))t'+4)

—Ez sin((&oz —IA) t) '+C z) V„(z)]+c.c. ,

L Maxwell's equations arelosed by . ' s arege
h loowritten only to first ord er in8. e a

to Eq. (1 is

()I Z

is the»rmalized veloc yh T-t—t'an 8 '
t t ansformatlon'b tion. T(z) is the p
t n back to the

tll u o ~

f the polailzatlonnecessar to trans orm
cavity fram .

Ma ingk' the rotating wave appr
becomes

p o) (t)

P~0) (t)
W(im) di) T (v)

U„($)

()
X Ã(z t)dz

0

XLE) exp —(i(uit+iC i+ 'iEzt+y, 7 )

X(U ()+'V ())
+Ez exp —(i~zt+iC z+ ski)t

X (U„(z)—iV.(z))]+c.c. ,

where

(II.2)

(II.3)y ~=y, g+i(co co,&—ICv) .'Ya b

U~iV exp%a s,ince
lI.2 is of the formEquation ( )

Ei exp i (cuit+—Kz)+ z
' — z .'Ez exp —i(~zt —Ez) .'

us
'

and exp —iEet for the term in Ej() ep'

hb k d
CNME i o ti 1

form and neglecting second- armonic
Eq. (II.2) becomes

P„ii)(t) = alt. bl'
expL —i((u, t+C,)]

AEu/z'"

2der exp—
0

(II 4)

X[Zi exp( —2gx+2i($)+w x

x 2z $z — )wS)]+ cc.+Ez exp( iP 2gx—+ i—z—.
dw exp( —w')

(II.5)

Xl Ei exp( —2gx+2i(gi+w x

i —2))x+2i (Pz—w) x)]+—c.c. ,Ez exp(

here t e o tions have been made:where the following substitutions

W ('v) d v = (vl ) exp (—w (II.6)

'S ICZC $g= ((dj Ql)/XN q w 'U/Q.8=7eb I p
i—X 2 7

s Maxwelb. ane
'

. tion has been chosen asThe velocity distribution
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Following the technique of Lamb, ' the first-order co-
eKcients of the Fourier components of the polarization
as delned in Eqs. (14) and (15) are found to be

S„&'&(t) =—A [E~Z;($~)+E2 cosset Z;(b)
E2 s—inPZ„(b)], (11.7)

C„&'&(t) = —A [E~Z,($~)+E2 cosPZ, (&2)

+E, sinttZ, (b)), (II.S)

S„o&=—A [E~Z„(b)—E~ cosset Z„(b)
E~ si—nPZ;($2)), (II.9)

C„o&=—A[—E~Z, ($~)+E~ cosfZ, ($2)

E2 sinfZ—, ($2)), (II.10)

where the real and imaginary parts of the "plasma dis-
persion function" are obtained from

Z(g) = 2i dx exp( —g —2rtx+2igx) . (II.11)
0

Substituting Eqs. (II.7)—(II.10) into Eqs. (16)—(19),
the self-consistency equations, to 6rst order, are found
to be

F;+'(~/Q;)E; —= ~ (&o/eo)AE;Z;($, ) j= 1, 2, (II.12)

(fl;—(g;—C;)E;= ', (&a/eo)—A-E;Z, ($,) j=1,2. (II.13)

For the Doppler width much larger than the natural
width (»((1), the expansion of Eq. (II.11) gives

Z (()=s'" exp( —t2) —2&[1—2)F($)]+ -, (II.14)

Z„($)= —2F ($)+2m'"$g exp( —P)+, (II.15)

with F ($) given by Eq. (33).
Equations (31) and (32) are obtained from

Eqs. (II.12 and (II.13) for 4=g=0.

APPENDIX IV

The third-order Fourier components of the polariza-
tion are given by

p„(3& (t)

P.&'& (t)
W(v) T(v)dv JV (G,t)dz

dr' dr" dg"'

V&, (t') and V &(t"), respectively, give contributions.
The interaction terms then have the form

Vp. (t') E, exp[i((op+En)t'+C, )(U—iV)
+Eg exp[i(u)g —ItG)t'+Cg)(U+iV), (III.3)

V, g(t") E'g exp[—i(co&+Km) t"—4 g) (U+i V)

+E, exp[—i(u)2 —Ew)t"—C,)
X (U—iV) . (III.4)

The cross terms in E&E2 have the factor (U&iV)'
exp~2iE2' and can be neglected. The interaction

terms are then of the form

Ug. (t') V, b(t") [EP expi(cug+Evr)r"
+E22 expi(cu2 E—v) r")
X (U+iU)e' x'(U iV)e —'x"' (III 5)

In Eq. (III.5) the Lorentz transformation has been
carried out by the rule stated in Appendix II.

The double integral on Eq. (III.1) can now be evalu-
ated to give

~p "&(G,~,t) =—
~~p "&(G,~,t) [I~[a—i(h+~))-'

+Ig[g—i($2—w)) ')+c.c. (III.6)

Combining the complex conjugate term and averag-
ing over the cavity length results in Eq. (36).

APPENDIX ur

The second-order population-inversion density is
given as

apt'&(G, w, t) = T(G)hp&'&(G, v, t) dr' dr"

X[exp(—y,r')+ exp (—y pr') )
Xexp[—(y.g+m) r")

Xexp[ —(y. t,+m) r']
X[exp(—V"")+exp(—V "))
X{exp[—(q.&+no)r )+c.c.}

U„(G)
X U.,(t') U,.(t")

V„(G)

X V,q(t"')+c c , (IV.1). .

X V, (t~) U, (p)+.c c (1111) where the substitutions

where the substitutions 7.'=t—t', v"=t'—t", have been
made and the interaction is given by Eq. (30). The
zeroth-order population-inversion density (inversion in
the absence of stimulated emission) is given by

ap&'&(G, v, t) = W(G)E(G, t) . (III.2)

Making use of the rotating-wave approximation, only
the positive and negative frequency components of

have been made and the interaction is given by Fq. (30).
In making the rotating-wave approximation, only

the negative, positive, and negative frequency com-
ponents of V,~(t'), V~, (P), and V ~(t'"), respectively,
give contributions to the term in exp —(y, ~Am) r'".

Each interaction term then contains factors of the
form (U&iV).The Lorentz transformation is carried out
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by following the role in inserting the factor exp(&iK2&) integral
next to each (U&iV). Making use of Eq. (IV.2), the
integrand of Eq. (IV.1) becomes

~~4' exp[2i(@*+Sly)—2n(~+y) —(~—y)'7
ilgl4 U

SASL V
exp[—i (44&t+C,)7

0 0

g+i$
g(p)[z(p.)+z(p,)7, (Iv.5)

Sip'

x [exp(—y.7")+exp(—y&r")7

X{E2(U+iV) exp( —y~ 2')

+E (U iV) e—xpL —i(4+v~r')7)

X(E&.' exp( —V2-2'")+E2 exp( 72+r )

+E&E2(U—iV)' exp{—[y&r"'

+iK&&(2r'+22 "+ "7')+if i(cv2—cog)—

X (2'+2'"+7'")7)+EgE2(U+i V)'

Xexp{—
[y22

"'—iK&&(22'+ 22."+2.'")

—i&+i(c02—co)) (r'+ r"+ 2 "')7)

+c.c.)+c.c. , (IV.S)

v, =v.~+i(~—~.-)

Y&y Yah+2(M , M,+K—s) q

~=( .— )t+C.-C .

The integration over the cavity length can now be per-
formed, neglecting second and fourth harmonics of
exp(&iKz). After performing the velocity integration,
the resulting integral can be simplified for the case of
the "Doppler limit, " i.e., the Doppler width EN being
much larger than the natural width p, &. By making the
delta-function approximation' the portion giving the
dominent contribution can be picked out as

ilt I'&(t)V.2
I'„&2&(t) = exp[—(a),t+4 g) 7

It2y, y 4(KN)'

dx dy exp{—[2&(x+y)+ (&—y)'7)
0 0

x {E'-p[+»s (~-y)7

+E"expL —iV+2ib(~ —y) 7

+E1Z2 exp[2i (b&+6y) 7

+EpE2 exp[—i&&t'+» (b*+4y) 7)

+c.c. , (IV.4)

where the integration over v" has been performed and
the substitutions as introduced. in Appendix II have
been made. Rather than actually evaluating Eq. (IV.4)
with the delta-function approximation, use of the

where )=2($,+(4) and Z($) being the plasma disper-
sion function, will enable the exact evaluation of
Eq. (IV.4).

The integral in Eq. (IV.5) has been evaluated by use
of the substitution n= x+y, p x—y, and

dp dcc (integrand even in p) .

The coeKcients of the Fourier components of the
polarization for Eq. (IV.4) are then obtained as

s„"'(t) =A {E2I&z;(b)+E2I2 cospz, ($2)

+E,I2~(&)[z,+(~/„)z,7
+E2I~Z ($)[(cosf+ ($/2t) sing)Z;

—(
'

0 —(5/ ) 4)Z.7) (IV 6)

C„&2&(t) =A {E2I2sinpz, (b)
+Z2I2~(k)LZ. (5/n)—Z,7
+E,I,Z (()[(s&nP—

(&/&t) cosg)z,
P(.o.P+(P/„).'

y)z„7), (Iv.7)

with $= 2 ($2+b), Z= 2 [Z((&)+Z($2)7. In like manner
it is found that

8 "'(t) =iP„&2&(t) [terms with exp( —f)
are multiplied by minus one),

and hence

C„&'&(t)=5„"&(t) (terms without g
are multiplied by minus one), (IV.S)

8„&'&(t)=C„&'&(t) (terms with P
are multiplied by minus one) . (IV.9)

Using Eqs. (16)—(19) and Eqs. (IV.6)—(IV.9), the self-
consistant equations, with only the dominent third-
order contribution, are found to be

Eg+-2, (c4/Q) E& ———,
'

(cv/4p) A E&

X{Z;(~)-I Z;(~ )-I.~(~)
x[z;+($/n)z. 7), (Iv 1o)

E.+-,'( /e)E. =l( /")».
X{Z,(&,)—I,z;(~,)—I2~(~)

x [z;+($/q)z„7), (Iv.11)

( +C -f~)=l( /")&{Z.(r)+I ~(&)
x[(~/q)z,—Z,7), (iv.»)

(~2—C2—02) = 2(c0/40)~ {Z.(k&)+I&~(&)
x [(]/q)z, —2„7) . (Iv.13)
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If the delta function approximation were made,
Eqs. (IV.10) and (IV.12) would read, respectively,

Er+ l (~/Q)&r = s (~I«)~&r
Lz'(5) —( '")I —( '") ~(k)j ( )

(~tier n&)—=-; (~/eo)&

XLZ. (5 )+( '")I &(5)(5/n)3 (IV 15)

Now consider one of the neglected contributions to
the polarization, having the form of Eq. (IV.4) with

y —+—y in all the exponentials except exp —2&(x+y).
Using the integral

dxdy exp[2i(f,x+Psy) —2&(x+y) —(x+y)s$

= (»5) 'LZ(k. )—Z(tb) j, (».16)

where A$=-,'(ts —(,), the right-hand sides of Eqs.
(IV.10) and (IV.11), respectively, take the form,

z, (~ )—I z,u)-1.~(aL~'-(./uz, j
—2riI&t 1—r)Z, ($&)+$&Z,($&)3 & (IV.17)

z, (~.)+(Z/~)f. ~(~)l~;—(./~)&,
-!L1+(~/r)')Lz;(~ )-z, (~ )j}

+2 111L$1Z (kl')+r)Z ($2)j (IV Ig)

where use has been made of the identity

(~/~) —(~/. )~(~)= (~/~)~(~) .

Thus the effect of not making the delta-function ap-
proximation is to introduce additional terms of the
order of q((1. Neglecting these terms is equivalent to
neglecting the effects of natural broadening on the line-
shape for the third-order polarization. Equations
(42)—(46) are written in this approximation and for
the case of small rotations (A$«g).

Xo1e added in Proof It has. been brought to my atten-
tion that an adaptation of Lamb's model to the travel-
ing-wave case has been presented by C. V. Beer in a
report at the 1964 Symposium on Unconventional
Inertial Sensors, Polytechnic Institute of Brooklyn
Graduate Center, Farmingdale, New York (un-
published).
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Index of Refraction and Sum Rules for Helium

R. MIGNERONf AND J. S. LEV1NGER)
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(Received 12 November 1964; revised manuscript received 23 March 1965)

Recent measurements by Lowry and by Lukirskii of the atomic photoe6ect for helium can be combined
with calculations for discrete transitions and for the high-energy photoeffect to give the oscillator density
for the entire range. We use dispersion theory to calculate the index of refraction n. We Qnd satisfactory
agreement with experiments in the visible and in the near ultraviolet, and we predict the value of n from
2700 to 600'.. Our predicted values agree satisfactorily with values calculated by Chen and Dalgarno.
We use these oscillator densities to calculate the sum rules S(0), S(1), and S(2), which weight with the
zeroth, 6rst, and second powers of the photon energy, respectively. Each result agrees with values based
on ground-state wave functions to 5% accuracy. We conclude that in general the oscillator density is now
known to about 5% accuracy.

I. INTRODUCTION

OWRY eI, al.' have recently measured the absorp-
& tion cross section for helium for photons in the

energy range from the photoeffect threshold of 1.807
to 8.82 Ry; while Lukirskii et al.' have worked up to
energies of 20.6 Ry. We are interested in dispersion-
theoretic calculations of the index of refraction e, and

* Supported in part by the U. S. OfEce of Naval Research.
l' Canadian Commonwealth Fellow, now at 1mperial College,

University of London. This paper is based in part on an M.S.
thesis, Cornell University, 1964 (unpublished).

fAVCQ Visiting Professor, now at Rensselaer Polytechnic
Institute.' J; F.Lowry, D. L. Ederer, and D. H. Tomboulian, Phys. Rev.
137, A1054 (1965);

'A. P. Lukirskii, I. A. Brytov, and T. M. Zimkina, Qpt. i
Spektroskopiya 17, 438 (1964) LEnglish transl: Opt. Spectry.
(USSR) 17, 234 (1964).

also in calculations of oscillator-strength sum rules
S(p) weighted with the pth power of the photon energy.
For our calculations we need both the oscillator
strengths for discrete transitions, and we need the
oscillator density at all energies. We use Schiff and
Pekeris' calculations' for discrete transitions, calcula-
tions by Stewart and Webb4 from 20.6 to 130 Ry, and
calculations by Salpeter and Zaidi. ' We have chosen
the Stewart-Webb calculation for the velocity matrix
element with Hartree-Pock wave functions. We add
to this the cross section for double excitation calculated
by Salpeter and Zaidi. There is a 10% discrepancy

B Schiff and C. L. Pekeris, Phys. Rev. . 134','.4638 (1964).
A. L. Stewart and T. G. Webb, Proc. Phys. Soc. (London}

82, 532 (1963}.
~ E. E. Salpeter and M. H. Zaidi, Phys. Rev. 125, 248 (1962).


