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we obtain
P (&o) = e'v co(1—cos'8+)/2A (&o),

—= se'v() (~) . (33)

d8', 2e'o)II'e'

dt 3(1—v')

Figures 7 through 10 show the normalized power spec-
trum Q(co) for cr=0.28, 1.0 and various values of v.

Ke now compare the Cerenkov loss to the synchrotron
loss of an electron of the same energy moving in a circle
perpendicular to the magnetic field. The synchrotron
dW, /dt loss is given by'

' L. D. Landau and E. M. Lifshitz, The Classicut Theory of
Fields (Addison-Wesley Publishing Company, Reading, Massa-

chusettss,

1958).

The synchrotron loss for n=0.28 is also plotted in
Fig. 6 as a function of v. At relativistic velocities the
synchrotron loss dominates the Cerenkov loss owing to
its (1—v') ' dependence on the velocity. At non-

relativistic velocities we see that the Cerenkov and
synchrotron loss are of the same order of magnitude
with the Cerenkov loss being a,t most 3 times as large
as the synchrotron loss for v~1/7.
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In a plasma in thermal equilibrium, the spectrum of electron density Quctuations that have a wavelength
longer than the Debye length has a sharp maximum near the electron plasma frequency. In this paper, the
eBect of a non-Maxwellian electron velocity distribution on the spectrum of electron density Quctuations
is computed for frequencies near the electron plasma frequency. The electron velocity distribution is as-
sumed to be isotropic but not necessarily Maxwellian and the effects of electron-ion collisions are included.
The results show how the presence of a small number of energetic electrons can enhance the intensity of the
Quctuations near the plasma frequency, provided the Landau damping resulting from these energetic elec-
trons is greater than both the collision damping and the Landau damping caused by the ambient electrons.
The results are applied to the ionosphere radar-backscatter experiments, where the energetic electrons are
photoelectrons produced by solar uv radiation. In the case of the Arecibo radar experiments, the intensity of
the Quctuations near the electron plasma frequency is estimated to be enhanced at plasma frequencies
greater than about 4 or 5 Mc/sec.

1. INTRODUCTION

ADAR backscatter from suSciently high levels in
the ionosphere is mainly "incoherent scatter, "i.e.,

scattering from random electron density Quctuations
which exist because the electrons are discrete particles.
Such experiments single out the spatial Fourier trans-
form of the electron density with wave vector q= 4m X ',
where X is the radar wavelength. The experiments
measure the total backscattered power which is pro-
portional to the mean-square value of the spatial
Fourier transform and also the distribution of back-
scattered power with frequency which is related to the
time dependence of the Fourier transform.

~This research was sponsored by the Advanced Research
Projects Agency as part of Project DEFENDER and technically
monitored by the U. S. Air Force Of5ce of Scientific Research
under Contract Qo. AF 49(638)-1156.

$ Cornell-Sydney University Astronomy Center.

A number of authors' have calculated the theoreti-
cal frequency spectrum I(co) for a given wave vector.
These calculations in gen. eral assume (1) that the
dynamics of the plasma can be described by the Vlasov
equation which neglects charged-particle collisions, and
(2) that the electrons and ions have Maxwellian velocity
distributions which are not necessarily at the same
temperature. The charged-particle collision frequency
can be expressed in terms of the parameter, A:

A=4nnD'=DK(T)e '=(K(T))"'(4srn) 't'e ' (1)
where D is the electron Debye length. D is defined by

D '= 4rrn e'K '(T)— —
(2)

t E. E. Salpeter, Phys. Rev. 120, 1528 (1960) hereafter referred
to as I.' E. E. Salpeter, Phys. Rev. 122, 1663 (1961).' J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. (London)
A259, 79 (1960).

4 J. A. Fejer, Can. J. Phys. 39, 716 (1961).
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and (T) is an average temperature delned below in
Eq. (7). The parameter A. is extremely large compared
with unity in all practical cases. The order of magnitude
of the charged-particle collision frequency (see Eqs. (29)
and (33)] is v orv ink/A where or„=(47rne'/m)"' is the
electron plasma frequency in rad/sec.

For most purposes, the charged particle collisions are
indeed unimportant. However, in the problem under
consideration here, charged particle collisions may be
important. Consider the backscatter from regions where
the parameter o. is larger than unity:

n=(qD) '=X(47rD) '=X(ne'/47rKT)'". (3)

When a is larger than unity, most of the backscattered
intensity resides in the "ion component" which has a
frequency width of the order of Doppler shifts corre-
sponding to the ion thermal velocities. The intensity of
the electron component is only of order o. ' compared to
the ion component, but is of practical interest since
(in the absence of a magnetic field) it is a pair of sha, rp
lines displaced from the transmitted frequency by an
amount vv= ~v/2s. . This is interpreted as backscattering
from the longitudinal, electrostatic plasma waves that
a plasma can maintain whe~ the wavelength is longer
than the Debye length, and is called the plasma line. In
the absence of collisions, the frequency width of this line
is due only to Landau damping and it is of order
co~'t, '~'. Although A is very large, in some ca,ses

n.s/2) ln(Ans) = ln(4~gq —s) = lnLeXs(4s. ) '] (4)

and the width of the plasma line is due to charged
particle collisions. In the discussion above, collisions of
electrons with neutrals were neglected and the electron
velocity distribution was assumed to be Maxwellian.

The effect of charged-particle collisions on the plasma
line was computed by Ron, Dawson, and Oberman' for
an equilibrium model of the electron plasma. The as-
sumption of equilibrium is necessary because these
authors use a generalized Nyquist theorem to relate the
power spectrum of electron density fluctuations to the
conductivity of the plasma which had been calculated
previously. ' The results of this calculation are as
expected. The width of the plasma line is given by the
electron-ion collision frequency when this is greater
than the Landau damping and the power returned in the
plasma line is not affected by collisions —in agree-
ment with the predictions of equilibrium statistical
mechanics. '

The plasma in the ionosphere (and in many laboratory
experiments) is not accurately in thermal equilibrium,
and we are interested in how departures from thermal
equilibrium affect the spectrum and intensity of electron

~A. Ron, J, Dawson, and C. Oberman, Phys. Rev. 132, 497
(1963).

~ J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962).
7 C. Qberman, A. Ron, and J. Dawson, Phys. Fluids 5, 1514

(1962).' J. Dawson and C. Oberman, Phys. Fluids 6, 394 (1963).

density fluctuations. In this paper the (zero-order)
normalized distribution function, Fs(v), will be taken to
be isotropic but not necessarily Maxwellian. The corre-
sponding one-dimensional velocity distribution, Fs' l (I)
=Jj ~ Fp( v)2 xvd s will also be used extensively.

It will be convenient to measure the departure from
therma, l equilibrium in terms of two "velocity-dependent
temperatures" dehned in terms of the logarithmic
derivatives of Iip and Iip( ',

mv/KT(v) = —d 1nFs(v)/dv,

mu/KTii(N) = —d 1nFpi'&(u)/du.

(5)

(6)

Two different average temperatures will be required:

(T)—'= Fs(v) T '(n)dv; 3KT= ms'Fs(v)dv. (7)

It will be shown that (T) is the appropriate average
temperature to use in the formula for the Debye length.

In the ionosphere, the departure from thermal equi-
librium results from the production of very energetic
photoelectrons which are only slowly thermalized.
Hence, for energies considerably above the average
energy, there are many more electrons than would be
predicted by an equilibrium distribution. On the other
hand, the majority of the electrons in the plasma have
had many collisions and are thermalized so that
T(s) = (T)=T except at velocities much greater than
the average, where the recently produced photoelectrons
contribute a high-energy tail to the distribution function
and increase T(s) greatly [see Sec. 6].

In a stable but nonequilibrium plasma, the intensity
of electron density fluctuations can be enhanced above
the equilibrium value and an example has been given

by Rosenbluth and Rostoker. ' In the case of the plasma
line, the collisionless theory states that the intensity can
be enhanced by a ratio R T~~(=nq)/T, where sz ——co„q '
is the phase velocity of the plasma, wave. As an example,
suppose Fs&"(u) ~u ' in the high-energy tail. Then
R n's '==(qD) 's ' can become very large provided
s is of order unity. Physically, the collisionless theory
describes the excitation of plasma waves by fast elec-
trons" and the subsequent Landau damping of these
waves. The random electron-ion collisions can also
excite plasma waves and cause damping. These latter
processes become predominant at very long wavelengths
and do not cause an enhancement of electron density
Quctuations because collisions involve particles princi-
pally of avera, ge energy. Thus E cannot become arbi-
trarily large simply by making q arbitrarily sma, ll.

The body of this paper will be concerned only with
the electron component or plasma line so that the effects
of ion motion are negligible and the large ion-to-electron
mass ratio can be replaced by infinity. A brief review of

~ M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 776
(1962)."D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
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the collisiooless theory will be given in Sec. 2 for a
general isotropic Fo(v). In Sec. 3, we shall derive a
Fokker-Planck equation for the electrons using the
method described by Berk."This method accounts for
electron-ion collisions, but ignores electron-electron
collisions. The electron-electron collisions do not change
the momentum of the electron gas on scales q

' which
are much larger than the scale D of a typical collision.
Thus electron-electron collisions cannot damp or excite
plasma waves when n))1."Section 4 describes a Green's
function method of solving the Fokker-Planck equation
and gives two important approximations to the Green's
function. The principal results of this paper, the power
spectrum in the vicinity of the plasma line and intensity
of the plasma line, are given in Sec. 5. The application
of this work to the incoherent scatter experiments at
Arecibo is discussed in Sec. 6.

subsequently perform statistical averages over these
ion positions.

In this limit of infinite ion/electron mass ratio, the
electron distribution function can be uniquely divided
into three parts:

F=F0(v)+Fi(x,v)+ f(x&v, t) .

Here Iio is the zero-order uniform isotropic distribution
function which produces no electrostatic Geld at all. Ii ~

is the time-independent part of the erst-order distribu-
tion function which is directly correlated with the fixed
discrete ions and which (together with the ions) produces
a time-independent potential, Ci. Finally f is the time-

dependent part of the first-order distribution function
and is the quantity of main interest in this paper.

We shall find it convenient to work with the Fourier-
Laplace transform of f:

2. GENERAL CONSIDERATIONS AND THE
COLLISIONLESS THEORY j(q,v,co) = dx dte ''i'*+&'" »'f(x, v, t) . (11)

The power spectrum of electron density fluctuations
will be calculated by a generalization of the method used
in I.The calculations will be carried out for the case of a
uniform plasma consisting of X electrons and X/Z ions
of charge Z contained in a large box of volume Q.

Periodic boundary conditions will be used. We shall
work with the Fourier-Laplace transform of the electron
density

Q(q, (o) = P dt exp{—iq x(t)+(i(o—7)t), (8)

For nonzero &o, the quantity Q defined in Eq. (8) is
related to f by

Q(q, (u) =I dv f(q, v, id) . (12)

The Fourier-Laplace transform for co/0 of the potential
C is then (—4ire/q')Q(q, ~). We shall also need a Fourier
transform of the initial conditions

f(q, v, O) =I-' P; e-'& **8(v-v;), (13)
where the summation is the spatial Fourier transform
of point electrons and y is a small positive number. The
power spectrum is then given by

I(co) = lim(y/m-S)
~ Q(q, (u)

~

', (9)

which is normalized so that fIcky would be unity for
completely randomly distributed electrons.

We shall describe the dynamics of the electrons in
terms of a distribution function F(x,v, t) which satisfies
the Vlasov equation

BF/R+v BF/Bx+ere 'VC BF/Bv=0,

X/Z
&'C =Me e Fdv ZP 5(x—R;)—

where C is the electrostatic potential and R, is the
position of the jth ion. Since the ion thermal velocities
are much smaller than any relevant electron velocities,
we shall assume the R, to be time-independent and shall

"H. L. Berk, Phys. Fluids 7, 257 (1964).
"See, for example, Eq. (68) in P. L. Bhatnager, E. P. Gross,

and M. Krook, Phys. Rev. 94, 511 (1954).%hen this equation is
made dimensionally correctly, it shows that, for their collision
model, the iInportance of electron-electron collisions decreases as
cx becomes large.

where x;, v; are the initial position and velocity of the
ith electron.

A linearized equation for f, the time-dependent part of
the electron distribution function, can be obtained from
the time-dependent part of Eq. (10). This is accom-
plished by dropping all terms of both zero and second
order in. f and/or Q. In its Fourier-Laplace transform,
this linearized equation is

(p+iq v ia&) f(q, v,~) —i(cvi, '/eq')Q—(q au)q &F0/Bv

8
i(cu, '/NQ—)Q k 'Q(k, (o)k.—Fi(q —k, v)

k BV

8—(4ire) 'Ci(q —k)(q —k) f(k,v,~) =f—(q,v,O), (14)
BV

where Q is rela, ted to f by Eq. (12).Although the quad-
ratic terms in f (or Q) are missing, note that all terms
bilinear in f (or Q) and C i (or Fi) are still present in the
sum over k. In Sec. 3, we shall return to these bilinear
terms which take account of electron-ion collisions.

The collisionless theory is obtained by simply omitting
the sums over k (which is of higher order in the small
parameter A ') in Eq. (14).Let g(q, v,cg) be the approxi-
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The integral in Eq. (16) consists of a sum of 1V terms
and, according to Eq. (9), we must find the modulus
squared of this sum in the limit y —+ 0. As discussed in
paper I, only the i= j terms in this double sum con-
tribute to the y ' divergence and survive in the limit.
This single sum can be replaced by an integral and
one has

lim(y/mS)g;, e '&'&*' *~&(q v, —p&
—iy) '(q v, p&+—iy) '

y -+P

= lim year-' Fp(v) [(q v —p&)'+y'] —'dv
y~p

= q
—'F pi'& (p&q

—'). (18)

The power spectrum in the collisionless theory is then
given by

I(p&) = q
—'Fpi'&(p&q ')

i pp(q, p&)
i

—'. (19)

The integral in Eq. (17) can be evaluated for simple
enough zero-order distribution functions, and this has
been done for the Maxwell distribution. However, in
this paper we shall be interested only in cases where

q v((p&~ for all values of v for which F,(v) is appreciable.
In this case, pp(q, p&) can be approximated by

pp(q p&)=1 —
p& Pp&

—P(1+3qPg j'rm —
~p&

—
P)

+i~p&„'q—'(dFp&i&/du)„„,i, (20)

where T is defined in Eq. (7). The power spectrum can
then be approximated by two sharp lines of Lorentzian
shape (the plasma lines) which occur when the real part
of ~p is zero, i.e., when co= &co„where co„is given by
p&„=(p&~'+3q'ETnz ')"'. In the neighborhood of the
plasma line which occurs at ~=co„,the power spectrum
can be written as

I(p&) =
p&, 'Fp

&» (p&,/q)

vr p&„p&„p&r d
4q (p&

—p&„)'+ —
~

—Fp "&(u)
2 q (du g —~ p

(21)

The numerator in Eq. (21) is proportional to the
zero-order distribution function of electrons at the phase

mation to f and let f(q, p&) be the approximation to Q
obtained from the collisionless theory;

n(q, , )=(q ——' )-'
X{ i—f(q, v,0)+(p&„'/eq')P(q, p&) q (BFp/Bv) ) . (15)

Equation (12) gives P= u j'gdv in the collisionless
approximation, and one easily obtains

4 (q,~)—[—pu/pp(q, ~)j
f(q, v,0)(q v —

p&
—iy) 'dv, (16)

where

pp(q, p&) = 1—p&„'q ' dv(q v—
p&
—iy) 'q (BFp/Bv) . (17)

velocity of the plasma oscillation with wave vector q.
Physically, the numerator represents the excitation of
plasma waves by the fast electrons (the "Cerenkov"
wake discussed by Pines and Bohm"). The width of the
plasma line is determined by Landau damping and so is
proportional to the derivative of the distribution func-
tion at the phase velocity. The integrated power in a
single plasma line is

qp&„Fp "&(p&,q ')
Iu—

2 „'[dFpi'&(u)/duj„=„„, 2n'(T)
(22)

3. FOKKER-PLANCK EQUATION

The summation over k in Eq. (14) represents the
effects of electron-ion collisions, and we shall need
explicit expressions for both time-dependent terms and
the time-independent factors in order to evaluate the
sum. The time-independent terms of interest are the
spatial Fourier transform Fi(k,v) of the time-inde-
pendent part of the 6rst-order electron distribution
function and the corresponding potential Ci(k). These
are easily obtained by taking the Fourier transform of
Eq. (10), linearizing and neglecting any time depend-
ence. The result can be written in the form

Fi(k, v) = eC i(k) S(v)/E(T),
i(k) =4~eg(k +D ) (23)

where D is defined in Eq. (2) and F is a modification of
the zero-order distribution function:

(24)

We shall assume the ions have correlations appropriate
to a kinetic temperature T, so that

(4m) 'e'1VZ one'Z
~e,(k)~'=; kg= . (25)

(k2+D—
2) (k2+k 2+D—2)

In our approximation, which replaces the ion thermal
velocity ~; by zero, the direct contribution of F& to the
power spectrum is a delta function at zero frequency.
In reality, this contribution, which contains most of the
power when o)&1, has a nonzero frequency width of the
order of qv;. In this paper, we are interested only in the
indirect effect Fi has in Eq. (14).

At 6rst sight, one is tempted to approximate the
time-dependent terms in the sum over k by the results
of the collisionless approximation. Indeed, q is a good
approximation to f for most purposes, especially in the
important region D '&k&K(T)e '. If the collisionless

If the collisionless theory is valid, then Eq. (22) shows .

that the integrated power of the plasma line depends
only on the logarithmic derivative of Fp"& and not on
its absolute value. The presence of a high-energy tail in
Fp"' could lead to a substantial enhancement in the
total power (and also to a broadening) of the plasma line.
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approximation is used, then the sum on k will accurately
describe the excitation of the q mode produced by elec-
tron density fluctuations in the k mode interacting with
the (q —k) mode of the static electron-ion correlations.
However, since rl(k, v,cv) is completely independent of

f(q, vp&), the damping of q-mode plasma oscillations due
to scattering from the q mode to the k mode would not
be obtained. For this reason, in the equation for ti(k, s,rp)

a source term must be added that is proportional to the
amplitude of the q mode. This source term can be ob-
tained by rewriting Eq. (14) for f(k,v, ar), (the summa-
tion then being over k'), and then neglecting all terms
except the k'= q term in the summation. The equation
for f(k,v,pp) is then

(k v—(u —iy) f(k,v,pp)

—
(a& '/nq')Q(k, a&)k (rlFp/rlv)+if(k, v,0)

= (~„'/nnq')
I Q(q, ~)q (aF,(k—q, v)/av)

—(q'/4pre)C r(k —q)(k —q) (Bf(q,v,&o)/rlv) j. (26)

When the solution to (26) is used in Eq. (14), one obtains
several sums over k containing either Q(q, co) or f(q, v, rp)

Only one of these sums is logarithmically divergent. We
shall keep just the logarithmically divergent sum and
this will be cutoff at k=E(T)e '. In this way, terms of
order unity compared with ink have been neglected.
The result of this procedure is a Fokker-Planck equa-
tion for f(q, v,cv):

q v (o -iy-+iv(s) (s'b.p
—s.sp)B'U„B'vp G(q, v,v', pp)

= —ib(v —v') . (30)

In terms of the Green's function, f(q, v,&v) is given by

f(q, v,pp) =i dv'G(q, v, v', M)

X fS(q,v', cp)+((o,'/q'n)Q(q, (u)q (BFp/Bv') }. (31)

We sha, ll also introduce the function H(q, v', ~) which
will be used often:

4. A GREEN'S FUNCTION SOLUTION

The approximations needed to solve Eq. (27) will be
better understood if a Green's function method of
solution is introduced. We shall use a Green's function
that physically describes the propagation of a test elec-
tron in a medium consisting of the infinitely massive
discrete ions shielded by the static electron correlations.
Even with such a simpliGed problem, an exact expres-
sion for the Green's function is not obtained, but two
approximate forms that describe the essential physics
are found.

The Green's function, G(q, v,v', ~) is chosen to satisfy
the equation

B B
(q v—~—iV)f(q, v,~)+i (s) ("~-p e-sp) f—(q» ~)

B&a B&p

H(q, v', a&) = dvG(q, v, v', &p) . (32)

=S(q,v,~)+(~'/nq')Q(q, ~)q (~ Fo /~ v), (2&)

where

S(q,v,co) = —if(q, v,0)+(&p„'/q'nQ)g C &(q
—k)

The quantity Q(q, &o) can then be expressed in terms of H:

Q(q, ~) = Lni/s(q, pp)] dv'H(q, v', pp)S(q, v', rp), (33)

where

and

&& {Lef(k,~)/&(T')3k L~+(e)/»j
—(q'/4s. e)(q—k) Lofti(k, v,rp)/elvj}, (28)

s(q,&p) =1—i&p, 'q
—' dv'H(q, v', ~)q (BFp/Bv').

In the collisionless theory, v=0 and
Zco~ ink

V V =
) V=

Sew''

V'V 8Ã,
Fp(v) dv. (29)

KT(e)

The quantity v(s) is a velocity-dependent collision fre-
quency and v is an average collision frequency which
will be used later. Equation (27) is identical with
Berk's" equation except that the rhs describes how the
q mode is excited by random collisions instead of by an
external Geld. In the application under consideration,
the frequency and velocity dependence of the logarithm
given by Berk are not important. Equation (27) agrees
with the Fokker-Planck equation of Rostoker and
Rosenbluth'3 in the limit where the Geld particle mass is
infinite and the velocity of the test particle is much
greater than the velocity of the Geld particles.
"N. Rostolter and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).

B B B B—+v' —v ('v B~p—tt~'vp)
Bt Bx Bv Bop

G(x,v, v', t)=0, (34)

H= i(q v' —(o iy)—', —

so that s(q, pp) becomes sp(q, a&). Thus s(q, &u) is the ap-
propriate generalization of sp(q, co) when electron-ion
collisions are taken into account. Equation (33) has the
advantage that the two roles of FX are now separated.
The denominator of (33), p(q, a&), gives the damping of
plasma waves whereas the numerator is associated with
the excitation. We shall obtain two simple approxima-
tions to H, one suitable for use in the numerator, and
the other suitable for use in the denominator.

The Fourier-Laplace transform equation for t", Kq.
(30), can be readily inverted to give
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with the initial condition G(x,v, v', 0) = B(x)B(v—v').
Thus G describes the propagation of a test electron
which started at zero time with velocity v' and position
x=0. Note that Eq. (34) conserves the energy of the
test electron, so that v(v) can be regarded as a constant
for any given electron. By taking the appropriate
moments of Eq. (34), we can obtain the exact result

(x)= J'xGdxdv =v'(2v) '(1—e
—'"').

The important physical process in the damping of
plasma waves is the randomization of the momentum of
the electron gas by electron-ion collisions. Since q

' is
much larger than D which is the scale of a typical
collision, it will be sufficient to approximate G by a delta
function in position and velocity space that slows down
along the direction of motion and that gives (x) correctly.
Accordingly, in the denominator of Eq. (33), we ap-
proximate H by

H(q, v', ~) =Ho(q, v', (u)

exp{(i~—y)t —iq v'(2v) '(1—e '"'))dt. (35)

Ke are interested in IJ~ only for the case ~=~„and
o.))1.In this case there are two important regions where
we must find more explicit expressions for HD. In the
6rst region where Ii 0 is appreciable and q v'«co, II can
be obtained by an asymptotic expansion. In the second
region, q v'=co and a good approximation to H~ can be
made by the method of stationary phase. When these
methods are used, one finds that e(q, cv) is well approxi-
mated by

c(q,(u) =1 (u„'cu '(1+3c—J'ET/m(u')
—z[2co 2v~—3 s.cd 2It

—2(BP ii)/Btc), j (36)

where T is given by Eq. (7) and v by Eq. (29). Since the
integrals defining I' and v depend principally on particles
of average energy, we can replace Fo(v) by a Maxwellian
in these integrals and obtain

T= T v =co ZA'lnA(2s. )'"/6 . (37)

The excitation of plasma oscillations depends on the
deQections in velocity space being given correctly. For
short times (vt&(1), the sideways defiections in velocity
space are larger than the slowing down along the direc-
tion of motion, and we shall approximate the Green's
function used in the numerator of Eq. (33) by the solu-

tion to an approximate Fokker-Planck equation which

gives the sideways deQections correctly. The restriction
to short times is not important because for vt 1,
G(x,v,v', t) propagates any fluctuation in the electron
density into a very smooth density distribution which
contributes negligibly to the incoherent scatter. The
sideways deQections also account satisfactorily for this
smoothing which occurs in a time t v '(nlnA/A)"'
which is short compared with v ' provided q '&(DA/lnA

Physically, this means that the radar wavelength must

be much less than the electron mean free path, which is
true in all the ionosphere experiments.

The approximate Fokker-Planck equation can be ob-
tained from Eq. (34) by replacing the variable tensor,
v'6 p

—v„vp by a constant tensor, v"6 p
—v 'vp'. Let

H~(q, v', ~) denote the approximation to H(q, v', co) ob-
tained by using the solution to the approximate Fokker-
Planck equation in Eq. (32). In Sec. 5, we shall need
only those components of BH~/Bv' which are perpen-
dicular to v'. These denoted by (BH~/Bv'), and are
given by

(BH' /Bv')c= —qc dt[it ', vt'(q —v'-)]

)&exp{(i~—iq v' —y)t —-', vt'[c "q'—(q v')'$). (38)

The important regions of (BHN/Bv')i are (1) the region
where Iio(v') is appreciable and ~))q v' and (2) the
neighborhood of q v'=~ [denoted by K(q v'=~)j
where (BH~/Bv'), is large. In the first region an asymp-
totic expansion can be obtained.

(BH~/Bv'), iq, cv '[1+0(q v'/u&)]. (39)

In the second region, the only important information
is the fact that

~

(BH~/Bv'),
~

' is sharply peaked and
the value of the integral,

(q v'=oe)

i(BH~/Bv'), ~'dq v'=m[v"v(w)] '. (40)

S. POWER SPECTRUM NEAR THE
PLASMA LINE

ni ctv'H~(q, v', cu) =P 8'(q, x;,v;,cd), (41)

There are two simplifying procedures that allow us to
evaluate the power spectrum in the vicinity of the
plasma line. The 6rst procedure is that only those terms
in

~ Q(q, &v)
~

' which diverge as y ' survive the limit in

Eq. (9) and contribute to the power spectrum. Physi-
cally, the limit y —+ 0 represents an average over long
times. As a result, the contributions of the initial con-
ditions to 5(q, v, cd) [the first term on the right-hand side
of Eq. (28)j do not affect the power spectrum because
the initial electron density fluctuations are propagated
into completely smooth density distributions by the
diffusion in coordinate and velocity space. The second
simplifying procedure is that only the logarithmically
dominant sums over k will be considered (the lnA

terms). When. the formulas for ~t and f, Eqs. (15) and

(16), are substituted into Eq. (28), there will be one
term that is much larger than the others for large k. We
shall keep only this term since it is the one that leads
to a term in lrLA. . Thus, for the purposes of obtaining the
power spectrum, the numerator of Eq. (33) can be
approximated by
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where

8'=(—e/mQ)g Ci(q —k)e '"'*'(k v;—~—iy) '(q —k)

(r)H"(q, v;,oi)/r)v;) . (42)

The power spectrum is proportional to the double sum
P;;8'(8&')e and the situation here is the same as dis-
cussed in paper I and in Sec. 2: Only the i= j terms
contribute to the y ' divergence. However, in the
present case, a double sum over k and k' remains after
the i/ j terms have been dropped. One can show that
only the k=k' terms contribute to the y ' divergence
with the result that

In a Cartesian coordinate system with one axis in the
direction of v, the only nonzero elements of T p are the
two diagonal elements which correspond to directions
perpendicular to v and these elements have the value
v(v)e'y '. Thus we obtain the result

lim(7/~Ã) Lp "s'(s )'j
y~p

=s ' dvPp(v)
~

(r)Etre/r)v)&~'v(v)e'

= q'&u 'vr ' dvpp(v)(vi)'v(v)+q 'Pp'"(or/g) . (4&)

The remaining integral is not sensitive to the high-

8
energy tail and can be evaluated by replacing Fp(v) by

p ( )
~

+Q
~

T ( ) +Qsc
~

(43) a Maxwellian:

Er)t i ave i
where dvp p(v) (v, ')v(v) =2vET/m. (46)

T e(v)=
dke'I C i(k) I

'& 4
(44)

(2s)'m'QL(k v+q v—o~)'+p')

In Eqs. (43) and (44), the sums over i and k have been
replaced by integrals. The integral over k is logarithmi-
cally divergent and is cut off at k=E(T)e '. Only the
logarithmically dominant part of this integral is kept.

Equations (45) and (46), together with Eq. (36) for e,
can be combined to give an explicit formula for the
power spectrum. Again there are two sharp lines oc-
curring at co= ~co„.In the neighborhood of ~=~„,the
power spectrum is well approximated by a narrow line
of Lorentzian shape.

I(&p) =
i e(q,oi)

i
'(2vETm '+q 'Fp"&(oiq—')}

'(F &'&(,q-')+2qsETp —' „—4m —'}

4g((oi —pp )s+(g 4~ —4[v—(~/2)oi sq
—s(r)Pp(il/r)N) —,$s}

(47)

The power spectrum is seen to have the properties which
were expected. The width of the plasma line is the sum
of the collision damping and Landau damping widths
and both collisions and fast electrons can excite plasma
waves. The intensity I„for a single plasma line is
given by

x(ve)+ZA 'n '(2/3s)inA.
I~=-- , (48)

2~'(Tx(ne)TII '(~e)+ZA '~ '(2/3~) in'}

where

x(N) = (21rET/m)'"Fp"'(u) ve = Mpq '.
The quantity p is a dimensionless, one-dimensional,
velocity distribution function and v~ is the phase
velocity of the plasma wave. T~~(N) was defined in
Eq. (6) in terms of the logarithmic derivative of the
one-dimensional velocity distribution function.

When the first terms in the numerator and denomi-
nator of (48) are the important terms, the excitation of
plasma waves by fast electrons and Landau damping
are the important physical processes and the results of
the collisionless theory are recovered. The electron-ion
collisions are the important process when the second

terms predominate and the intensity of the plasma line
has the value appropriate for an equilibrium gas.

6. APPLICATION TO THE IONOSPHERE RADAR
EXPERIMENTS AT ARECIBO

In the daytime ionosphere, the electron density has a
maximum of the order of 10' electrons/cm' at an alti-
tude near 250—300 km. The corresponding plasma fre-
quency vv is about 10 Mc/sec, and the electron tem-
perature at these altitudes and above is close to 2000'K
(AT=0.2 eV). '4 A large fraction of the solar ultraviolet
and x rays is absorbed near these heights, producing
energetic photoelectrons in the energy region from 1 to
30 eV. The production spectrum for photoelectron
energies (see Mariani") decreases slowly as the energy
increases from 1 to 30 eV and falls o6 steeply at higher
energies. We shall limit our considerations to altitudes
above 250 km where the photoelectrons are slowed
down by electron-electron collisions and inelastic elec-

14 J. V. Evans and M. Loewenthal, Planet. Space Sci. 12, 915
(1964).

~5 F. Mariani, Preliminary Report, Goddard Space Flight
Center, Greenbelt, Maryland (unpublished).
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tron-neutral collisions can be ignored. In this region, the
photoelectron mean free path is very long and is an
important consideration in estimating the contribution
X» of the photoelectrons to the dimensionless velocity
distribution x, defined following Eq. (48).Near 250—300
km, we find x„a(v) 10 ' for E(v) =mv'/2(30 eV. The
photoelectron contribution will dominate the Max-
wellian contribution when E(v))14KT 2.8 eV. Hence,
in the neighborhood of E(v)=2.8 eV, the quantity
ET(v) changes quite rapidly from the value ET(v) =0.2
eV for the thermal electrons to the value ET(v) 10 eV
which is appropriate for the photoelectrons.

Photoelectrons of energy &10 eV produced at alti-
tudes greater than 300 km have a good chance of escap-
ing upwards without collisions. "(They are returned by
the earth's magnetic field to the other hemisphere. ) At
higher altitudes the electron density decreases with a
scale height of 150—200 km and the photoelectrons pro-
duced directly per unit volume decrease with the neutral
particle scale height which is approximately 100 km.
Therefore, most of the photoelectrons present at the
higher altitudes were produced at lower altitudes and
the photoelectron density is independent of altitude. It
is evident then that X~h is inversely proportional to local
electron density. For example, at an altitude of 700 km
where v=5 10' (v„=2.0 Mc/sec), xva dominates the
Maxwellian contribution when E(v))2.2 eV.

In a radar backscatter experiment, the energy of the
electrons which are traveling at the phase velocity of
the plasma oscillations is given by

E(vq) = (0.35 eV)(vv/1. 0 Mc/sec)'(X/70 cm)'. (49)

The wavelength of the Arecibo radar is 70 cm (430
Mc/sec) and the plasma frequency in the ionosphere
varies between 1 and 10 Mc/sec so that the photo-
electrons are in just the right energy range to enhance
the plasma line in the Arecibo radar experiments. The
plasma line can be fully enhanced if the ratio of the
Landau damping resulting from the photoelectrons to
the collision damping is greater than unity. Since both
xvz and (An') ' are inversely proportional to the electron
density and since X» is not very velocity-dependent for
E(v&)(30 eV, this ratio is independent of the electron
density and is

Tx,h(v, )sn'3~
30))1 if E(v&) (30 eV (50)

2T(~(vq) ink

"W. B. Hanson, Space Research III, edited by W. Priester
(North-Holland Publishing Company, Amsterdam, 1963), p. 282.

when X= 70 cm. Hence collisions (and the main results
of this paper) can be neglected in the Arecibo experi-
ments. For a 7.5-m (40-Mc/sec) radar experiment,
E(v&) lies in, the range 35 eV(E(v~) (3.5 keV, where xph
falls off sharply and electron-ion collisions are probably
important.

The presence of the earth's magnetic field can change
the Landau damping from the field-free expression and
make it orders of magnitude larger for the wavelength
of the Arecibo experiments. "7 The reason for this is
that the gyroradius of the slow thermal electrons is less
than q-' and they can also contribute to the Landau
damping when a magnetic field is present. The Landau
damping caused by the photoelectrons will be less
affected by the earth's magnetic field since their gyro-
radius is greater than q '. Therefore, we will approxi-
mate the Landau damping by a sum of the Landau
damping caused by the thermal electrons including the
e8ects of a magnetic field and the Landau damping
caused by the photoelectrons calculated according to
the field-free theory.

If the earth's magnetic held could be neglected, then
the plasma line enhancement would start at a plasma
frequency of 2.4 Mc/sec and be essentially complete at
v„=2.9 Mc/sec, for the Arecibo experiments. The mag-
netic Geld modifies this result so that the enhancement
is estimated to start at vv=3. 6 Mc/sec (corresponding
to an altitude of approximately 400 km) and to be com-
plete at vv=4. 5 Mc/sec (altitude about 300 km). The
enhancement is predicted to be a factor of about 50.

The 7.5-m ionosphere radar experiments will probably
not be enhanced because of electron-ion collisions except
for plasma frequencies near 1 Mc/sec where the theory
is complicated by the presence of the electron gyro fre-
quency. At wavelengths shorter than about 20 cm, the
plasma frequencies are not large enough to make
E(v&) & 14KT, the criterion needed for enhancement.

Note added irl, proof. Incoherent scatter from plasma,
oscillations in the ionosphere has been observed at
Arecibo, Lsee F. Perkins, E. E. Salpeter, and K. O. Yng-
vesson, Phys. Rev. Letters 14, 579 (1965)j. The results
of these experiments agree with the theory developed
in this paper.
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