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Analytic self-consistent-field (SCF) wave functions were computed for the ground states of the closed-
shell atomic systems F~, Ne, and Na*, and CI~, Ar, and K*; and for those ground and excited states of the
open-shell systems which are obtained by removing a single electron from any one of the occupied shells
of these closed-shell systems. Details of the calculation of the functions are presented, with emphasis on a
justification of the procedures used for the calculations for excited states. A high accuracy is obtained; the
calculations for the closed-shell systems give the most accurate analytic SCF wave functions which have
yet been reported. Ionization potentials are calculated and compared with experimental values. Computed
ionization potentials for the removal of a 2s electron from CI~, Ar, and K, for which no direct experimental
data are available, are estimated to be accurate to 19%,. It is found that the removal of an electron from the
outermost s shell increases the correlation energy, in contradiction to the predictions of a recently proposed
semiempirical scheme for estimating the correlation energy. For example, the magnitude of the correlation
energy of the lowest 25 state of Art is ~4 eV greater than the magnitude of the correlation energy of
neutral Ar. The effect of the nonzero off-diagonal Lagrangian multipliers is considered and found to be
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important for the inner shell hole states.

I. INTRODUCTION

NALYTIC self-consistent-field (SCF) functions
are presented for the ground states of the closed-
shell atomic systems F—, Ne, Nat, Cl-, Ar, and K, for
the 15225%2p5, 15225258, and 152s22p° configurations of F,
Net*, and Nat+ (which, for convenience, we refer to as
the 2p-hole, 2s-hole, and 1s-hole states, respectively) and
for the 1s22522p03523p5, 1522522p%3s3p8, 1522522535235,
152252983523 p8, and 1s525?2p%3523p% configurations of Cl,
Art, and K** (which we refer to as the 3p-hole state,
3s-hole state, etc.). These states are of interest for x-ray
emission and absorption phenomena and also, for ex-
ample, for calculating the effect of the electronic charge
distribution on electron capture by the nucleus.! Ioni-
zation potentials, expectation values of » and #2 for the
SCF orbitals and overlap integrals between fofal wave
functions not orthogonal by symmetry are given. In a
later paper, transition probabilities for photon emission
computed using the SCF wave functions listed above
will be given.
The SCF wave functions were calculated using the
Roothaan analytic expansion method. This method was
developed first for closed-shell systems and then ex-
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Atomic Energy Commission.

t Preliminary work, at the University of Chicago, on this
publication was supported by Advanced Research Projects Agency
through the U. S. Army Research Office (Durham), under con-
tract No. DA-11-ORD-022-3119, and by a grant from the National
Science Foundation.

1 A thesis submitted to the Department of Physics, the Uni-
versity of Chicago, in partial fulfillment of the requirements for
the Ph.D. degree.

! See, for example, J. N. Bahcall, Phys. Rev. 129, 2683 (1963);
131, 1756 (1963).

tended to a large class of open-shell systems.2? In its
present form the method will treat a system with any
number of open shells provided that there is at most one
open shell for each one-electron symmetry species.? Re-
liable and accurate numerical techniques have been
developed and incorporated into computer programs for
calculating atomic SCF wave functions by this method.?

In the Roothaan expansion method, the SCF orbitals
©nim are given in terms of basis functions X, 1, by

«anm'—‘prp,lanz,p, (1)

where nim are the usual one-electron quantum numbers
for atoms. The basis functions are given by

Xp,im (7,0,0) = R1p (1) Y im (6, ; (2)

where the ¥, (6,¢) are normalized spherical harmonics,
and the radial functions R;,(r) are normalized, nodeless
Slater-type orbitals (STO’s),

Rip (75 mip81) =[ (2102p) T2 (280 miwtirmn—leSom. (3)

The integer n;, is called the principal quantum number
of the basis function and {;, the orbital exponent. [ Care
should be taken not to confuse the two different uses of
“principal quantum number.” The principal quantum
number of an orbital is the label which distinguishes
that orbital from other orbitals of the same symmetry
species (7) and subspecies (m). The principal quantum
number of an STO is merely a flexible parameter of a
basis function. ]

Many accurate SCF calculations for ground and low-
lying excited states of atoms have been performed using

2C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951); 32, 179
(1960).

3C. C. J. Roothaan and P. S. Bagus, Methods in Computational
Physics (Academic Press Inc., New York, 1963), Vol. 1I.
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the Roothaan analysis.#~®* The functions presented
herein are the first analytic SCF calculations for x-ray
excited states of atoms. To our knowledge, of the very
few numerical calculations performed, the only nu-
merical Hartree-Fock (HF) calculations for such states
that correctly take exchange into account are those of
Sureau and Berthier on Al°

II. THE SCF PROCEDURE FOR
EXCITED STATES

An SCF solution for a ground state or an excited state
which is the lowest state of a symmetry species has an
unambiguous interpretation. The SCF total energy is an
upper bound to the true energy and would be equal to
it if and only if the SCF wave function were an exact
solution of the Schrodinger equation. The SCF total
energy is also the lowest total energy which can be
obtained with the restricted form of the trial wave
function used. An SCF wave function for an excited
state which is not the lowest state of a symmetry species
would have a corresponding interpretation if it were
constrained to be orthogonal to the exact wave functions
for all the states of lower energy. This constraint cannot
be imposed in practice. One procedure would be to ap-
proximate this constraint by requiring orthogonality to
the SCF wave functions for the lower states. This,
however, is not done; no explicit requirement of
orthogonality to lower SCF states is made at all.”'® In-
stead, we rely on the physical model for the form of the
SCF excited-state wave function to guarantee near-
orthogonality to the SCF wave functions for lower
states. This physical model is, of course, the orbital or
shell structure of the atom.

The only constraint which is imposed to obtain an
excited-state wave function is the specification of the
electronic configuration. For a 1s-hole state, for example,
the HF operators are constructed on the assumption
that the 1s orbital is occupied by only one electron.
Eigenvectors of the HF operators are obtained and
iterations are performed in the usual way until the con-
dition of self-consistency is met, but the assumption
that the 1s orbital is singly occupied is maintained
throughout the process. The singly occupied 1s orbital,
chosen at each iteration, is the eigenvector (of the ap-
propriate HF operator) with the lowest orbital energy.
This orbital is chosen because it is the orbital which is
most similar to a hydrogenic 1s orbital. The choices of

4C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

L. M. Sachs, Phys. Rev. 124, 1283 (1961).

S E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys.
Rev. 127, 1618 (1962).

7C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131, 1177
(1963).

3P. S. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. D.
Cohen (to be published).

9 A. Sureau and G. Berthier, J. Phys. Radium 24, 672 (1963).

D, R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957).
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TasLE 1. Overlap integrals between total SCF wave functions of
the nl-hole states.

F- Ne Nat
2§ States (¥ (2s hole) | ¥ (1s hole)) 0.003984  0.003380  0.002876
Cl- Ar K+
2P States (¥ (3p hole) | ¥(2p hole)) 0.009428 0.008299 0.007285
(¥ (3s hole) | ¥ (2s hole)) 0.006062  0.005469  0.004906
25 States  {(¥(3s hole) | ¥ (1s hole)) 0.000514  0.000486  0.000457
(¥ (2s hole) | ¥ (1s hole))  0.001264  0.001131  0.001018

the 2s and 3s orbitals are made for similar reasons. (The
practical basis for the choices made at each iteration in
the process of the computation is that the eigenvectors
chosen are the ones which most closely resemble the
vectors used to construct the HF operators.)

We may justify this procedure by noting that the
electron density of a complex atom does not change
drastically in going from ground to excited states so
that the corresponding HF operators are not sufficiently
different and the SCF wave functions for excited states
are very nearly orthogonal to SCF wave functions for
lower states. The 3s-hole state of Ar is the lowest 25
state of Art; the 1s-hole state, a very highly excited “5
state, is 3200 eV above the 3s-hole state. Even for this
extreme case, the overlap integral between the
many-electron SCF wave functions, (¥scr(ls hole)|
Wgor(3s hole)), is 55X 10~4 The requirement that the 1s-
hole SCF wave function be orthogonal to the 3s-hole
SCF wave function would produce only a very small
change in the 1s-hole wave function. Further, since the
3s-hole SCF wave function is only an approximate
eigenfunction, we do not know whether the constraint of
orthogonality would improve or worsen the 1s-hole wave
function. Overlap integrals between the many-electron
SCF wave functions which are not orthogonal by
symmetry are given in Table I.!

For a certain class of the states formed by exciting a
single electron, it is possible to state easily tested con-
ditions to determine whether the SCF total energy is an
upper bound to the true energy.!? Unfortunately, the
inner shell hole states are not in this class; in Sec. IVB,
however, we show by comparing experimental and
computed ionization potentials that the SCF energies
for these states are, in fact, greater than the true
energies. The justification of the procedure of optimizing
the exponents of the basis set by minimizing the total
energy will be discussed in Sec. IVB. This problem
occurs only for expansion SCF calculations and is
not encountered when the HF equations are solved
numerically.

11 M. Cohen and A. Dalgarno, Rev. Mod. Phys. 35, 506 (1963)
and D. Layzer, Phys. Rev. 132, 735 (1963) have investigated the
overlap of SCF excited states of the same symmetry using ex-
pansions of SCF wave functions in powers of 1/Z and find that the
overlap is zero to order (1/2)2

2P, S, Bagus (to be published).
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III. DETAILS OF THE CALCULATION OF
THE SCF WAVE FUNCTIONS

In order to obtain analytic SCF orbitals which are
good approximations to the exact HF® orbitals, it is
necessary to use a basis set which very nearly spans the
true HF manifold. The advantage of the expansion
method is greatest when a relatively small basis set can
be used to do this. In order to use small basis sets with-
out sacrifice of accuracy, care must be taken to obtain
an optimum set of exponents which give the lowest
possible SCF total energy.

Our method for varying the exponents in order to find
optimum values is to perform a number of complete
SCF calculations for different values of the exponents
and to interpolate between them to find the values
which minimize the SCF total energy. This optimization
procedure is performed automatically by the SCF com-
puter program.® While we do not explicitly solve varia-
tional equations for the exponents with this method, we
do obtain a stationary value of the expectation value of
the energy with respect to the exponents being varied.
The particular stationary value which we obtain is a
minimum. Explicit variational equations for the ex-
ponents have been given by Dehn.!* The equations for
the exponents appear to be difficult to solve, and our
brute-force variation of the exponents has proved to be
a quite satisfactory procedure.

While the exponents, being continuous parameters,
were optimized by continuous variation, the principal
quantum numbers of the basis functions, being integers,
need to be chosen more or less arbitrarily. Our prefer-
ence was to choose principal quantum numbers for the
STO’s which are to represent the nth loop of a series of
orbitals so that the STO’s would have the same power
of 7 as hydrogenic functions representing that loop have.
Thus for the states of F, Ne, and Na we used 2p STO’s
to represent the 2p orbital; and for the states of Cl, Ar,
and K we used 3s STO’s to represent the outer loop of
the 3s orbital. This was by no means a hard and fast
rule and we often deviated from it. The deviations were
based on limited experimentation with other values and
were usually made in order to obtain relatively small
improvements in the energy or to avoid near redundancy
in the basis set during the exponent variation.

It isimportant when working with basis sets of limited
size to build up the basis set systematically to the final
accurate set. The initial calculation for a state should be
made with a rather small basis set. This set cannot give
an accurate representation of the exact HF wave func-
tion, but for a small set it is quite easy to find the
optimum values of the exponents. Additional exponents
are then introduced, usually one at a time, and the
exponents reoptimized. It is not sufficient to optimize

13 The notations SCF and HF will be used almost interchange-
ably. When we wish to distinguish between analytic expansion
orbitals as opposed to exact solutions of the HF equations, we will
use the notation SCF orbitals as opposed to HF orbitals.

1], T. Dehn, J. Chem. Phys. 37, 2549 (1962).
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only the exponents of the new basis functions; the ex-
ponents of old functions must also be adjusted when a
new function is added. This build-up procedure provides
an indication of the accuracy of the SCF solution (from
the successive energy increments obtained with each
addition) and also provides information for making an
educated guess about the need for additional basis
functions. The intermediate basis sets are often useful in
themselves.

Because of the many SCF calculations involved in the
optimization of the basis set, it is essential to apply the
experience gained in the calculation of one state to the
calculation of similar states of the same or neighboring
atoms. The calculation of the functions of a series of
states should be done systematically. The function for
each state should not be computed as a separate prob-
lem. Linear extrapolations or interpolations of the ex-
ponents for states already computed provide an ex-
tremely good starting point for the exponent variations
which determine the optimized exponents for a nearby
state. In fact, if an extrapolation or interpolation to a
neighboring state fails to work well, one has excellent
reason to suspect an error in one of the previously
computed states. Although the calculation of the SCF
wave function for a single state is laborious and time
consuming, the calculation of wave functions for a
series of states is fairly economical.

The minimization of the total energy was the funda-
mental criterion used to choose the basis sets for the
SCF functions. The analytic SCF orbitals determined
by using this criterion are not uniformly good ap-
proximations to the exact HF orbitals. The orbitals of
the electrons which contribute most to the total energy,
the core or inner shell electrons, are determined most
accurately. The orbitals of the electrons which con-
tribute least to the total energy, the valence or outer
shell electrons, are determined least accurately.

Because it is more difficult to obtain accurate orbitals
for the 3s and 3p shells than for the inner shells, we paid
close attention to small changes in the SCF total energy
when choosing the basis functions used to represent the
outer loops of the 3s and 3p orbitals of the states of the
Cl, Ar, and K ions. Small improvements in the total
energy obtained in fitting these loops are at least as
important for the general quality of the wave function
as larger improvements obtained when fitting the inner
shell orbitals. It was also necessary to look for small
energy improvements when the most accurate functions
were computed in order to fit the tails of the orbitals
properly. The tails of the orbitals make the smallest
contribution to the total energy. Small expansion sets fit
the orbitals in the regions where they are large at the
expense of the behavior of their tails, and larger basis
sets must be chosen carefully so that the tails will be
represented properly.

The techniques outlined above make it possible to
efficiently compute accurate expansion SCF wave func-
tions with the computer program described in Ref. 3.
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TaBLE III. SCF orbitals and energies for CI~ and #nl-hole states of Cl~, accurate basis sets.

CI(P) C1(5) Cl1¢pP) = CI(S) » CI(S) »
CI-(15) 3p hole 3s hole 25 hole 2s hole 1s hole
E —459.5768 —459.4820 —458.9167 —452.3349 —449.7655 —356.2822
v/T —1.999999 —2.000000 —2.000001 —2.000001 —2.000001 —2.000004
¢1(ls) 19.955 19.840 19.830 19.955 19.955 20.000
¢2(2s) 14.545 14.650 14.670 14.530 14.505 16.500
¢3(3s) 16.000 16.000 16.000 16.000 16.000 18.000
$4(3s) 9.951 9.940 9.932 9.684 9.954 10.166
$5(2s) 5.748 5.745 5.743 5.867 6.010 6.062
£6(3s) 2.823 2.904 2.878 3.140 3.030 3.167
$7(3s) 1.651 1.826 1.842 1.970 1.923 1.982
£1(2p) 15.380 15.440 15.525 16.345 16.600 16.900
£2(2p) 7.535 7.550 7.555 7.790 7.845 8.310
¢3(2p) 4.385 4.415 4.405 4.600 4.615 4.980
¢a(4p) 7.200 7.200 7.200 7.700 7.700 8.000
¢5(3p) 2.612 2.663 2.653 2.852 2.861 2.926
$o(4p) 1.826 1.976 1.932 2.091 2.100 2.136
71(3p) 0.920 1.236 1.191 1.307 1.310 1.311
€1e —104.50546 —104.88431 —104.95559 —106.27042 —106.04136 —112.50264
Cusp —17.00483 —17.00224 —17.00306 —17.00187 —17.00641 —17.00392
Cis1 0.76554 0.77219 0.77275 0.76588 0.76542 0.77416
Cis,2 0.43218 0.40836 0.40543 0.43389 0.43475 0.32382
Cis3 —0.16990 —0.15323 —0.15094 —0.17190 —0.17195 —0.07287
Cis, 4 0.00060 0.00227 0.00272 —0.00055 —0.00072 0.00487
Cis,5 0.00005 —0.00060 —0.00082 0.00041 0.00107 0.01344
Cis,6 0.00003 0.00013 0.00015 —0.00006 —0.00006 —0.00217
Cie,1 —0.00004 —0.00009 —0.00011 —0.00001 0.00000 —0.00191
€ —10.22916 —10.60741 —10.66547 —11.32032 —11.47391 —11.83135
Cusp —16.99333 —16.99389 —16.99236 —16.98104 —17.02706 —16.94919
Cas,1 —0.21448 —0.21639 —0.21622 —0.21855 —0.21801 —0.23204
Cas,2 —0.21001 —0.20133 —0.20016 —0.21460 —0.22715 —0.17324
Cas,3 0.07593 0.06997 0.06934 0.08022 0.07179 0.02477
Cas,4 0.17263 0.17368 0.17136 0.20563 0.13283 0.17350
Cas,5 0.90099 0.89900 0.90007 0.86777 0.94252 0.90538
Cas,6 0.00586 0.00558 0.00719 0.00543 0.02443 0.00693
Cas,7 —0.00023 —0.00015 0.00006 0.00042 0.00979 —0.00024
€35 —0.73320 —1.07288 —1.17570 —1.22317 —1.20787 —1.23087
Cusp —16.96224 —16.94416 —16.94540 —16.97671 —17.00251 —16.98601
Cis1 0.06317 0.06541 0.06693 0.07000 0.07341 0.07252
Css,2 0.07620 0.07656 0.07770 0.09087 0.09926 0.07018
Css3 —0.02132 —0.02034 —0.02053 —0.02158 —0.02157 —0.00184
Css,4 —0.00604 —0.00017 ~—0.00059 0.01419 0.03314 0.02248
Css,5 —0.40771 —0.42851 —0.43667 —0.49099 —0.52027 —0.48357
Css,6 0.70755 0.65176 0.68652 0.64384 0.67449 0.64311
Cas,n 0.43093 0.48089 0.44414 0.51051 0.46565 0.50431
€p —7.69557 —8.07218 —8.14619 —9.00679 —8.78960 —9.55946
Cusp —8.44006 —8.43660 —8.44048 —8.44624 —8.47497 —8.51969
Cap1 0.01990 0.01930 0.01875 0.01324 0.01236 0.00767
Cap,2 0.68564 0.68305 0.68657 0.66057 0.65222 0.63922
Cap,s 0.19201 0.19262 0.18707 0.22510 0.23727 0.24850
Cop,s 0.16481 0.16636 0.17024 0.14711 0.15609 0.15979
Cop,5 0.00296 0.00516 0.00323 0.01950 0.00104 0.00535
Cap,s —0.00058 —0.00107 —0.00129 0.01128 0.00016 —0.00209
Cop,1 0.00024 0.00111 0.00063 0.00531 0.00000 0.00100
€sp —0.15017 —0.50640 —0.50063 —0.58967 —0.58465 —0.59605
Cusp —8.38032 —8.35998 —8.35630 —8.38535 —8.37179 —8.40151
Cip1 —0.00350 —0.00346 —0.00331 —0.00274 —0.00199 —0.00022
Csp,2 —0.18172 —0.19968 —0.20013 —0.22358 —0.20251 —0.19667
Cip,3 —0.03172 —0.02837 —0.02733 —0.05978 —0.05454 —0.04580
Csp,4 —0.06118 —0.07143 —0.07165 —0.07294 —0.07260 —0.07354
Csp,s 0.59454 0.60295 0.62287 0.63710 0.63463 0.63029
Csp,6 0.36833 0.31482 0.33734 0.32628 0.32834 0.33878
Csp,1 0.21232 0.21687 0.17781 0.18060 0.18278 0.17251

2 States which are not the lowest of a symmetry species.
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TasLe IV. SCF orbitals and energies for Ar and #l-hole states of Ar, accurate basis sets.
Art(P) Ar*(2S) Ar+(2P) = Art(2S) = Ar+(2S) »
Ar(1S) 37 hole 3s hole 2p hole 2s hole 1s hole
E —526.8175 —526.2745 —525.5977 —517.6690 —514.8795 —409.3890
v/T —2.000000 —1.999999 —1.999999 —1.999999 —2.000001 —2.000000
&1(1s) 20.750 20.750 20.735 20.700 20.615 20.080
¢2(2s) 14.900 14.900 14.900 14.945 15.000 16.845
¢3(3s) 16.500 16.500 16.500 16.500 16.500 18.500
a(3s) 10.500 10.584 10.758 10.628 10.543 10.863
¢s(2s) 6.206 6.224 6.253 6.451 6.498 6.544
$6(3s) 3.166 3.259 3.232 3.458 3.382 3.532
£7(3s) 1.993 2.185 2.201 2.311 2.278 2.340
a1(2p) 16.220 16.160 16.195 17.020 17.460 17.720
$2(2p) 8.230 8.180 8.200 8.410 8.500 9.055
£3(2p) 5.000 4.795 4.865 5.000 5.115 5.450
¢a(4p) 8.000 8.000 8.000 8.500 8.500 8.900
$s(3p) 2970 2.955 2.976 3.157 3.159 3.214
¢e(4p) 2.211 2.209 2.242 2.359 2.358 2.385
&1(3p) 1.370 1.550 1.550 1.620 1.620 1.650
€1s —118.61014 —119.13309 —119.19462 —120.65776 —120.39576 —127.27956
Cusp —18.00366 —18.00349 —18.00287 —18.00005 —18.00218 —18.00163
Cis1 0.78751 0.78752 0.78834 0.79073 0.79512 0.83865
Cia,2 0.41319 0.41322 0.41103 0.40339 0.38653 0.23192
Cis,3 —0.17634 —0.17640 —0.17492 —0.17014 —0.15765 —0.05294
Cis,4 —0.00008 —0.00004 —0.00022 0.00027 0.00121 0.00265
15,5 —0.00011 -~0.00016 —0.00006 —0.00047 —0.00020 0.01419
16,6 0.00007 0.00011 0.00006 0.00009 0.00011 —0.00213
Cia7 —0.00006 ~0.00008 —0.00008 —0.00008 —0.00008 —0.00203
€25 —12.32193 —12.83568 —12.88311 —13.61576 —13.77370 —14.17473
Cusp —17.99649 —18.00356 —18.01242 —18.01453 —18.02974 —17.95176
Cos,1 —0.22353 —0.22365 —0.22356 —0.22847 —0.22912 —0.25356
25,2 —0.21917 —0.22087 —0.22339 —0.23284 —0.22911 —0.15950
Cas,3 0.08753 0.08586 0.08258 0.08007 0.07458 0.02281
Cs,4 0.16903 0.16072 0.14166 0.13434 0.11753 0.15781
Cas,s 0.90732 0.91795 0.93996 0.95521 0.96271 0.92791
Cas,6 0.00708 0.00704 0.00956 0.00977 0.02490 0.00833
Cas,1 —0.00043 —0.00048 —0.00049 —0.00085 0.00965 —0.00047
€35 —1.27725 —~1.71114 —1.81793 —1.89228 —1.87409 —1.90809
Cusp —17.96890 —17.94414 —17.92541 —17.97576 —18.00103 —17.96324
Css,1 0.06982 0.07189 0.07327 0.07702 0.08092 0.08360
35,2 0.08792 0.09287 0.09574 0.10727 0.11101 0.07415
35,3 —0.02628 —0.02782 —0.02893 —0.02530 —0.02355 —0.00188
Css,4 0.00341 0.01304 0.01863 0.04101 0.05414 0.03755
Css,5 —0.45394 —0.48178 —0.49483 —0.55249 —0.58015 —0.53655
Cas,6 0.66908 0.60576 0.63355 0.60842 0.62943 0.59459
Cas,7 0.46963 0.53030 0.50098 0.54305 0.51521 0.55658
€p —9.57127 —10.08324 —10.14966 —11.10837 —10.86746 —11.71786
Cusp —8.92591 —8.91125 —8.91441 —8.92308 —8.96769 —8.98739
Cap,1 0.01876 0.01845 0.01832 0.01284 0.01174 0.00570
2,2 0.63009 0.66020 0.65271 0.64006 0.61717 0.59627
29,3 0.27207 0.23154 0.24110 0.25810 0.29030 0.30855
Cap, s 0.13409 0.14874 0.14644 0.13301 0.13460 0.14165
20,5 0.00309 0.00086 0.00001 0.01590 —0.00093 0.00252
20, 6 —0.00058 0.00171 0.00061 0.01386 0.00165 —0.00075
Cop,1 0.00028 —0.00037 —0.00031 0.00155 —0.00088 0.00047
€3p —0.59092 —1.04532 —1.03104 —1.15880 —1.15303 —1.17532
Cusp —8.88089 —8.88838 —8.86398 —8.89927 —8.89853 —8.93455
Cip1 —0.00346 —0.00391 —0.00345 —0.00290 —0.00204 0.00005
Cip2 —0.18973 —0.20843 —0.21009 —0.22991 —0.20638 —0.19549
3,3 —0.06049 —0.06140 —0.05246 —0.08803 —0.08549 —0.08377
3,4 —0.06178 —0.06560 —0.07057 —0.06915 —0.06887 —0.06753
Cip,s 0.60487 0.66790 0.65321 0.68195 0.68125 0.68076
3p, 6 0.30887 0.33443 0.32329 0.33574 0.33983 0.33549
3,7 0.22836 0.12476 0.14980 0.11967 0.11682 0.11520

a States which are not the lowest of a symmetry species.
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TaBLE V. SCF orbitals and energies for K+ and #l-hole states of K+, accurate basis sets.

K+ (P) K+ (S) K++(P) » KH(ES) » K+H(S) »
K+(S) 3p hole 3s hole 2 hole 2s hole 1s hole
E —599.0175 —597.8915 —597.1039 —587.6833 —584.6720 —466.4285
v/T —1.999999 —2.000000 —1.999999 —2.000000 —2.000002 —1.999997
f1(1s) 21.530 21.545 21.685 21.480 21.300 20.400
$2(2s) 15.255 15.220 15.095 15.300 15.400 17.200
¢3(3s) 17.000 17.000 17.000 17.000 17.000 19.000
¢4(3s) 11.085 11.258 11.323 10.957 11.262 11.560
&5(2s) 6.687 6.724 6.711 6.878 7.010 7.025
¢e(3s) 3.502 3.520 3.599 3.787 3.660 3.814
¢7(3s) 2.338 2.491 2.573 2.658 2.600 2.662
&1(2p) 17.000 17.000 17.020 17.800 18.460 20.000
2(2p) 8.890 8.820 8.855 9.075 9.210 9.920
&3(2p) 5.450 5.260 5.315 5.610 5.712 6.100
Cs(dpy 8.800 8.800 8.800 9.300 9.300 9.800
¢5(3p) 3.253 3.358 3.371 3.562 3.563 3.546
c6(4p) 2.412 e e e cee 2726
¢1(3p) 1.650 2.182 2.173 2.294 2.295 2.000
€ —133.75212 —134.40390 —134.45519 —136.06387 —135.76859 —143.07622
Cusp —19.00074 —19.00027 —19.00610 —18.99684 —18.99330 —19.00584
Cia1 0.80888 0.80805 0.80027 0.81209 0.82183 0.88850
Cia,2 0.38950 0.39410 0.42346 0.37982 0.34675 0.15967
Cias —0.17686 —0.18025 —0.20056 —0.17085 —0.14743 ~0.03669
Cis,4 ~0.00081 —0.00177 —0.00439 —0.00043 —0.00018 0.00249
Cias —0.00024 0.00010 0.00074 —0.00055 0.00047 0.01358
Cis6 0.00011 0.00008 0.00001 0.00013 —0.00003 —0.00199
Cis 7 —0.00009 —0.00008 —0.00007 —0.00011 —0.00002 —0.00208
& —14.70798 —15.33970 —15.37648 —16.18376 —16.34603 —16.79208
Cusp —19.00163 —19.00951 —19.01782 —19.00269 —19.03162 —18.95758
Cas1 —0.23231 —0.23224 —0.22961 —0.23712 —0.23933 —0.27074
Cas.2 —0.22932 —0.23548 —0.24544 —0.23674 —0.23878 —0.15189
Cas.3 0.09750 0.09623 0.10267 0.09486 0.07919 0.02290
Cae,4 0.15704 0.14080 0.14292 0.15644 0.09227 0.14450
Cas,5 0.92363 0.94521 0.94423 0.93077 0.99761 0.94824
Cas, 6 0.00901 0.00953 0.01023 0.01075 0.02701 0.00953
Cas1 —0.00103 —0.00166 —0.00050 —0.00133 0.00777 —0.00100
€ —1.96377 —2.47767 —2.58881 —2.68728 —2.66588 —2.71203
Cusp —18.97447 —18.95978 —18.92907 —19.01150 —19.00299 —18.96578
Cas1 0.07649 0.07862 0.07904 0.08360 0.08803 0.09344
Caa.2 0.10123 0.10710 0.11452 0.11897 0.12444 0.07854
Csas —0.03137 —0.03343 —0.03861 —0.02901 —0.02732 —0.00258
Css,4 0.01616 0.02255 0.02791 0.04360 0.06713 0.04315
Cas,s —0.50319 —0.52525 —0.54237 —0.59121 —0.62553 —0.57324
Css,6 0.63772 0.62378 0.57022 0.57719 0.62575 0.58974
Cis1 0.50386 0.51400 0.57145 0.58011 0.52008 0.56280
€p —11.73810 —12.36843 —12.42720 —13.48122 —13.21615 —14.14872
Cusp —9.40153 —9.40961 —9.39849 —9.42043 —9.45892 —9.47034
Cap1 0.01736 0.01746 0.01681 0.01262 0.01054 0.00253
Cap2 0.60440 0.63378 0.62810 0.59657 0.57059 0.52985
Cap,3 0.30758 0.27199 0.27634 0.31579 0.35027 0.39164
Cap,4 0.12274 0.13211 0.13435 0.11239 0.11647 0.12198
Cap,s 0.00147 ~—0.00149 —0.00177 0.01286 0.00072 0.00433
Cap, s 0.00039 e e cee e —0.00201
Cap,1 —0.00023 0.00228 0.00077 0.01746 0.00040 0.00129
€sp —1.17047 —1.71131 —1.68867 —1.85275 —1.84608 —1.88069
Cusp —9.40818 —9.41311 —9.39637 —9.43034 —9.42898 —9.41764
Cap,1 —0.00387 —0.00406 —0.00374 —0.00323 —0.00207 0.00057
Csp,2 —0.19057 —0.21305 —0.21027 —0.22120 —0.19844 —0.18219
Csp,3 —0.09892 —0.09160 —0.09122 —0.13117 —0.12730 —0.12897
Csp,a —0.05412 —0.06176 —0.06274 —0.06004 —0.06202 —0.06243
Cip,s 0.67017 0.52926 0.52899 0.54360 0.54095 0.69616
Csp,s 0.34285 ‘.- e ‘e e 0.32599
Cap,1 0.12328 0.57550 0.57691 0.57136 0.57394 0.10617

= States which are not the lowest of a symmetry species.
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These techniques are described in more detail else-
where.®!5 The calculations were performed using com-
puter programs written for the IBM 704 and 7090/4 by
Professor C. C. J. Roothaan and the author,® with the
assistance of various members of the Laboratory of
Molecular Structure and Spectra at the University of
Chicago. The programs are available for distribution
upon request.

IV. RESULTS AND DISCUSSION OF
THE SCF CALCULATIONS

A. The SCF Wave Functions

The most accurate SCF wave functions that were ob-
tained for each state are given in Tables IT-V. Some-
what less accurate, but still quite useful, SCF wave
functions computed with smaller basis sets are presented
elsewhere.!® The results in Tables IT-V include the total
energy for the usual nonrelativistic fixed nucleus Hamil-
tonian and the virial coefficient V/7T'. Exponents of the
basis functions are given for each state. The principal
quantum number and symmetry type of each basis
function is given in parenthesis in the first column of
each table. The different basis functions are numbered
consecutively within each symmetry type. For each
orbital, the SCF orbital energy e.;, the cusp, and the
expansion coefficients C.;,, are given. The numbering of
the expansion coefficients corresponds to the numbering
of the basis functions. All energies are given in Hartrees
(1 Hartree=27.2098 eV). The results reported in
Tables II-V are from calculations performed on an
IBM 7094.

The cusp condition, satisfied by exact solutions of the
HF equations, is given by

LA/ fa) @/ dr) Jrmo=—2/ (1), @)

where #f,(r)=7""P,(r) is the radial part of the
orbital. The cusp value may be used as a criterion of the
accuracy near the origin of an expansion SCF orbital.
The virial theorem,

V/T=(¥|0|W)/(¥| T|¥)=—2, )
where U and 7 are the many-electron potential- and
kinetic-energy operators, is satisfied for exact HF wave
functions, and for expansion SCF wave functions when
the values of the exponents of the basis functions, as
well the expansion coefficients Cy;,,, satisfy variational
equations. The virial theorem is a necessary but by no
means a sufficient condition that optimum values of the
exponents have been used. Discussions of the usefulness
of these criteria of the accuracy of expansion SCF wave
functions are given elsewhere.51

The total wave functions for the states given in
Tables II-V are all single determinants. The 1S and 2§

15 P, S. Bagus, Argonne National Laboratory Technical Report
ANL 6959, 1964 (unpublished). Copies of this report may be ob-

tained from Argonne National Laboratory or the U. S. Office of
Technical Services, Department of Commerce, Washington 25,
D.C.
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states have even parity and the 2P states have odd
parity. The parity follows immediately from the elec-
tron configurations of the states.

The 1s-hole states of F—, Ne, and Nat and the 1s-,
2s-, and 2p-hole states of Cl~, Ar, and K+ are not the
lowest states of their symmetry species; these states are
marked with an asterisk in Tables II-V.

The 2s-hole states of Ne and Nat and the 3s-hole
states of Ar and K+ are the first excited states of Ne*,
Nat+, Ar*, and K+ respectively ; they are the lowest 25
states of these systems. It seems reasonable that the
2s-hole state of F~ and the 3s-hole state of Cl~ are the
lowest 25 states of even parity of F and Cl, respectively.
The 2s-hole state of F~ is a highly excited state of F; it
is, in fact, past the ionization limit. However, Moore!®
does not give any other 25 state of even parity in the
spectrum of F. According to Moore,'® the 3s-hole state
of CI~ is not observed, but, then, no 2S states of even
parity are observed in the spectrum of Cl.

The importance of having reliable estimates of the
accuracy of expansion SCF wave functions should be
stressed. By accuracy of the expansion SCF wave func-
tions we mean how closely they represent the exact
solutions of the HF equations. Techniques for de-
termining this accuracy have been developed and are
described in detail elsewhere.?® !> Using these techniques,
we have made estimates of the accuracy of the SCF
functions given in Tables IT-V.!% These estimates are
based largely on a very careful analysis of the accuracy
of the SCF wave functions for -, Ne, Cl-, and Ar.
They are generous and probably indicate, for most of
the functions, errors larger than the true errors.

The SCF total energy Escr represents the exact HF
total energy to within 2 units in the 7th significant
figure, and the orbital energies e,; are accurate to about
5 units in the same place past the decimal that the error
enters into Egcy. When Egcr is <100, the e, are accu-
rate to 5 units in the 5th place past the decimal and
when Escr is 2100, to 5 units in the 4th place past the
decimal.

To describe the error of the SCF orbitals we give the
error of the radial functions P,; (7). [ Pni(r) is 7 times the
radial part of the orbital.] For the states of the heavier
atoms (Cl, Ar, and K) the 1s, 25, and 2p radial functions
do not differ from the exact HF solutions, for any value
of 7, by more than 0.0005. The 1s radial function is
probably accurate to within 0.0002. The 3s and 3p
radial functions are accurate to within 0.0015 and over
much of the range of 7 are accurate to within 0.0005.
The only exception is the 3s radial function of Cl~, for
which the error is as large as 0.0025 for a fairly small
range of » near the tail of the function. For the states
of the light atoms (F, Ne, and Na) the 1s radial function
is accurate to within 0.0002 and the 2s and 2p radial

16 C. E. Moore, Nat. Bur. Std. (U. S.) Circ. 467 (1949), Vol.
I, and corrections in Vol. IT (1952) and Vol. III (1958).
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functions to within 0.0005. The radial function of the
outermost s shell (2s for the light atoms and 3s for the
heavier atoms) is the least accurate function for a given
state. The outermost s shell makes the smallest con-
tribution to the total energy and so is least well de-
termined by the exponent variation procedures which
minimize the total energy.

Although the vectors (of expansion coefficients) given
in Tables II-V are not representations of the exact HF
orbitals to the number of figures given, they do form an
orthonormal set to the number of figures given.

The SCF wave functions given, except for the func-
tions for Cl~ and the 1s-hole state of K*, are the most
accurate functions which can be obtained using the
single precision, eight significant figure, floating point
arithmetic of the IBM 7094 computer. The CI~ function
could probably be improved with the addition of an s
and possibly a p basis function to the basis set. The
function for the 1s-hole state of K+ could be improved
very slightly if the arithmetic of the exponent variation
procedures were changed to minimize roundoff error.
(This change has already been made in the latest ver-
sions of the SCF programs.)

Expectation values of r and 7%, in atomic units

Tasre VI. Expectation values of  and 72 for F—, Ne, and Na* and
nl-hole states of F~, Ne, and Na*.

F(2P) F(2S) F(2S)
F-(1S) 2p hole 2s hole 1s hole
(s 0.1758 0.1757 0.1760 0.1718
(r)zs 1.0355 1.0011 0.9885 0.9435
(Pap 12556 1.0847  1.0934  0.9659
2 Nidr)i/Z N; 0.99560 0.86411  0.87790  0.87267
()15 0.04162  0.04161 0.04177  0.04045
(r)2s 1.3189 1.2164 1.1827 1.0836
{Map 2.2096 1.5429 1.5738 1.2245
2 N /Z N; 159783 1.13672 1.18988  1.06166
Net(2P) Ne*(2S) Net(2S)
Ne(LS) 2p hole  2s hole 1s hole
(s 0.1576 0.1576 0.1578 0.1545
(#)as 0.8921 0.8603 0.8536 0.8171
(M2p 0.9652 0.8759 0.8841 0.7993
2 Nyr)i/Z N 0.78005  0.71280  0.71931  0.73159
()15 0.03347  0.03344  0.03357  0.03260
()24 09669  0.8903  0.8751  0.8056
()2p 12279 09820  1.0032  0.8196
2 N:{™:/Z N; 093682 0.75081 0.77351  0.72903
Nat+(P) Nat+(2S) Nat++(25)
Nat(lS) 2phole  2s hole 1s hole
(M1s 0.1429 0.1428 0.1430 0.1403
(s 0.7791 0.7530 0.7491 0.7196
Pan 07962  0.7385  0.7453  0.6845
2 Nir)i/Z N; 0.66214  0.60932  0.61190  0.63182
s 0.02748  0.02744  0.02755  0.02681
()26 0.7314 0.6779 0.6703 0.6210
(Map 0.8159 0.6889 0.7033 0.5932
2 N«{(:/2Z N;  0.64130  0.53945  0.54949  0.53645
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TasLE VII. Expectation values of » and #2 for CI~, Ar, and K* and
nl-hole states of Cl~, Ar, and K*.

Ci1¢ep) Ci(2s) Cl¢ep) CI(aS)  Cl1(3S)
CI=(1S) 3phole 3shole 2p hole 2shole 1shole
(s 0.09130 0.09130 0.09130 0.09121 0.09134 0.09031
(r)2s 0.4418 0.4417 0.4424 0.4338 0.4390 0.4226
{r)as 1.6018 1.5557 1.5341 1.4696 1.4759 1.4514
(")2p 0.4054 0.4057 0.4050 0.4004 0.3952 0.3776
(r)sp 2.0288 1.8418 1.8380 1.6928 1.6992 1.6623
I Ni(r)i/Z Ni  1.04860 0.93065 0.94469 0.94988 0.94942 0.94573
{r2)s 0.01120 0.01120 0.01120 0.01117 0.01122 0.01105
(r2)2s 0.2313 0.2312 0.2321 0.2225 0.2300 0.2117
(r?)ss 3.0104 2.8131 2.7299 2.5069 2.5364 2.4472
(r2)2p 0.2039 0.2043 0.2034  0.2020 0.1930 0.1762
(r2)sp 5.1081 4.0575 4.0444 3.4404  3.4480 3.3052
Z N/ Ni 213207 1.62498 1.68842 1.59608 1.59830 1.54220
Ar+(2P) Ar*(2S) Art(2P) Ar*(2S) Ar+(29)
Ar(lS) 3p hole 3shole 2phole 2shole 1shole
#)1s 0.08610 0.08610 0.08611 0.08602 0.08614 0.08523
{r)2s 0.4123 0.4121 0.4128 0.4052 0.4100 0.3954
(r)ss 1.4220 1.3814 1.3679 1.3162 1.3209 1.3005
#)2p 0.3753 0.3756 0.3749 0.3714 0.3667 0.3515
(r)sp 1.6628 1.5584 1.5589 1.4560 1.4627 1.4321
2 Nir)i/Z Ni 0.89274 0.81205 0.82171 0.83576 0.83531 0.83403
(218 0.00996 0.00996 0.00996 0.00994 0.00997 0.00983
(r2)as 0.2012 0.2010 0.2019 0.1940  0.2003 0.1852
{r2)3s 2.3491 2.2018 2.1570 1.9980 2.0185 1.9517
(r2)2p 0.1743 0.1747 0.1739 0.1730 0.1658 0.1524
(2)sp 3.3092 2.8601 2.8642 2.5102 2.5196 2.4179
2 Ni(r?)i/Z Ni 1.44565 1.18672 1.22406 1.19586 1.19821 1.15911
K++(2P) K++(2S) K++(2P) K++(2S) K++(25‘)
K*(1S) 3phole 3shole 2p hole 2shole 1shole
{r)s 0.08147 0.08146 0.08147 0.08139 0.08150 0.08069
(r)2s 0.3864  0.3861 0.3869 0.3801 0.3845 0.3715
()3s 1.2768 1.2435 1.2341 1.1922 1.1959 1.1787
()op 0.3494  0.3496 0.3490  0.3462 0.3419 0.3287
(r)sp 1.4312 1.3611 1.3629 1.2850 1.2915 1.2657
I Ni(r)i/ESN: 0.78740 0.72503 0.73189 0.74991 0.74942 0.74987
(s 0.00891 0.00891 0.00891 0.00889 0.00892 0.00880
(r2)2s 0.1766 0.1763 0.1771 0.1706 0.1759 0.1634
(r?)3s 1.8818 1.7761 1.7481 1.6320 1.6477 1.5962
(r2)2p 0.1508 0.1511 0.1504  0.1497 0.1439 0.1330
(r2)3p 2.4161 2.1646 2.1712 1.9402 1.9497 1.8741
I Ni(?)i/Z N: 1.08532 0.92071 0.94407 0.94193 0.94416 0.91592

(1 Bohr=0.52917 A), for all the states computed are
given in Tables VI and VII. For each state, the expec-
tation values of » and #? taken with respect to each
occupied orbital, ()=S0 [Pu(r)rdr and (.
= Jo° [Pnu(r)]*dr, are given. The average values of (r)
and (7% are also given. The average value of (r) is
defined by > Nni{r)nt/2. N, where N ,; is the electron
occupation of the nl orbital and the sum is over all
occupied orbitals. The values of (r).; and (#2),,; represent
the exact HF values to within a few units in the last
figure given. The values of (#?),; for the outermost s and
p orbitals of each state are the least accurate and the
error for these values may be as large as 20 units in the
last figure.

B. Validity of the Exponent Variation Procedure
for Excited States

The basis function exponent variation procedure
selects values of the exponents which minimize the SCF
total energy. For a state which is not the lowest of a
symmetry species, exponents chosen to minimize the
total energy may not give an SCF wave function which
is an optimum representation of the exact HF solution.
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TasLE VIIL. Comparison of SCF and experimental ionization potentials for the nl-hole states of F~, Ne, Na*, Cl-,
(Energies in Hartrees, 1 Hartree=27.2098 eV =2.19475X105 cm™1),

Ar, and K+

State IP(exp)® IP(nr)® IP(—ew)  AIP(—en)® IP(AEsor) AIP(AEscr) ®
2p hole 152252295 F-od 0.1273 0.1810 —0.0537 0.0501 +0.0772
(—1.461 eV) (+2.101 V)
Ned 0.7937 0.8503 —0.0566 0.7293 +0.0644
(—1.540 eV) (41.752 eV)
Natd 1.7403 1.7972 —0.0567 1.6796 -40.0609
(—1.543 eV) (4+1.657 eV)
2s hole  1s22s2p8 F-ed 0.8947 1.0746 —0.1799 0.9282 —0.0335
(—4.895 eV) (—0.912 V)
Ne d 1.7815 1.9303 —0.1488 1.8123 —0.0308
(—4.049 eV) (—0.838 eV)
Nat d 2.9434 3.0737 —0.1303 2.9682 —0.0248
(—3.545 V) (—0.675 eV)
1s hole 1s25?2p5 F-e 24.99, 24.96; 25.8296 —0.863 24.9353 +0.03,
(—23.45 V) (+0.8; eV)
Nee 31.985 31.94; 32.7723 —0.82; 319214 +0.02,
(—22.5 eV) (+40.65 eV)
Nate 40.000 39.93¢ 40.7597 —0.82, 39.9345 -+0.00;
(—22.37 eV) (+003 eV)
3p hole 1522522p53523p5 Cl-ed 0.1341 0.1502 —0.0161 0.0948 +0.0393
(—0.438 eV) (+1.069 ¢V)
Ard 0.5813 0.5909 —0.0096 0.5430 +0.0383
(—0.261 eV) (+1.042 eV)
K+ d 1.1726 1.1705 -+0.0021 1.1260 -+-0.0466
(4+0.057 eV) (+1.268 eV)
3s hole 15225226353 p8 Clof 0.524(?) 0.7332 —0.20; 0.6601 —0.13,4
(—5.65 ¢V) (—3.65 eV)
Ard 1.0745 1.2773 —0.2028 1.2198 —0.1453
(—5.518 eV) (—3.954 eV)
K+d 1.7644 1.9638 —0.1994 1.9136 —0.1492
(—5.426 eV) (—4.060 eV)
2p hole 1s22522p53523 p8 Cl-e 2Ps/s 7.229 7.224 7.6956 —0.465 7.2420 —0.014
2P1/2 7279 ( 12. 73 eV) ( 0.35 eV)
Are 2Ps/s 9.13; 9.14, 9.5713 —0.42,4 9.1484 —0.004
2P1/2 9209 (—" 1167 CV) (—02 eV)
Kte 2Pssa 11.30 11.315 11.7381 —0.42; 11.3342 —0.01,
2P1/2 11416 (— 11.51 CV) (-0-52 CV)
2s hole 15225263523 p8 Cl-e 9. 7(?) 10.2292 9.8114
Ar 12.3219 11.9380
Kte 14. 4(?) 14.7080 14.3455
1s hole 1525225835238 Cle 103.59, 103.14 104.5055 —1.35 103.2947 —0.1,
(—362 CV) (—30 CV)
Are 117.83, 117.30 118.6101 —-1.3 117.4284 —0.15
(—35.5eV) (—=3.5eV)
K+te 133.09; 132.4, 133.7521 —1.33 132.5890 —0.1;
(—‘362 CV) (—40 eV)

s TP (exp) is the experimental value of the ionization potential. Unless explicitly indicated otherwise, IP (exp) for 2P terms is given to the center of gravity
of the 2P term. IP(nr) is obtained by correcting IP (exp) for relativistic effects; for a discussion of these corrections see the text. Both IP(exp) and IP (ar)
include a correction to infinite nuclear mass.

b When a value of IP(nr) is not given, AIP( —exn1) is obtained from the relation AIP(—en1) =IP(exp) —IP(—exi); otherwise it is AIP(—enz) =IP(nr)
—IP(—en1). The values of AIP(AEgcr) are obtained in the same way.

o Experimental data for the electron affinities of F~ and Cl~ are from R. S. Berry and C. W. Reimann, J. Chem. Phys. 38, 1540 (1963).

d Experimental data from C. E. Moore, see Ref. 16.

e Except for the 1s-hole IP’s of Ar and Ne, the value of IP(exp) is obtained by combining the IP for the removal of an outer shell electron with the
energies of x-ray emission lines. For the 1s-hole IP’s of Ne and Ar, the value of the K absorption edge is used for IP(exp). For sources of the x-ray experi-
mental data see Ref. 15.
s f I{’(gxt;‘)s l(S obta)med using an estimate of the 3s-hole term value of C1~ made by Rohrlich and reported by Varsavsky; C. M. Varsavsky, Astrophys. J.

Upp! 19
e [P (exp) is obtained from an interpolation made by Tomboullan and Cady which uses the L1 —Lir screening doublet splitting rule and the known term
value of the Lir(2p hole, 2Py/3) level; see Ref. 25. The values given by Tomboulian and Cady for the L1 level are 19.8 Ry for Cl and 27.7 Ry for K (1 Ry
=0.5 Hartrees). Corrections of —0.3 Ry for Cl~ and +1.1 Ry for K+ are used to obtain the values of IP(exp) given here. These are the corrections re-
quired to bring the term values for the L1 level used by Tomboulian and Cady (14.9 Ry for Cl and 21.7 Ry for K) into agreement with the values of
IPéegp) for the 2p-hole, 2Pys state given in this Table. This may be regarded as a correction for different zeros of energy used by Tomboulian and Cady
and by us.

There is no known theorem from which we may infer
that the expansion SCF total energy is an upper bound
to the exact HF energy for the inner shell hole states
considered here. Hence, the validity of the variation

procedure for these states requires further consideration.

If explicit variational equations, e.g., those given by
Dehn,* were solved for the exponents of the basis
functions, there would be no difficulty with these excited
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states. Stationary values of the energy would be found
with respect to variation of the exponents as well as the
expansion coefficients. Using our exponent variation
procedure, we do find, in a brute-force fashion, a particu-
lar stationary value of the energy.? The stationary value
found is, of course, a minimum. This stationary value
was found with no more difficulty for the excited states
than for the ground states.

It seems unlikely, for an expansion SCF wave func-
tion of a particular state, that there will be more than
one stationary value of the energy. It is reasonable that
the solutions of the variational equations for both the
expansion coefficients and the exponents are unique. If
this is true, then the use of our exponent variation
procedure is justified since we always found a stationary
value with respect to variation of the exponents.

The procedure may also be justified from the results
of the SCF calculations. The virial theorem, which may
be used as an indication of how well the exponents of the
basis functions have been optimized, is satisfied equally
well for the excited-state wave functions and the ground-
state functions. The cusp condition is also satisfied
equally well for the excited-state functions and the
ground-state functions. Further, as may be seen from
Table VIIL, the calculated ionization potentials for the
removal of an inner shell electron agree quite well with
experimental values. The success of our method of
exponent variation implies that the total energy of the
expansion SCF functions, even for the excited states, is
an upper bound to the exact HF energy.

The results in Table VIII also show quite clearly that
the SCF energies are, in fact, upper bounds to the exact
nonrelativistic total energies. If the SCF total energy of
an inner shell hole state was not an upper bound to the
exact nonrelativistic energy, then the calculated ioniza-
tion potential IP(AEgcr), obtained by subtracting the
SCF energy of the parent from that of the ion, would be
much smaller than the true nonrelativistic ionization
potential IP (n7). It would have to be smaller by at least
the magnitude of the correlation energy of the parent
closed shell system. According to estimates made by
Clementi,'” this is ~0.4 Hartrees for F—, Ne, and Na*,
and ~0.8 Hartrees for Cl~, Ar, and K+*. From the
values given in Table VIII, it is clear that the error of
IP(AEscr) is not this large.

C. Effect of Off-Diagonal Lagrangian Multipliers

For the open shell states considered here, the off-
diagonal Lagrangian multipliers which couple the HF
equations for open and closed shell orbitals of the same
symmetry cannot be transformed to zero. The off-
diagonal Lagrangian multipliers appear in the usual HF
equations as inhomogeneous terms!®1%; ie.,

Foi=eipit jnilip;, (6)
17 E. Clementi, J. Chem. Phys. 38, 2248 (1963); 39, 175 (1963).

18D, R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A154, 588 (1936).
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TasLe IX. Off-diagonal Lagrangian multipliers for the
nl-hole states of Ar and Ne.»

Open
State shell Oopen shell, closed shell
0113, 18 0na, 22 ons, 3s

Ar*(3s hole) 3s —0.00136 -4-0.01046 e
Ar*(2s hole) 2s +-0.04518 e +0.13093
Ar*(1s hole) 1s (R +0.72661 —0.22742

Onp, 2p Onp,3p
Art(3phole)  3p +0.01672 ..
Art(2phole)  2p s +0.24923

gnx, is ens, 23
Ne*(2s hole) 2s +0.01644 v
Net(Is hole)  1s . 40.37522

a The Lagrangian multipliers are not symmetric.
Ootosed ,open = (N ¢/ No)fopen,closed,

where Ncand Ny are the electron occupations of the closed and open shells,
respectively.

where F includes the one-electron, Coulomb and ex-
change operators (and is different for closed and open
shell orbitals) and the 6;; are the off-diagonal La-
grangian multipliers. Because of the difficulty of
handling these inhomogeneous terms, the off-diagonal
Lagrangian multipliers are often treated in an approxi-
mate way.!® Roothaan®? has shown that it is possible,
through the use of coupling operators, to absorb the
terms involving the nonzero off-diagonal multipliers
into the HF operator, thus the pseudo-eigenvalue form
of the HF equations is preserved. The coupling operator
R has the property that for self-consistent solutions of
the HF equations Rp;=3 ;.:0;:¢0;. The off-diagonal
Lagrangian multipliers which appear in the calculations
reported herein have been treated without approxima-
tion. For the inner shell hole states, the neglect or
approximate treatment of the off-diagonal Lagrangian
multipliers would significantly affect the results of the
SCF calculations.

The values of the nonzero off-diagonal Lagrangian
multipliers for the nl-hole states of Ar and Ne are given
in Table IX. It should be noted that the off-diagonal
Lagrangian multipliers are not symmetric; they are
related by

leanl,ml=aneml,nl ’ (7)

where N,; is the electron occupation of the nl shell.
While the off-diagonal Lagrangian multipliers are fairly
small for states with open outer shells, they are more
than an order of magnitude larger for states with open
inner shells. The values of the off-diagonal Lagrangian
multipliers for the #nl-hole states of CI~ and K+ and ¥~
and Nat are quite similar to the values given for Ar
and Ne.

The most striking effect due to the off-diagonal

¥ R. K. Nesbet, Proc. Roy. Soc. (London) A230;, 312 (1955);
Rev. Mod. Phys. 33, 28 (1961), and R. E. Watson and A. J.
Freeman, Phys. Rev. 123, 521 (1961); 124, 1117 (1961).
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TasiLe X. Effect of neglecting the off-diagonal Lagrangian multipliers for the #l-hole states of Ar and Ne (the results for the correct
treatment of the off-diagonal Lagrangian multipliers are denoted by SCF; the results for the approximate treatment by NLM).

E(NLM) Open Overlap integrals between open-
State E(SCF) s [E(SCF)—E(NLM)] V/T(SCF) = V/T(NLM)  shell and closed-shell orbitals
Sns,ls Sn.s, 28 Sns, 3s
Ar+(3s hole) —525.5976 — 5%5.5976] —1.999999 —1.999972 3s —0.0000, ~+-0.0009;
0.0000
Ar+(2s hole) —514.8794 —514.8808 —2.000000 —2.000242 2s -+0.0003, —0.0104,
[+0.0014]
Ar+(1s hole) —409.3890 —409.3941 —2.000000 —2.001786 1s —0.0062, +0.00174
[+0.00517
Snp2p Snp,3p
Art(3p hole) —526.2744 — 5l2:6.2744] —1.999999 —1.999966 3p +0.00035
0.0000
Ar*(2p hole) —517.6690 —517.6746 —2.000000 —2.000464 2p —0.00435
[+0.00567]
Sns,ls Sns,Zs
Ne*(2s hole) —126.7348 - 126.7348:I —2.000003 —1.999897 2s +4-0.00053
[0.0000
Ne*(1s hole) —96.62571 —96.62983 —1.999997 —2.003008 1s —0.0102,
[4+0.00412]

a The results given in this Table are from calculations performed on the IBM 704. Thus E(SCF) and V /7T (SCF) may differ slightly from the values of
these quantities given in Tables II and IV which are from calculations performed on the IBM 7094.

Lagrangian multipliers is that the 1s orbitals, of the 1s-
hole states of Cl—, Ar, and K+ kave a node. In each of
these cases, Pi,(r) goes through zero and reaches a
minimum value of —0.003. For these 1s-hole states, the
HF equation for Py, (7) at large » becomes

ElsPIs(r)g'—BQS,IsP%(7')_038,181)33(7) . (8)

For Art (1s hole), substituting the values given in
Tables IV and IX into Eq. (8), we obtain

P1,(N=2+40.01142 Py, (1) —0.00357Ps,(7);  (9)

the second term on the right is dominant since Ps,(7)
goes to zero much before Ps,(r) does. For r>1.2
Bohrs, the values of Pi,(r) calculated from Eq. (9),
using the values of the SCF radial functions Ps,(r) and
P;(r), agree with the values obtained for Py,(7) from
the SCF calculation to within 0.00006; the difference is
always less than 39,. This is remarkably good agree-
ment, especially since the (finite) expansion SCF
orbitals are not exact solutions of the HF integro-
differential equations.

With the exception of 61,3, for the 1s-hole and 3s-hole
states of Cl~, Ar, and K+, the off-diagonal Lagrangian
multipliers are positive. The effect of the positive off-
diagonal Lagrangian multipliers is to extend the tails of
the inner shell orbitals rather than to introduce addi-
tional nodes. The negative value of 83,1, could introduce
a node into the 1s orbital of the 3s-hole states. However,
the maximum value of | P1,(7)| in the outer loop would
be only 0.00001. This is beyond the accuracy of the
present calculation and too small to be of any interest.
The signs of the off-diagonal Lagrangian multipliers are
determined by the sign conventions used for the SCF
orbitals. The signs of the orbitals have been chosen so

that the 1s, 3s, and 2p radial functions are positive as
r— 0, and the 2s and 3p radial functions are negative
asr— 0.

In order to get further insight into the importance of
the off-diagonal Lagrangian multipliers, an approxi-
mate treatment was developed in which the off-diagonal
Lagrangian multipliers were arbitrarily set equal to
zero. (That is, in the notation of Ref. 3, Rox and Rea
were set equal to zero.) The open-shell orbitals obtained
in this way are not orthogonal to the closed-shell
orbitals. Therefore, after each iteration, the open-shell
orbital was Schmidt orthogonalized to the closed-shell
orbitals; this Schmidt orthogonalization does not change
the total determinantal wave function. A “self-con-
sistent” solution was obtained when the Schmidt-
orthogonalized solutions of these modified HF equations
were the same, within convergence thresholds, as the
orthogonal orbitals that were used to construct the
operators. “Self-consistent” solutions obtained in this
way are denoted by NLM (Neglect Lagrangian Multi-
pliers) to distinguish them from the SCF solutions
obtained from a correct treatment of the off-diagonal
Lagrangian multipliers.

NLM calculations were performed, with the same
basis sets that were used for the SCF calculations, for
the nl-hole states of Ar and Ne. The results of these
calculations are given in Table X. The NLM calcula-
tions were performed on the IBM 704 and are compared
with SCF calculations also performed on the 704. [ The
values of E(SCF) and V/T(SCF) given in Table IX
differ slightly, because of round-off, from the values
given in Tables IT and IV.] Values of the total energy E
(in Hartrees), V/T, and the overlap integrals Sn1,-: be-
tween the open-shell orbital and the closed-shell orbitals
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are given. The signs of the S, »; are determined by the
sign conventions used for the SCF orbitals.

It is interesting to note, from Table X, that the NLM
total energy for a state with an inner shell hole (1s, 2s, or
2p shell of Ar and 1s shell of Ne) is lower than the SCF
total energy. Unless the trial wave functions for an
excited state are constrained to be orthogonal to the
exact wave functions of all lower lying states, the energy
obtained from a solution of variational equations for the
excited state is not necessarily the lowest possible energy
for that state; the expectation value of the energy for
another of the trial functions may very well be lower.
Since, as discussed in Sec. II, this orthogonality con-
straint is not imposed on the determinantal trial func-
tions for the SCF calculation, it should not be surprising
that the NLM energies for the inner shell hole states are
lower than the corresponding SCF energies. We wish to
stress that the NLM energies have been evaluated
without approximation for the total wave functions
constructed with the NLM orbitals. Although it is
tempting to feel that the NLM wave functions for the
inner shell hole states are preferable because the NLM
energies are lower, this is not the case; the NLM
functions are only approximate solutions of the Hartree-
Fock equations while the SCF functions are correct
solutions of these equations. It is quite possible that the
reason the NLM energies are lower than the SCF
energies is that the NLM functions, when expanded in
terms of the exact eigenfunctions, contain a larger
contribution of the lower lying eigenfunctions than do
the corresponding SCF functions.

The NLM results for states with outer shell holes are
almost the same as the SCF results and the S,;, . are
quite small. However, for the states with inner shell
holes, where the off-diagonal Lagrangian multipliers are
large, the NLM results are different from the SCF re-
sults and the S,i,~; are an order of magnitude larger
than those for the outer shell hole states.

The S,i1,~ 1 are given in order to indicate the deviation
of the NLM solutions from the requirement of ortho-
gonality of the orbitals; a requirement imposed in the
derivation of the equations. It is important to dis-
tinguish between the errors inherent in the one-electron
approximation and errors due to the approximate solu-
tion of the HF equations, which should, of course, be
avoided. For this reason, it is a desirable goal to obtain
SCF orbitals which are accurate solutions of the HF
equations to three places past the decimal. In terms of
such accuracy, a deviation from orthogonality of 0.01 is
fairly large.

In order to get further information about the differ-
ences between the SCF and NLM solutions, we have
also calculated {r) and {#%) for the NLM orbitals of the
nl-hole states of Ar and Ne. For the outer shell hole
states the NLM values of (r) and {?) are very nearly
identical to the SCF values. The largest difference is for
()2, for the 3p-hole state of Ar; this difference is only
0.39,. Even for the inner shell hole states, the NLM
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values of {r) and (?) are significantly different from the
SCF values only for the open-shell orbital (the shell
with the electron missing). The error of the NLM value
of {r%), for these cases, is between 3.09 and 5.49, and
the error of the NLM value of (r) is between 1.09,
and 1.99,.

These errors, even those for the inner shell hole states,
would not significantly effect the values of properties
which depend on Y, 7; or 3_ r2. However, they do indi-
cate that the errors of the NLM solutions for inner shell
hole states are larger than those of the NLM solutions
for outer shell hole states.

Further, one may speculate from the errors of (r) and
(r®) for inner shell hole states and from the discussion
earlier of the introduction of a second node into a 1s
orbital that the values of properties which are sensitive
to the precise shape of the orbitals, e.g., a dipole transi-
tion integral between a 1s and a 2 orbital, may be quite
different for NLM and SCF orbitals.

The main purpose of this discussion has been to con-
sider the importance of a correct treatment of the off-
diagonal Lagrangian multipliers. It is our feeling that,
for states which can be treated with the latest Roothaan
open-shell analysis? it is unnecessary to treat the off-
diagonal Lagrangian multipliers in an approximate way.
The correct treatment, without approximation, of the
off-diagonal Lagrangian multipliers is straightforward,
uses an extremely small amount of computer time, and
causes no computational difficulties or inconvenience. This
is due to the following facts. Through the use of
Roothaan’s coupling operators R, the pseudo-eigenvalue
form of the HF equations is obtained for open shell, as
well as closed shell, systems; thus, the matrix HF
equations can be solved using well known and well
understood techniques for the solution of matrix eigen-
value problems.? The construction of the R operators at
each iteration of an SCF calculation is quick and simple.
And last, it has been our experience that the R operators
do not cause any difficulty in the process of convergence
to self-consistency.

V. COMPARISON OF SCF IONIZATION
POTENTIALS WITH EXPERIMENT

Experimental data are available for most of the
ionization potentials (IP’s) of the closed-shell systems
considered here. A comparison with experiment of IP’s
calculated from the SCF wave functions is given in
Table VIII. The IP for the removal of an outer shell
electron (3s or 3p shell of the Ar-like ions and 2s or 2p
shell of the Ne-like ions) can usually be determined from
optical data. The IP for the removal of an inner shell
electron can be calculated from the experimental values
of the energies of x-ray emission lines combined with the
IP for the removal of the appropriate outer shell elec-
tron. For the 1s-hole IP’s of Ne and Ar, the K absorp-
tion limits of gaseous Ne and Ar may be used. In
Table VIII, the values of the experimental ionization
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potentials IP (exp) that are followed by a question mark
were obtained from estimates or interpolations rather
than from direct experimental data.

Except for the inert gases, Ar and Ne, the x-ray
measurements used for Table VIII have not been made
on free atomic systems, but rather on atoms in crystals.
The wavelength and shape of the emission lines will, of
course, be affected by the chemical structure of the
solids. However, for the lines considered here, this
chemical effect appears to be fairly small. The sources
and interpretation of the experimental data used to
obtain the values of IP(exp) given in Table VIII are
discussed elsewhere.!

In certain cases, relativistic corrections are made to
IP(exp) to obtain estimates of the nonrelativistic
ionization potentials IP(nr). This was done in order to
have a more meaningful comparison with the SCF
values of the IP. The relativistic correction to the 1s-
hole IP is assumed to be equal to the relativistic cor-
rection to the IP of the two electron ions (IP for 1s® to
1s'). The relativistic corrections to the IP’s of the two
electron ions are given by Pekeris® for Z<10. Scherr
and Silverman® have extrapolated Pekeris’s results to
Z=120. The relativistic correction to the 2p-hole IP of
an Ar-like ion is assumed to be equal to the relativistic
correction to the IP of the ten electron ion (IP for
1522522p8 to 1522522%). Scherr, Silverman, and Matsen?
have calculated these corrections using screened nuclear
charges to evaluate the relativistic part of the Dirac one-
electron energy and the one-electron Lamb shift.

For the 2p-hole IP’s of the Ne-like ions and the
3p-hole IP’s of the Ar-like ions the only relativistic
correction is that IP(exp) in Table VIII is given for the
center of gravity of the 2P term of the ion. Additional
relativistic corrections for these cases should be rather
small. No relativistic corrections are given for the 2s-
hole IP’s of the Ne-like ions and the 2s- and 3s-hole
IP’s of the Ar-like ions. We have roughly estimated the
relativistic correction to the IP for the removal of an
electron from the outermost s shell using the method of
Scherr, Silverman, and Matsen? with Slater’s values of
the screening constants. The correction is less than 0.005
Hartrees and will lower the value of IP(exp). The
relativistic correction to the 2s-hole IP of an Ar-like ion,
estimated from the data of Scherr, Silverman, and
Matsen,? is probably no more than 0.1 Hartrees and
will also lower IP (exp).

A correction for the finite mass of the nucleus is
included in the values of IP(exp) and IP(nr). The cor-
rection is made by multiplying the IP obtained from the
experimental data for a finite mass nucleus by the

0 C, L. Pekeris, Phys. Rev. 112, 1649 (1958).
(12916% W. Scherr and J. N. Silverman, J. Chem. Phys. 37, 1154
22 C. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev.
127, 830 (1962). We are grateful to the authors for providing us,
in a private communication, with the values of their screening
constants.
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factor (14-m/M), where m is the electronic mass and M
the nuclear mass.

It is possible to calculate the IP of a system in two
ways from SCF wave functions. One way is to use the
frozen-orbital approximation; i.e., to use the SCF
orbitals of the parent system for both the parent and the
ionized systems. In this approximation, the IP for the
removal of an electron from the 7/ shell of a closed-shell
system?is —e,; (Koopmans’s theorem). The second way
is to take the difference of the SCF total energies,
AEscr, obtained from separate SCF calculations on the
parent and the ion. In Table VIII we give the IP’s
calculated in these two ways, IP(—e€,;) and IP(AEgcr),
and their differences with the true values of the IP.

The true value of the IP, in the sense that it is used in
this discussion, is the exact nonrelativistic value for a
fixed nucleus. The error of an approximate value is the
error with respect to this true value. The values of
IP (exp) or IP(nr) given in Table VIII are taken to be
good approximations to the true IP’s. The choice of
IP(exp) or IP(nr) depends, of course, on whether the
electron has been removed from an inner or outer shell
of the parent.

The data given in Table VIII show that when an
electron is removed from the outermost shell (2p-shell
of the Ne-like ions and 3p-shell of the Ar-like ions),
TP (— €a1) is a better approximation than IP(AEgcr) to
the true IP. The explanation for this has been given by
Mulliken.?* When an electron is removed from any shell
but the outermost shell, IP(AEscr) is a better ap-
proximation than IP(—e,;) to the true IP. When an
electron is removed from an inner shell (1s shell of the
Ne-like ions and 1s, 2s, or 2p shell of the Ar-like ions),
the SCF orbitals of the ion are considerably different
from the SCF orbitals of the parent (cf., () and {(?)
given in Tables VI and VII). Consequently, the error in
using the orbitals of the closed-shell parent for these
ions is quite large and the frozen orbital approximation
is poor.

The SCF orbitals of the states which have a hole in
the outermost s shell are not very different from the
SCF orbitals of the states with a holein the outermost
p shell. For these s-hole states there is another rea-
son why IP(—en;) is a poorer approximation than
IP(AEscr). As discussed in Sec. IVA, these s-hole states
are the lowest %S states of even parity of their ionic
systems. When the jon is in the lowest state of a
symmetry species, IP(—e,;) must be greater than
1P (AEscr) 2 However, IP(AEscr) for the removal of an
outermost s electron is larger than the true IP. Since
1P (e,:) must be still larger, it is a poorer approximation
to the true IP. The surprising fact that IP(AEscr) is

2 R. S. Mulliken, J. Chim. Phys. 46, 497 (1949).

24 There is no proof that the inequality IP(—en1) >IP(AEgcr)
holds when an inner shell electron is removed since the resulting
ion is not in the lowest state of a symmetry species. However, it
may be seen from the results in Table VIII that this inequality
does, in fact, hold for all the cases considered here.
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larger than the true IP will be discussed in the next
section.

The agreement of IP(AEscr) with IP(nr) for the
removal of an inner shell electron is remarkably good.
The error of IP(AEscr), for the cases where reliable
experimental data and relativistic corrections are avail-
able, is always less than 0.29, and often no more than
0.19%,. Thus, IP(AEscr) often agrees with IP(nr) to
four significant figures.

This good agreement is due, at least in part, to the
fact that the importance of the one-electron contribu-
tions to the HF operator relative to the two-electron
contributions (the kinetic energy and nuclear attraction
terms relative to the Coulomb and exchange terms) is
considerably greater for inner shell orbitals than for
outer shell orbitals. The best results are obtained with
the HF one-electron approximation when the two-
electron terms are a small perturbation on the one-
electron terms. The error of the HF treatment of the
outer shell orbitals can be expected to be nearly the
same whether an inner shell electron has been removed
or not. Thus, IP(AEscr) for the removal of an inner
shell electron should give rather good agreement with
the true IP.

No direct experimental data have been found for the
2s-hole states of the Ar-like ions. Interpolations have
been made by Tomboulian and Cady? for the term
values of the 2s-hole states of Cl- and K+. [The
interpolation method was based on rules for the
L;— Ly (2s-hole, 2Sy5—2p-hole, 2Py/5) screening doublet
splitting.] However, from the arguments above,
IP(AEscy) for the removal of a 2s electron from an
Ar-like ion should be in good agreement with the true
nonrelativistic IP. The relativistic correction for these
IP’s, estimated above, is probably no more than 0.1
Hartrees. Thus, even without relativistic corrections,
IP(AEscr) for these 2s-hole states should agree with the
correct experimental IP to within 19,. Because of the
relativistic corrections, they should be smaller than the
correct experimental values.

VI. ANOMALOUS BEHAVIOR OF THE
CORRELATION ENERGY

The correlation energy Eo. is the error of the SCF
total energy Escr and is defined by the relation

Enr=ESCF+Ecorr 5 (10)

where E,. is the exact nonrelativistic energy for a
system with a fixed nucleus. The sign has been chosen so
that E is negative for all the systems considered here
and is always negative for a state which is the lowest of
a symmetry species. From the definition of the IP and
Eq. (10), we have the relation

IP (nr)—IP(AEscr) = Eeorr (ion) — Egor (parent) . (11)

( 26 D) H. Tomboulian and W. M. Cady, Phys. Rev. 59, 422
1941).
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If the small relativistic corrections to IP(exp) for the
removal of an electron from the outermost s or p shell
are neglected, the error of IP(AEscr) given in the last
column of Table VIII is just the difference of the
correlation energies of the parent and the ion.

Usually IP(AEscr) is less than the true IP. The
orbitals of the ion are not markedly different from those
of the parent. The ion has one fewer electron than the
parent, and it is reasonable to expect that |Foer(ion)|
< | Eoors(parent)|. This usual case occurs when an
electron is removed from the outermost p shell of any of
the closed-shell systems considered.

On the other hand, when an electron is removed from
the outermost s shell IP(AEgcy) is larger than the true
IP. If we neglect the small relativistic corrections, the
magnitude of E,,, of Net(2s-hole) is 0.84 eV larger than
the magnitude of Eeorr of Ne; | Eeore| 0of Art(3s-hole) is
3.95 eV larger than | Egore| of Ar. As noted in the previ-
ous section, the relativistic correction to IP(exp), in
these cases, is less than 0.1 eV, and including it would
make |Eoor| of the ion still larger than |Eeo.| of the
parent. When an electron is removed from the 2p or the
1s shell of one of the Ar-like ions, | Eere| of the resulting
ion is also larger than |E..| of the parent. The un-
certainties of the experimental data and the relativistic
corrections make this conclusion somewhat doubtful for
the 2p-hole states. For the 1s-hole states, however, the
increase of | Egore| is larger than these uncertainties.

This anomalous behavior of the correlation energy is
important in light of the recent work of Clementi'? and,
in particular, of Allen, Clementi, and Gladney*® to
obtain semiempirical rules for the calculation of Foorr.
Such rules, if they could be successfully applied, would
be very useful since SCF wave functions may now be
easily obtained for a large class of systems. However, the
rules given by Allen, Clementi and Gladney fail to
predict the anomalous correlation energies.

The analysis of Allen, Clementi, and Gladney is based
on a decomposition of E., into pair correlation ener-
gies. For atoms, the pair correlation energy is denoted
by Eeore(n,lymims; n' V' mi' ms"), where n, I, m,, m; are
the usual one-electron quantum numbers. They ex-
plicitly make three assumptions about this decomposi-
tion. (1) The total correlation energy is, to a very good
approximation, the sum of the pair correlation energies,

(12)

(2) The most important pair correlation energies are for
electrons which differ only in their spin-quantum num-
ber and these correlation energies are independent
of m;; this is denoted by Eeor(n,lmiya;nlm,8)
= Eoorr(n,0,; 1,1,8). And (3), the pair-correlation energy,
with minor qualifications, is a function only of the

Yol ! ! ’
bcm‘r:Z anrr(”,l,ml,ms; n,,l AT ) .

26 1. C. Allen, E. Clementi, and H. M. Gladney, Rev. Mod.
Phys. 35, 465 (1963). In this paper the correlation energy is de-
fined with the opposite sign of our correlation energy. The signs
of their values, when quoted here, have been changed to conform
to our sign convention.
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quantum numbers of the pair of electrons and the
nuclear charge Z; in particular it does not depend on the
total electronic configuration of the system. The third
assumption is a key one since Allen, Clementi, and
Gladney obtained the pair correlation energies for an
atom by subtracting the total correlation energies of
various ions of the atom.

The first two assumptions are quite reasonable. The
anomalous behavior of the correlation energy shows that
the third assumption cannot be correct. When an elec-
tron is removed from the %/ closed shell, it follows from
the assumptions and from Eq. (11) that

— Eeorr (1,05 1,0,8)2 E ore (ion) — Eore (parent)
=1P(nr)—IP(AEscr). (13)

For Ne, Allen, Clementi, and Gladney find that
— Eoorr(290,298)24-1.7 €V, — E¢orr (250,258)=24-3.2 €V,
and — Eorr(15a,158)=2+1.2 eV. From the results given
in Table VIII, we see that Egorr(Net; 2p hole) — Eoorr (Ne)
=41.75 eV, Eyor: Net; 2s hole) — Egopr (Ne) = —0.84 eV
and . (Net; 1s hole) — E.orr(Ne)=—+0.65 eV. When a
2p electron is removed Allen, Clementi, and Gladney
correctly predict the change in the total correlation
energy. This is hardly surprising since this change was
part of the data used in their semiempirical analysis.
However, when a 2s electron is removed they predict a
decrease of | Eyore| of ~3.2 eV; but, in fact, | Eeu| n-
creases by 0.84 €V. When a 1s electron is removed they
predict that |E...| decreases by ~1.2 eV, but the
actual decrease is only half that. Allen, Clementi, and
Gladney also give pair correlations for F and Na. Their
predictions for the correlation energies of the #l-hole
states of F~ and Nat are very similar to their predic-
tions for Ne.

Kestner?” has considered the anomalous correlation
energy of the 2s-hole state of Ne using the formalism of

27 N. R. Kestner, (to be published).

BAGUS

Sinonaglu. Kestner’s explanation of the anomalous
correlation energy is based on the increased importance
of configuration interaction on the SCF wave function
for Net(2s hole). He considers only configurations ob-
tained by two electron replacements. The 15225256
configuration of Net(2s hole) can interact with con-
figurations formed by placing only one electron into
an orbital with principal quantum number #>2;
e.g., the configurations 1522s?2p*ns, 15*2522p*nd and
152252p5np (25a2pB — 2sBnpe). Neutral Ne and Net(2p
hole), however, can interact only with configurations
formed by exciting fwo electrons into orbitals with %> 2.
Thus, from energy considerations, the mixing of con-
figurations will be larger for the 2s-hole state than for
the neutral atom or the 2p-hole state. For the 2s-hole
state, where the effects of configuration interaction are
more important, the SCF one configuration function
gives a poorer approximation to the true wave function,
and the magnitude of the correlation energy is larger.
Similar arguments can be made about the 3s-hole states
of the Ar-like ions. The increase | Eoor| for these states
is more than four times larger than the increase of
| Ecors| for the 2s-hole states of the Ne-like ions.
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