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The dipolar spectral distribution function, or the photoabsorption cross section, of atoms is derived in the
statistical approximation starting from general dynamic equations describing the density fluctuations
induced in the atom by an external field. Using a local form of the theory it is found that coherence between
the motion in diferent parts of the atom causes a modification of the spectral function. The modification
can be put in the form of a dispersion denominator, and if this denominator becomes small in certain fre-
quency ranges, the absorption is enhanced by what can be identified as collective resonances of the atom
as a whole.

INTROBUCTION

'HE results of an investigation of the quantum
dynamics of atoms, reported in previous papers, '

can be summarized briefly as follows. Atoms with more
than one electron never are excited at the frequencies
expected from a single-particle picture. The coupling
between single-particle excitations always causes collec-
tive shifts to higher frequencies. The many-electron
aspects of excitations from the outer and inner atomic
shells, although characteristic and telling, do not change
strongly the predictions of a single-particle picture. A
one-to-one correspondence usually exists between the
single-particle and the collectively shifted. excitations
from outer shells in the optical frequency range, which
we shall call (1), of order 1 Ry, and those in the charac-
teristic x-ray range (3), of order Z' Ry, Z being the
atomic number; here conventional spectroscopic assign-
ments are generally possible. Sy contrast, in an inter-
mediate frequency range (2), of order Z Ry, the excita-
tions from the intermediate atomic shells can be coupled
so strongly that new collective resonances of the atom
as a whole become possible.

A statistical approximation should apply best to the
dynamics of atoms in just the frequency range (2)
where atomic resonances can occur. Therefore, it is
desirable to derive the dipolar spectral distribution
function g(co) for the statistical model, to complement
the results obtained in this frequency range for the
Hartree model. The photoabsorption cross section of
a,toms o. (co) is directly proportional to g(co),

o (ce) = [2~'e'/rncjg (ce),

where pn'e'/mcj=8. 067X10 "Ry cm', if lt Ry=13.6
eV. In the following we derive and discuss the spectral
function g(a&) in the statistical approximation. A com-
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Arkiv Fysik 28, 399 (1965); henceforth
referred to as I, IT., and IIf., respectively.

parison with previous work in statistical approximations
and with our results based on the Hartree approxima-
tion will be given elsewhere.

In Sec. 1, our basic integral equation is formulated
in a self-consistent manner for the frequency-dependent
density fluctuations in an atom set up by an external
field of a definite frequency co and of a wavelength which
is long compared to atomic dimensions. The integral
equation for dipolar oscillations is projected out in Sec.
2, since only this part need concern us in the present
context. In Sec. 3, this equation is solved first in the
limit of locally vanishing gradient of the electron
density, to give us the atomic response in an essentially
local approximation. Section 4 retains the dependence
on density gradients. A dispersion denominator ap-
pears which accounts for the absorption by oscillations
of the atom as a whole.

pn(k, ~) = dsxe"*p(x,~)

&n(k, co) = d'xe'" *y(x m) (2)

respectively.
4'e postulate a linear relation between the induce(l

1. Integral Equation for Atomic Oscillations in the
Statistical Ayproximation

We consider the dynamics of an atom in the presence
of an external field of wavelength long compared with
atomic dimensions. The field induces Quctuations in the
electron density about the unperturbed density pe(x).
Vfe assume that each volume element responds to the
total 6eld acting on it as if it were part of an infinite
electron gas of the same density.

First we consider an electron gas enclosed in a box of
volume Q. The total field is denoted by V(x,ro) and
the induced electron density by p(x,co). The corre-
sponding Fourier amplitudes, defined with respect to
the box, are
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As pointed out in II, the effect of the Drude screening is
to replace the free-particle response by one where each
part of the medium behaves as if it had a characteristic
frequency equal to the local plasma frequency. The
absorption at a given frequency occurs in an infini-
tesimally thin shell, determined by the condition
pp=rpp(r). Resonances or detailed structure in the ab-
sorption spectrum will only occur where the density
varies slowly.

Equation (36) is of interest as a reference function
for studying changes in g(&p) due to atomic oscillations.
We have evaluated Eq. (36) for different density
distributions pp(r). The resulting photoabsorption cross
sections are shown in Fig. 1 on the reduced frequency
scale co/Z Ry for the Thomas-Fermi and the Lenz-
Jensen density distributions of the statistical atom, ' and
for the Hartree density distributions of Ar and Hg.
Clearly, as pointed out in II, this local approximation
essentially maps the corresponding charge distributions.
The shell structure of the Hartree atoms is rejected in
modulations of the photoabsorption cross sections
relative to the curves for the statistical atoms which
give a good average of the frequency range (2) of
interest, i.e., for cv/Z Ry) 0.01. The slow decline of the
density in the Thomas-Fermi atom as ~ —+~ causes the
spectral function to rise to the constant value

g(0) = (3/2)'i'pr Ry—',

corresponding to o. (0)= 46.56)& 10 "cm'. The curves for
the Lenz-Jensen a,tom and the Hartree atoms pass
through a maximum near the lower end of our range (2)
and. go to zero with the frequency. At very high fre-
quencies the spectral functions of the Hartree atoms
extend only to a cutoff frequency corresponding to the
electron density at the origin. The local spectral func-
tions of the Thomas-Fermi and the Lenz-Jensen
atoms nearly coelesce and decline asymptotically as
(oi/Z Ry) '. By coincidence the spectral functions of
real atoms at very high frequencies also fall off ap-
proximately as co '.

|A'e next consider the case of slight dispersion which
follows from the long-wavelength plasma motion.

X(&p,r) =ppp'(r)/oi'+sup'(r)0'/oi',

sp(r) denotes the Fermi velocity for the electrons at r
A formula which only differs slightly by a numerical
coefficient (5/9 instead of 3/5) follows from the dy-
namic Thomas-Fermi theory as developed by Bloch. 4

The solution of Eq. (32) gives for the local wave number

IO

O, I

O.OI

O, OI O. I

fan/Z Ry

FIG. 1. Photoabsorption cross sections as a function of co/Z Ry,
calculated in the extreme local approximation, Eq. (36), for the
electron-density distributions of the statistical Thomas-Fermi and
Lenz-Jensen atoms and for the Hartree distributions of Ar and Hg.

Inserting this expression in Eq. (33) yields

I~pl ~(vpr)
g (M) = 4aM rdr

CO Mo

r'dr' y(qpr') pp(r'), (39)

From Eq. (32) we again obtain for the local wave
number

where the integration extends over the regions, where qo

is real.
At a given frequency ~ the radial integrations extend

from a radius ro corresponding to qo
——0, viz. , where

pp= ppp(fp). For r) rp the local wave number qp increases
without limit as r —+~. However, the contribution from
the low-density region to g(o&) is small because the un-
perturbed density tends to zero exponentia11y. This
approximation has the same qualitative characteristics
as the theory of Wheeler and Fireman' and Ball. '

We finally give the result for a simple interpolation
formula given by Lindhard to represent approximate1y
the semiclassical domain over a larger range than
Eq. (37).

cup'(r)
X(g,~,pp(r)) =

o~' —-sap'(r) q'

p
'

o~p'(r)-—-
—'s-sp'- (r)

(38) qps(r) =
M —

COo t'

)
2

3 See, e.g., P. Gombas, Die Statistische Theoric des Atoms Nrfd
ihre Aemendeegen (Springer-Verlag, Berlin, 1949).

4 F. Bloch, Z. Physik 81, 363 (1933).

' J. A. Wheeler and E. L. Fireman, Aeronutronic System
Publication U-099, 195ft (unpublished).

J. A. Ball, thesis, Princeton, University, 1963 (unpublished).
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D(1)=1— dr E(r,r), (50)

we would have obtained

d7((q ru, r)
D(1)=1+ dr dq 4 (qr)

d
(51)

Comparing this with Eq. (47) we see that the screening,

angular-momentum components which we have done
here, and secondly the derivation of the small-gradient
formula given here is more straightforward.

If we had calculated D(1) using the first order ap-
proximation to the Fredholm determinant

expressed by the loc.al dielectric constant e(q,&o,r), is
included in Eq. (47) but is neglected in Eq. (51).That
is, the formula Eq. (47) amounts to a summation of a
class of terms in the Fredholm expansion of D(X), which
corresponds to the summation of ring diagrams in the
electron-gas problem but neglects, e.g. , effects due to
higher derivatives and powers of the density gradient.
We note that

dx (q,&a,r)/dr -+ 0

with the density gradient, i.e., in the limit of zero-
gradient density the correct result for a uniform electron
gas is guaranteed.

We have begun comprehensive calculations of the
statistical spectral functions derived in this paper.
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Equations are given describing the beat-frequency variation and mode competition in a gaseous optical
maser operated in a magnetic Geld parallel to the maser axis. The equations include only lowest order non-
linear terms. Important terms in the amplitude- and frequency-determining equations are shown to arise
from an induced atomic precession. These terms have a character similar to those describing the effects of
selective depletion of the velocity distribution or "hole burning. " It is shown that the induced atomic
precession causes parametric conversion of an optical Geld of one circular polarization into one of the other
polarization with a frequency shift equal to the rate of precession. This process tends to make the com-
petition between modes of different polarizations important. An additional feature, not found in the scalar
theory, is that, for sufBciently large magnetic Gelds, competition can be important between modes separated.
in frequency by several Doppler-broadened linewidths.

'HIS paper gives equations describing the beat-
frequency variation and mode competition in a

gaseous optical maser operated in a magnetic field
paralle1 to the maser axis, the equations being obtained
from a density-matrix analysis similar to that of %.K.
Lamb, Jr.'s Important terms in the amplitude- and
frequency-determining equations arise from an induced
atomic precession in atoms occupying regions of the
velocity distribution analogous to the population
depletion holes described by Bennett, Jr.,s and by
Lamb. ' Similar calculations by Tang and Statz, ' and

~ The work of one of the authors (M.S.) was supported by the
U. S. Air Force OSce of ScientiGc Research.

' W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
'A more complete theory allowing x-y asymmetries in the

resonator, transverse magnetic Gelds, and larger J values is being
carried out by the authors in association with W. E. Lamb, Jr.' W. R. Sennett, Jr., Appl. Opt. , Suppl. 1, 24 (1962}.

',C. L. Tang and H. Stats, Phys. Rev. 128, 1013 (1962).

rr+ P+E+' S+M '= 0, — —
rr —PM '—8 +Eye=0,

vp=Qg+o~+p+E+s+r~M ',
v =Q +rr +pM '+r +E~',

(1a)

(1b)

(»)
(2b)

' W. Culshaw and J.Kanne/aud, Phys. Rev. j.36, A1209 (1964).

by Culshaw and Kannelaud' do not produce the
explicit equations given here.

Assuming a J= 1 to J=0 optical transition, circularly
polarized components of the optical field'"of amplitude
E+ and. E, only one cavity resonance (Q+,Q ) above
oscillation thresholdgfor each polarization (Q+ is not
necessarily the same resonance as Q ), an active medium
filling the entire cavity, and otherwise following the
assumptions and method of Lamb, one obtains the
amplitude- and frequency-determining equations


