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D(1)=1— dr E(r,r), (50)

we would have obtained

d7((q ru, r)
D(1)=1+ dr dq 4 (qr)

d
(51)

Comparing this with Eq. (47) we see that the screening,

angular-momentum components which we have done
here, and secondly the derivation of the small-gradient
formula given here is more straightforward.

If we had calculated D(1) using the first order ap-
proximation to the Fredholm determinant

expressed by the loc.al dielectric constant e(q,&o,r), is
included in Eq. (47) but is neglected in Eq. (51).That
is, the formula Eq. (47) amounts to a summation of a
class of terms in the Fredholm expansion of D(X), which
corresponds to the summation of ring diagrams in the
electron-gas problem but neglects, e.g. , effects due to
higher derivatives and powers of the density gradient.
We note that

dx (q,&a,r)/dr -+ 0

with the density gradient, i.e., in the limit of zero-
gradient density the correct result for a uniform electron
gas is guaranteed.

We have begun comprehensive calculations of the
statistical spectral functions derived in this paper.
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Equations are given describing the beat-frequency variation and mode competition in a gaseous optical
maser operated in a magnetic Geld parallel to the maser axis. The equations include only lowest order non-
linear terms. Important terms in the amplitude- and frequency-determining equations are shown to arise
from an induced atomic precession. These terms have a character similar to those describing the effects of
selective depletion of the velocity distribution or "hole burning. " It is shown that the induced atomic
precession causes parametric conversion of an optical Geld of one circular polarization into one of the other
polarization with a frequency shift equal to the rate of precession. This process tends to make the com-
petition between modes of different polarizations important. An additional feature, not found in the scalar
theory, is that, for sufBciently large magnetic Gelds, competition can be important between modes separated.
in frequency by several Doppler-broadened linewidths.

'HIS paper gives equations describing the beat-
frequency variation and mode competition in a

gaseous optical maser operated in a magnetic field
paralle1 to the maser axis, the equations being obtained
from a density-matrix analysis similar to that of %.K.
Lamb, Jr.'s Important terms in the amplitude- and
frequency-determining equations arise from an induced
atomic precession in atoms occupying regions of the
velocity distribution analogous to the population
depletion holes described by Bennett, Jr.,s and by
Lamb. ' Similar calculations by Tang and Statz, ' and

~ The work of one of the authors (M.S.) was supported by the
U. S. Air Force OSce of ScientiGc Research.
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'A more complete theory allowing x-y asymmetries in the

resonator, transverse magnetic Gelds, and larger J values is being
carried out by the authors in association with W. E. Lamb, Jr.' W. R. Sennett, Jr., Appl. Opt. , Suppl. 1, 24 (1962}.

',C. L. Tang and H. Stats, Phys. Rev. 128, 1013 (1962).

rr+ P+E+' S+M '= 0, — —
rr —PM '—8 +Eye=0,

vp=Qg+o~+p+E+s+r~M ',
v =Q +rr +pM '+r +E~',

(1a)

(1b)

(»)
(2b)
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by Culshaw and Kannelaud' do not produce the
explicit equations given here.

Assuming a J= 1 to J=0 optical transition, circularly
polarized components of the optical field'"of amplitude
E+ and. E, only one cavity resonance (Q+,Q ) above
oscillation thresholdgfor each polarization (Q+ is not
necessarily the same resonance as Q ), an active medium
filling the entire cavity, and otherwise following the
assumptions and method of Lamb, one obtains the
amplitude- and frequency-determining equations
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where
W= —~(~/Q+)+I'A*(~+ —~+),
o+ I'+Z (&+ &+) ~

n=8 +E+' are negative'; (3) if both fields oscillate
~+ and v will generally diQer even for 0+=0, the
beat in the latter case being'

In the following rr, o,P, p, 8 +, and r + are obtained
by making the subscript exchange (++-+ —) in the
appropriate given function. Here v is the optical fre-
quency; Q+ is the quality factor for the + polarization
(we assume axial symmetry and that Q+ ——

Q ); Z„and
Z; are the real and imaginary parts of the plasma
dispersion function'; and I'+ ——-', bN+Lp'/(esbEN)]. Here

pE+i i is the perturbation producing the tra, nsition

~
J=1,m=+( —)1)~

~

J=O, m=O), (that is, p is the
reduced matrix element of the dipole operator taken
between electronic states); i''+t i is the excitation
density' for that transition (we assume 1V+ Zan——d
set I'+ ——I' =—I'); oi+t ~

is the optical frequency for that
transition; and E'1(in2)'" is the Doppler half-width.
The other coef6cients are

p+=(I"/v vb)L1+v b'& b(~+ ~+)] (3)

(I /2VbVab)[Vab ~ub(8)+Verb +ab(oi0 &0)]

+ (I' /2)& (28)((V.V.b
—28')&.b(8)

+&v.v..-2(;—;»]~.(;—;», (~)

p+= (I" /v—.v)bvb(~+ ~+)~—b(~+ ~+),— (5)

r+-= —(I"/2vbv. b) Lv.b&~.b(&)

+v.b(bio ~o)&.b(iso ~s)]
-(I"/2)~. (»)((2v. +v.)8~. (8)

+L~v.»+v. (~+ ~+)3~ b(~+—~+)) (6)—

Here 2 (c )=t V '+oi'] ', V, and Vb are the decay
rates for the J= 1 and. J=0 level, respectively;
v.b=(v.+vb)/2; »=(~++~-)/2; ~a=(~++~-)/2;
$= fptI (p+—p )/2];—v=iiiig/Ii; g is the g factor for
level a; p~ is the Bohr magneton; II is the magnetic
field; and I"=I'x'"(P'/8h').

The mode intensities and frequencies can be calculated
directly from Eqs. (1) through (6). By analogy with
Lamb's analysis of two-mode operation, the general
features of these equations are: (1) Only one polariza-
tion oscillates if P+P &8~ 8 + (strong coupling), or if

p~p )8+ 8 + (weak coupling), and either a+—8+M s

or cr —8 +E+' are negative'; (2) both polarizations
oscillate if P+P )8+ 8 + and neither n+—8+M ' nor

6 One of the authors (RLF) has observed such a condition in an
optical maser operating on the xenon Sd/3/2)p —6pf1/2 jb (2.63 il)
transition.

P+ i—-2v&j ~o+po(E+'+E ')v.i'&.b(v&))

Typical values of 00, the s]ope of the dispersion curve
near line center, and ps(E~'1 E '), the pushing coeffi-
cient Le.g. , o.s—3X10 ' and ps(E+'+E ')—SX10 'from
data taken in a study of two-mode operation], show
that except for operation very near threshold, the
difference v+ —v passes through zero and changes sign
as the magnetic-field splitting is increased. That is,
initially the pushing dominates only to give way to
pulling as 2 pH exceeds y ~. Such a variation has been
observed by Culshaw and Kannelaud' without, how-
ever, noting the change in sign of p+—v .

A portion of the mode competition Lthe part of the 8
term containing the factor Z„(28)]arises from a coupling
of the two fields (E+,E ) by means of an induced
atomic precession. The interaction of k (v ) with this
precessing moment produces a field E~(v+) and vice
versa. Since polarization conversion as well as frequency
conversion occurs, the orthogonality of the polarizations
does not preclude a strong competition. Mathematically,
this precessing moment appears as a coherent super-
position of the three sta, tes

~
J= 1, m = 1),

~
J= 1,

m= —1), and
~
J=O, m=0) produced by interactions

of the same atom with 6rst one polarization component
and then the other. An additional consequence of the
coherence of the magnetic sublevels of the J= j. state
is the existence of magnetic multipole radiation (also
noted by Java, n').

The induced precessing moment, and hence coupling,
can remain signi6cant for yH&&Em provided only that
p+—v =2'. It seems highly probable that this
coup]irig played an important role in the strong com-
petition reported earlier between orthogonally polarized
maser modes oscillating on well-resolved Zeeman
components. '0

The authors are indebted to J. P. Gordon and
particularly to W. E. Lamb, Jr., for useful discussions
of this work.

The equations indicate that weak coupling is the most typical
case; however, neutral coupling is predicated in this approximation
for 6=0.' The expression was specialized to the case 0+——0 =coo and the
7 terms were neglected. The general case can be easily obtained
from the given equations.

9 A. Javan and A. Szoke, Phys. Rev. 137, A536 (1I965).' R. L. Fork and C. K. N. Patel, Appl. Phys. Letters 2, 180
(~963).


