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The dipolar spectral distribution function, or the photoabsorption cross section, of atoms is derived in the
statistical approximation starting from general dynamic equations describing the density fluctuations
induced in the atom by an external field. Using a local form of the theory it is found that coherence between
the motion in different parts of the atom causes a modification of the spectral function. The modification
can be put in the form of a dispersion denominator, and if this denominator becomes small in certain fre-
quency ranges, the absorption is enhanced by what can be identified as collective resonances of the atom

as a whole.

INTRODUCTION

HE results of an investigation of the quantum
dynamics of atoms, reported in previous papers,!
can be summarized briefly as follows. Atoms with more
than one electron never are excited at the frequencies
expected from a single-particle picture. The coupling
between single-particle excitations always causes collec-
tive shifts to higher frequencies. The many-electron
aspects of excitations from the outer and inner atomic
shells, although characteristic and telling, do not change
strongly the predictions of a single-particle picture. A
one-to-one correspondence usually exists between the
single-particle and the collectively shifted excitations
from outer shells in the optical frequency range, which
we shall call (1), of order 1 Ry, and those in the charac-
teristic x-ray range (3), of order Z? Ry, Z being the
atomic number ; here conventional spectroscopic assign-
ments are generally possible. By contrast, in an inter-
mediate frequency range (2), of order Z Ry, the excita-
tions from the intermediate atomic shells can be coupled
so strongly that new collective resonances of the atom
as a whole become possible.

A statistical approximation should apply best to the
dynamics of atoms in just the frequency range (2)
where atomic resonances can occur. Therefore, it is
desirable to derive the dipolar spectral distribution
function g(w) for the statistical model, to complement
the results obtained in this frequency range for the
Hartree model. The photoabsorption cross section of
atoms o (w) is directly proportional to g(w),

o(w)=[2n%/mcg(w),

where [ 2n%?/mc]=8.067X 10718 Ry cm?, if # Ry=13.6
eV. In the following we derive and discuss the spectral
function g(w) in the statistical approximation. A com-

* Work supported in part by the New York University Arts and
Science Research Fund, The National Aeronautics and Space
Administration, and the U. S. Atomic Energy Commission.

1W. Brandt and S. Lundqvist, Phys. Letters 4, 47 (1963) ; Phys.
Rev. 132, 2135 (1963); Arkiv Fysik 28, 399 (1965); henceforth
referred to as I, IT, and ITI, respectively.

parison with previous work in statistical approximations
and with our results based on the Hartree approxima-
tion will be given elsewhere.

In Sec. 1, our basic integral equation is formulated
in a self-consistent manner for the frequency-dependent
density fluctuations in an atom set up by an external
field of a definite frequency w and of a wavelength which
is long compared to atomic dimensions. The integral
equation for dipolar oscillations is projected out in Sec.
2, since only this part need concern us in the present
context. In Sec. 3, this equation is solved first in the
limit of locally vanishing gradient of the electron
density, to give us the atomic response in an essentially
local approximation. Section 4 retains the dependence
on density gradients. A dispersion denominator ap-
pears which accounts for the absorption by oscillations
of the atom as a whole.

1. Integral Equation for Atomic Oscillations in the
Statistical Approximation

We consider the dynamics of an atom in the presence
of an external field of wavelength long compared with
atomic dimensions. The field induces fluctuations in the
electron density about the unperturbed density po(x).
We assume that each volume element responds to the
total field acting on it as if it were part of an infinite
electron gas of the same density.

First we consider an electron gas enclosed in a box of
volume Q. The total field is denoted by V (x,0) and
the induced electron density by p(x,w). The corre-
sponding Fourier amplitudes, defined with respect to
the box, are

palle)= / dxexp (x,0) B

and !
Vg(k,w)=[ Bret=V (x,0) , (2)

Q

respectively.
We postulate a linear relation between the induced
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electron density and the total field of the form
Pﬂ(k,w) =H (k:w:PO) Va (k’w) . 3)

The dispersive properties of the medium with respect to
frequency and wave number (or time and space) are
embodied in the function H (k,w,p) which, for the
present, we shall assume to be known.

We now divide the atom into a number of volume
elements Q;, each of which is small enough so that the
density is constant, but large enough so that it contains
many electrons. The total field at a point x is the sum
of the external field Vex(X,w) and the field due to the
induced electron density, which we write as

|4 )= !
md(x,w = (21[.)3

~ dme
/ digeiur— p(qw), (4)
q

where p(q,w) is the Fourier component of the total
induced electron density,

p(q,w) = Z i PY; (‘Lw) . (5)

Because of Egs. (2) and (3), the induced density in £; is
given by

pos(ko) = H ( 0,00) f e
Q4

X [Vind (x,w) + Vext. (X,w)] . (6>

Summing over all volume elements and formally making
the transition to infinitesimals we obtain the following
integral equation:

(k)= (2m)3 / o / 05gH (ky,p0(x))
X etk -x[4re/q* ]p(qw)
+/dst(k,w,po(x))eik"Ve,t(x,w). @)

In the following we work exclusively with the space
representation of this equation, which we write in the
form

p(x0)= f K (%, 0)p ()

+/d3x’I{ (x,x',w) Vext(xl;w) ) (8)

where
4re )
K (x,x' )= / d3q——H (q,w,p0(x))e~i0" == = (9)
2r)3 ¢
and
1 .
H(x,x' )= / d*qH (q,0,p0(x))ei0* == (10)
(2x)3

We note that the form of Eq. (8) is perfectly general
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within the linear-response approximation and that the
electron-gas approximation appears explicitly only in
Egs. (9) and (10). As written, the kernel K (x,x',») is
not symmetric. However, it is inherent in the statistical
approximation that the unperturbed density does not
change appreciably over the distance of nonlocality in
space. Therefore, we are justified in considering the
kernel to be symmetric in the following.

2. Radial Integral Equation for Dipolar Oscillations

Take an atom with spherical symmetry in the ground
state, i.e., po(X)=po(r). We apply a slowly varying
external field of the form E=E, exp(—ix¢*X), so that
(11)

Vext (X,w) = (ixo)“lgEoe—ixo-x .

Using Egs. (8) and (10) we obtain

px) = [ arein oK (xx w)p(x )
— ko~ EoH (xo0,,p0(x))  (12)
px0) = (iro)tp(x@)ei™. (13)

We now consider the limit of long wavelengths such that
ka<<1, where a is the linear extension of the atom. In
this limit Eq. (12) takes the simpler form

Eoe Po (X)

with

p(Xw)= / %' K (x,x",w)p (x",w)— (14)

Considering density oscillations of dipolar symmetry
and long wavelength we can consider solutions of the

form
p(xw)=[f(r)/r] cos’0, (15)

where 0 is the angle relative to the direction of the
external field. Observing that the inhomogeneous term
in Eq. (14) has spherical symmetry, we obtain the
following radial integral equation for the forced vibra-
tion of the atom:

3Eepo(r)r
—_— (16)

w

f(r)=/ ar'K (ry) f(r')—
0
The kernel in Eq. (16) is given by the formula

©  4qe
Ko [ A Gene@)ee), (D)
where ’ !
o(gr)=(2/n)'2 singr. (18)

From the solution of Eq. (16) we can calculate the
induced dipole moment P using Egs. (13) and (15),
from which the frequency-dependent polarizability is
obtained as the coefficient of the external field E,. Thus,

47‘. 00
Pw)= e/p (x,w)d3x= —3—e / frdr=a(w)Ey. (19)
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3. The Solution of the Integral Equation in the
Zero-Gradient Approximation

We consider the equation

1= (V)+f ar' K(”;TI)(")f("’) ) (20)
with ’
*  A4qe
Ko~ [ a6 BGamDele) 1)
0 q-
and
Fo)=—[3Eaepo(r)r/?], (22)
¢(gr) being defined by Eq. (18).
We now introduce the notation
X(q2;w:P0 (7))= [4779/92111(%@;190 (1’)) (23)
and using the relation
/dq Frelgr)elg’)= (=16 (r—r")  (24)
we can write the kernel symbolically as
KO [ daxtaisome) et o(07)
0 (25)

=x[—d*/dr*w,po(r) Jo(r—7")

with the understanding that we shall differentiate only
with regard to the variable 7 in the §-function, and not
with regard to 7 in the unperturbed density po(7). This
implies neglecting the gradient of the unperturbed
density. We call this the zero-gradient approximation. In
this approximation the integral equation is solved by
first writing the symbolic equation

F@)=jo(r)+x(—d*/dr*, o, po(r)) f (r) (26)
with the formal solution
F@)=fo()/[1—x(—d*/dr* w, po(r))]  (27)
which, by again using Eq. (24), can be written as
S olyr) o(gr')
,r(7, — d / VL :‘(( ,/)
e / ? 0 1—x(¢? :PO("))j
«9((1 ) olgr’)
d ol?'), (28)
-/ q/ 6(% 7p0(7))f

where we have introduced explicitly the wave vector and
frequency dependent dielectric function

6(97“’,/’0 (7) ) = 1”—X(¢127w:P0 (7'))

of a uniform gas of density po (7).
Because of Egs. (19), (22), and (28) we obtain the
dipole moment

dme’E

’ /7d7 7'dr’ dg
o?

(29)

e(gr) e(gr')
————p(7),
e(g,w,p0(7))

Plw)=— (30)
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and derive the polarizability

a(w)w——éhre?/ /n

so(qﬁ
w 6(% )90(7))

X/ rdr o(g)po(r). (31)

This expression shows the characteristic feature of
this approximation. The absorption in a given radial
shell will be determined by the imaginary part of the
inverse of the dielectric function, and the absorption
will at each frequency generally have its maximum
around some wave number go. If we neglect the imagi-
nary part of e(¢,w,00(7)) the absorption will take place at
a definite momentum ¢, (assumed to be real), given by
the solution of

€(qo,w,p0(r))=0. (32)

Thus, the resonance condition is locally the same as that
for a plasma resonance in a uniform electron gas. This
feature is a direct consequence of neglecting the
explicit effect of a density gradient.

Taking the imaginary part of the integral we obtain
for the oscillator-strength distribution function

w(w)

ldX/dQJ a0

2m 8
g2(w)= —w Ima(w)=— /1’d

me w

X / r'dr' o(gor)po(r’), (33)

where ¢y has to be determined from Eq. (32), and the
integration extends over the region, where go= qo(w,r) is
real.

We shall in the following discuss a few simple ap-
proximations for e(g,w,po) deferring the treatment in
terms of the full expressions given by Lindhard? to a
later paper.

The simplest approximation is to neglect the spatial
dispersion and describe the local response by the Drude
approximation

x(@0,00(r)) =wi () /?,

where wo(r)=[4re2po(r)/m ]2 is the local plasma fre-
quency. For the polarizability we obtain

(34)

e’ po(x)
a(w)=— / di— (35)
m wo? (X) — w?
and the oscillator strength distribution is given by
s [Expstam—). GO

*J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954).
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As pointed out in II, the effect of the Drude screening is
to replace the free-particle response by one where each
part of the medium behaves as if it had a characteristic
frequency equal to the local plasma frequency. The
absorption at a given frequency occurs in an infini-
tesimally thin shell, determined by the condition
w=wo(r). Resonances or detailed structure in the ab-
sorption spectrum will only occur where the density
varies slowly.

Equation (36) is of interest as a reference function
for studying changes in g(w) due to atomic oscillations.
We have evaluated Eq. (36) for different density
distributions po(7). The resulting photoabsorption cross
sections are shown in Fig. 1 on the reduced frequency
scale w/Z Ry for the Thomas-Fermi and the Lenz-
Jensen density distributions of the statistical atom,? and
for the Hartree density distributions of Ar and Hg.
Clearly, as pointed out in II, this local approximation
essentially maps the corresponding charge distributions.
The shell structure of the Hartree atoms is reflected in
modulations of the photoabsorption cross sections
relative to the curves for the statistical atoms which
give a good average of the frequency range (2) of
interest, i.e., for w/Z Ry>0.01. The slow decline of the
density in the Thomas-Fermi atom as r — o causes the
spectral function to rise to the constant value

g(0)=(3/2)%2xr Ry!,

corresponding to ¢ (0)=46.56X 10718 cm?. The curves for
the Lenz-Jensen atom and the Hartree atoms pass
through a maximum near the lower end of our range (2)
and go to zero with the frequency. At very high fre-
quencies the spectral functions of the Hartree atoms
extend only to a cutoff frequency corresponding to the
electron density at the origin. The local spectral func-
tions of the Thomas-Fermi and the Lenz-Jensen
atoms nearly coelesce and decline asymptotically as
(w/Z Ry)™3. By coincidence the spectral functions of
real atoms at very high frequencies also fall off ap-
proximately as w3,
We next consider the case of slight dispersion which
follows from the long-wavelength plasma motion.
x(g,r) = wi () /*+3vs’ (r)¢*/ o (37)
99(r) denotes the Fermi velocity for the electrons at 7.
A formula which only differs slightly by a numerical
coefficient (5/9 instead of 3/5) follows from the dy-
namic Thomas-Fermi theory as developed by Bloch.*
The solution of Eq. (32) gives for the local wave number

w2—w02 (7’)
(]02= T (38)
0% (r)

3 See, e.g., P. Gombas, Die Statistische Theorie des Atoms und
ihre Anwendungen (Springer-Verlag, Berlin, 1949).
4 F. Bloch, Z. Physik 81, 363 (1933).
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F16. 1. Photoabsorption cross sections as a function of w/Z Ry,
calculated in the extreme local approximation, Eq. (36), for the
electron-density distributions of the statistical Thomas-Fermi and
Lenz-Jensen atoms and for the Hartree distributions of Ar and Hg.

Inserting this expression in Eq. (33) yields

[0 ¢ (go)

g(w)=41rw/1’dr /r'dr' olgr)po(r"), (39)

wl—wo(r

where the integration extends over the regions, where g,
is real.

At a given frequency w the radial integrations extend
from a radius 7, corresponding to ¢o=0, viz., where
w=wo(ro). For r>ry the local wave number ¢, increases
without limit as r — . However, the contribution from
the low-density region to g(w) is small because the un-
perturbed density tends to zero exponentially. This
approximation has the same qualitative characteristics
as the theory of Wheeler and Fireman® and Ball.$

We finally give the result for a simple interpolation
formula given by Lindhard to represent approximately

the semiclassical domain over a larger range than
Eq. (37).

wo’(7)

w—ft)g

X(q’w)pﬂ (1’)) = (40)

From Eq. (32) we again obtain for the local wave
number

w2—wo?(r)
qo (7’)—-— %—"[)02 (7‘) )

(41)

5J. A. Wheeler and E. L. Fireman, Aeronutronic System
Publication U-099, 1957 (unpublished).
6 J. A. Ball, thesis, Princeton, University, 1963 (unpublished).
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but now g(w) becomes

wo*(r) | qo| ©(gor)

g(w)=4nw / rdr
w?

w?—awo?(r)
x / v olar)ml®), (42)

where, as in the previous case, the integration extends
over the interval > 7,, with 7, the radius where go(r)=0.
Here the suppression of the short-wavelength contribu-
tions from the low-density region is considerably
stronger than in Eq. (39).

We note that these three approximate formulas,
Egs. (36), (39), and (42) represent local approximations
in the sense that the resonance condition (32) applies
locally. At the same time, however, the description of
the response is purely collective, since the resonance
condition implies the vanishing of the dielectric func-
tion, which is taken as that for an extended uniform
medium of the corresponding density. Because of spatial
dispersion, as reflected in the ¢ dependence of
x(g,w,00(r)), there is a characteristic nonlocality length
involved. In order for our approximation to be meaning-
ful, this nonlocality length must be small compared to
the distance over which the density changes appreciably.

According to the scheme discussed in this section, the
absorption is a continuous function of frequency; at
each point absorption will take place at a given fre-
quency w provided the resonance condition (32) is
fulfilled for a real wave number go. One effect of the
density gradient, which was neglected in this section,
will be to dynamically couple different parts of the atom
in such a way that the polarizability and spectral dis-
tribution can no longer be obtained by adding the con-
tributions from the different spherical shells. This
coupling may not only give a modulation of the type of
results just discussed, it may also bring in the effects of
coherent motion in the atom, which would manifest
itself in the occurrence of new resonances. A modification
to include such effects is discussed in the following
section.

4. Solution of the Integral Equation in the
Small-Gradient Approximation

We rewrite the integral equation (20) by introducing
formally a strength parameter A.

1= [0 Keryo). @)
The Fredholm solution is
D(r,r" \) fo(r')
=Jo +/d — P (44
f)=fo(r) 7 DOy )

where D(r,”’,\) and D(\) denote Fredholm’s first minor
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and determinant, respectively. The solution to our
problem is obtained by letting A — 1.

The approximation discussed in the preceding section
corresponds to setting D(A\)=1 and

X(q’w ")

D(ry' \)= / ———o(gr) p(gr')dg.  (45)
1—X X(Q)w 1’)

The solution corresponding to D(\)=1 and Eqs. (44)
and (45) is in general exact only in the limiting cases
of zero spatial dispersion or zero density gradient. For
zero spatial dispersion the kernel is diagonal and the
solution is trivial [cf., Eq. (28)]. Taking spatial disper-
sion into account, we have D(A\)>#1 in a medium with a
density gradient. In addition we get correction terms to
Eq. (45). Still as long as the density gradient is con-
sidered to be small one can assume Eq. (45), and cal-
culate D(\) from the Fredholm relation?

—AD'(\) = / dr D(rg,\). (46)

The calculation is elementary and gives the result
D(1)=14+F(v),
where
o 1 dx(gwr)
F@)= [ar [ agoie) . ()
1—x(qw7)  dr

with

®(gr) ==/ | o(gr')|2dr'. (48)

0

The solution in the small-gradient approximation there-
fore is given by the formula

)= /d " Jelar)eler’)

—X q7w 7

) / 14+F@). (49)

From Eq. (49) the function g(w) can be found.

The difference between Egs. (49) and (28) lies in the
frequency-dependent modulation given by the de-
nominator. If, in certain frequency ranges, the absolute
magnitude of the denominator becomes small the
absorption is enhanced because of what may be inter-
preted as a collective oscillation in the atom. If the
denominator of Eq. (49) in fact were to vanish at some
frequency, the homogeneous equation to Eq. (43) has
a solution corresponding to a density oscillation. In this
sense a small denominator indicates that such an
oscillation represents an approximate eigenstate of the
atom.

A similar formula was derived by the authors in II.
The formula given here differs in two respects. In the
first place, in IT we did not separate the equations into

"W. V. Lovitt, Integral Equations (Dover Publications, Inc.,
New York, 1924).
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angular-momentum components which we have done
here, and secondly the derivation of the small-gradient
formula given here is more straightforward.

If we had calculated D(1) using the first order ap-
proximation to the Fredholm determinant

D(l)zl——/dr K(r,r), (50)
we would have obtained
( ) )
D(1)~1+/d1’/dqci>(qr) xawr)

Comparing this with Eq. (47) we see that the screening,
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expressed by the local dielectric constant e(g,w,r), is
included in Eq. (47) but is neglected in Eq. (51). That
is, the formula Eq. (47) amounts to a summation of a
class of terms in the Fredholm expansion of D()\), which
corresponds to the summation of ring diagrams in the
electron-gas problem but neglects, e.g., effects due to
higher derivatives and powers of the density gradient.
We note that

dx (%w:r)/ ar—0

with the density gradient, i.e., in the limit of zero-
gradient density the correct result for a uniform electron
gas is guaranteed.

We have begun comprehensive calculations of the
statistical spectral functions derived in this paper.
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Equations are given describing the beat-frequency variation and mode competition in a gaseous optical
maser operated in a magnetic field parallel to the maser axis. The equations include only lowest order non-
linear terms. Important terms in the amplitude- and frequency-determining equations are shown to arise
from an induced atomic precession. These terms have a character similar to those describing the effects of
selective depletion of the velocity distribution or “hole burning.” It is shown that the induced atomic
precession causes parametric conversion of an optical field of one circular polarization into one of the other
polarization with a frequency shift equal to the rate of precession. This process tends to make the com-
petition between modes of different polarizations important. An additional feature, not found in the scalar
theory, is that, for sufficiently large magnetic fields, competition can be important between modes separated

in frequency by several Doppler-broadened linewidths.

HIS paper gives equations describing the beat-

frequency variation and mode competition in a
gaseous optical maser operated in a magnetic field
parallel to the maser axis, the equations being obtained
from a density-matrix analysis similar to that of W. E.
Lamb, Jr.? Important terms in the amplitude- and
frequency-determining equations arise from an induced
atomic precession in atoms occupying regions of the
velocity distribution analogous to the population
depletion holes described by Bennett, Jr.,* and by
Lamb.! Similar calculations by Tang and Statz,* and

* The work of one of the authors (M.S.) was supported by the
U. S. Air Force Office of Scientific Research.

1W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

2 A more complete theory allowing x-y asymmetries in the
resonator, transverse magnetic fields, and larger J values is being
carried out by the authors in association with W. E. Lamb, Jr.

3W. R. Bennett, Jr., Appl. Opt., Suppl. 1, 24 (1962).

4 C. L. Tang and H. Statz, Phys. Rev. 128, 1013 (1962).

by Culshaw and Kannelaud® do not produce the
explicit equations given here.

Assuming a J =1 to J=0 optical transition, circularly
polarized components of the optical field"of amplitude
E, and E_, only one cavity resonance (2,,2_) above
oscillation threshold[for each polarization (2, is not
necessarily the same resonance as {2_), an active medium
filling the entire cavity, and otherwise following the
assumptions and method of Lamb, one obtains the
amplitude- and frequency-determining equations

a—BEP—0, E?=0, (1a)
a—B_E*—0_,E.*=0, (1b)
vy=Q+oytp  El 47 E2, (22)
v.=Q Fo-+p_-E 47 E.?, (2b)

5 W. Culshaw and J. Kannelaud, Phys. Rev. 136, A1209 (1964).



