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Electromagnetic Shocks and the Self-Annihilation of Intense Linearly
Polarized Radiation in an Ideal Dielectric Material
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Maxwell's equations are studied for linearly polarized plane waves of intense electromagnetic radiation
with the displacement field given by a nonlinear cubic function of the electric field. Analysis shows that
electromagnetic shocks, surfaces of discontinuity for the electric and magnetic fields, are physically admissible
and can indeed develop from an initially continuous field of radiation. Under ordinary conditions, the shocks
proceed to "sweep up" and eventually dissipate all of the radiation field energy, giving rise theoretically to
the complete self-annihilation of the electromagnetic radiation field. Under rather special conditions, a
steady electromagnetic shock mane train (with some dissipation of the radiation field energy but only by the
tail shock in the train) may possibly evolve dynamically. There is a rigorous mathematical correspondence
between the theory here for intense linearly polarized electromagnetic plane waves in an ideal dielectric
material and the theory of large-amplitude one-dimensional pressure waves in an ideal solid material.

INTRODUCTION

KCENTLY, Chiao, Garmire, and Townes' dis-
cussed the possible self-trapping and propagation

without spreading of a very intense beam of electro-
magnetic radiation in an ideal dielectric material.
Homogeneous, isotropic, nonconducting, and non-
magnetic, the ideal dielectric material supports a dis-
placement field which is given effectively by a cubic
function of the electric field'

D= eE+ r)E'

Le and tf= constants7 in the case of intense and linearly
polarized electromagnetic radiation. It is interesting
that the seH-trapping phenomenon represents the first
essentially eoelimtmr mode of propagation that may be
associated with an intense beam of electromagnetic
radiation in a dielectric material. Nonlinear effects
studied previously, such as the generation of second-
and third-harmonic frequencies from an intense beam'
and the mixing of frequencies between two intense
beams, 4 have been analyzed and understood satis-
factorily in terms of "pseudo-linear" electromagnetic
theory, an effective source term computed by a perturba-
tion-iteration procedure for each separate harmonic of
the radiation field. ' However, an essentially nonlinear

'R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Letters 13, 479 (1964).

'For a comprehensive discussion of the theory and experi-
mental status of nonlinear electric polarization e6'ects, see:
P. A. Franken and J. F. Ward, Rev. Mod. Phys. 33, 23 (1963).
The constant parameter v in Eq. (1) is related to electrostriction,
high-frequency third-harmonic Kerr effects, and possibly non-
linearities associated with electronic polarization at very intense
fields (of the order 10'-10' V/cm).

3P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
Phys. Rev. Letters 7, 118 (1961);R. W. Terhune, P. D. Maker,
and C. M. Savage, ibid. 8, 404 (1962). P. D. Maker and R. W.
Terhune, Phys. Rev. 137, A801 (1965).

4M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G.
Weinrich, Phys. Rev. Letters 8, 18 (1962).

5 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S'
Pershan, Phys. Rev. 127, 1918 (1962); N. Sloembergen and P. S.
Pershan, ibid I28, 606 (1962), and w. orks cited therein.

A

solution of Maxwell's equations is required in order to
get a theoretical description for self-trapping.

In the present paper we consider the essentially
nonlinear modes of propagation which are predicted by
Maxwell's equations with (1) for a very intense and
linearly polarized one-dimensional p/ane tt ave of
electromagnetic radiation in an ideal dielectric material. '
It is shown here that electromagnetic shocks, surfaces of
discontinuity for the electric and magnetic 6elds, can
develop from an initially "smooth" electromagnetic
6eld of radiation, electromagnetic shock formation
being a consequence of wave-form distortional effects
produced by nonlinearity in the displacement field
Lrepresented here by the gE' term in (1)7. Furthermore,
Maxwell's equations with (1) predict that the electro-
magnetic shocks can "sweep up" and eventually dis-
sipate all of the radiation field energy, giving rise
theoretically to the complete self-annihilation of the
entire field of electromagnetic radiation in certain
circumstances. Also following unambiguously from
Maxwel1. 's theory is a steady, essentially nonlinear mode
of propagation for intense linearly polarized radiation
which takes the form of an electromagnetic shock muse
trcie. The latter mode of propagation exhibits dyna-
mical stability and no internal dissipation of radiation
field energy but, unlike the more natural self-annihila-
tion phenomenon, requires rather special initial condi-
tions. whether these essentially nonlinear phenomena
can be realized in appropriate experiments, say with
well-focused beams of linearly polarized laser radiation
and with more or less ideal dielectric materials /for

~ A critical beam power level (actually attainable in the optical
region with well-focused laser radiation) is derived by Chiao
et al. ' as a necessary condition for a sustained (steady) self-trapped
beam of radiation, involving an important transverse spatial
variation of the electromagnetic Geld. Since an ordinary intense
beam of electromagnetic radiation that is not self-trapped pro-
pagates like a one-dimensional plane wave to within secondary
diffraction effects at the beam's boundary, the considerations in
the present paper logically precede analysis of multi-dimensional
nonlinear propagation (such as the conjectured self-trapping
phenomenon), while being manifestly independent of beam power
level (or beam diameter).
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which (1) is a good approximation to the actual dis-
placement fieldj, is still uncertain at the present time.
Yet the underlying mathematical theory worked out
here is rigorous on all counts and certainly worthy of
consideration in connection with future experiments.

B'E/Bx'= tts (B'D/Bts) (3)

for linearly polarized radiation. ~ Simple wave solutions
to Eq. (3) with (1), solutions that represent wave pro-
pagation only in the +x direction, are expressed
implicitly by the form

E=PLt (E)t—xj, (4)

where F is a continuous and twice-diQerentiable func-
tion of the indicated argument, and the loca, l (so-
called characteristic) velocity of propagation is

p(E) = Ptts(e+3r)Es)) —its (3)

That the form (4) rigorously satisfies Eq. (3) with (1)
can be proved by differentia, ting (4) directly and using
the chain rule to get the simple wave relation

(BE/Bt)+ t (E) (BE/Bx) = 0 (6)

which is readily shown to satisfy (3) with the velocity
of propagation given by (5).

7 Throughout this paper, our analysis is concerned exclusively
with linearly polarized electromagnetic radiation, the form usually
of practical relevancy to very intense (ruby) laser beams Le.g. ,
J. H. Brunton, Appl. Opt. 3, 1241 (1964)g, in particular, a beam
produced by a Kerr-cell Q-switched ruby laser. Circularly polarized
and other more complicated forms of electromagnetic radiation
are generally associated with distinctly different essentially non-
linear wave phenomena. Indeed, by putting the vector generaliza-
tion of (1) D= (s+v

~

E ~')E into Maxwell's equations, one ob-
tains solutions for circularly polarized running waves E= (0,
A cosp, A sing) with A=constant and p=cu(t )ps(s+vA')—g&z)
and solutions for circularly polarized standing waves E=LO,
A (z) cosa&t, A (z) sincotj, d'A/dg'+poco'(sA+vA') =0 which ex-
hibit no time-dependent wave-form distortional eGects or
dynamical features similar to those for linearly polarized radiation.
Moreover, one readily obtains essentially nonlinear solutions
that are "hyperelliptically" polarized (that is, with forms of
polarization nonexistent in linear Maxwell theory), as exemplified
by the standing wave solution E=LO, A(t) coskz, A (t) sinkzg,
p0(d'(cA+gA')/dh')+k'A=0. Although special attention must
be given to the polarization in nonlinear electromagnetic radiation
theory, linearly polarized radiation is "maximal" in exhibiting
new and essentially nonlinear dynamical features.

GENERAL THEORY FOR SIMPLE WAVES
AND ELECTROMAGNETIC SHOCKS

The displacement 6eld and the electric 6eld are
mutually parallel and everywhere perpendicular to the
direction of propagation for a one-dimensional electro-
rnagnetic plane wave in an ideal (homogeneous,
isotropic, nonmagnetic, and nonconducting) dielectric
material. Letting the x axis lie parallel to the direction
of propagation, Maxwell's equations reduce to

BE/Bx= —tts(BH/Bt), BH/Bx—= BD/Bt (2)

and combine to give

In addition to perfectly continuous simple wave
solutions of the form (4), Eq. (3) with (1) also admits
discontinuous solutions that represent physically ad-
missible wave props. gation in the +x direction. Such
solutions are composed of simple waves connected by
electronsagmetic shock surfaces of discontinuity, ex-
emplified say at x= v, t by a finite jump in the electric
field

E=S(x n,t)— (9)

in the neighborhood of the plane x=v, t. By putting
(9) into Eq. (3), we obtain the necessary condition on S

S—tt sv, s (sS+r)S') = constant, (10)

so that if we impose the jump condition (7) by setting
S(0+)=—E; and S(0—)—=Er, then (8) follows from
(10) if Er&E,. In the limiting case of an infinitesimal
discontinuity with Er —+E,, the shock. velocity (8)
approaches the ordinary characteristic velocity (5).
For finite shock discontinuities, it is also possible for E;
to remain (exactly) constant with time but only if
n, =v(E,), requiring the special jump condition
E~= —2E;. Ordinarily the latter condition cannot be
maintained, and the electromagnetic shock overtakes
the E=constant characteristics of the simple wave
radiation field, the quantities E, and Er (and therefore
v, and the functional form of S) changing slowly with
time. Nevertheless, the shock jump condition (7) with

(8) holds good approximately at any instant of time,
despite gradual dynamical changes in E;, E~, and v,

Let us investigate the effect of an electromagnetic
shock on the Row and conservation of radiation field

energy. Normally the field energy density

U= ', eEs+ srtE'+ 'ttsH-'--
satisfies the conservation law

BU/Bt+ B (EH)/Bx = 0 (12)

by virtue of Maxwell's equations (2) with (1) if the
electric and magnetic fields are continuous (and there-
fore necessarily differentiable in a homogeneous
medium) at x and t. In the special case of a shock dis-
continuity, however, the energy conservation law (12)
breaks down at the shock front, and the rate of field
ertergy absorption by the shock is expressed as the finite
quantity

8,= n. (U; Ur) E;H,+Et—Hs, —(13)

(7)

where the (instanta, neous) shock velocity of propaga-
tion is given by

& =(t o(e+el:E'+E'Et+Et'3)} "' (8)

To show the admissibility of the shock jump condition
(7) with the shock velocity (8), we seek a local solution
to Eq. (3) of the form
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8 =-'v e(E' EI')+—'e rl(E -EI')—
+-,'e,IJe(H s—HI') E,H,+—EIHI

= s~.(E"—EI')[e+su(E"+EI')j—s (use. ) '

X (E" EI')
= 4v, ri(E; EI') (E;—EI)' er—gs/cm' sec. (15)

Thus, the electromagnetic shock can act (a,t least
formally) as a source or sink for radiation field energy,
depending on the relative magnitudes of E and Ey'.
The former possibility, that the shock acts as a source
for radiation field energy, is clearly inadmissible on
physical grounds, and hence from (15) we obtain an
additional necessary condition for a physically realiza-
ble electromagnetic shock,

g~2(P,2 (16)

in order to have a non-negative rate of field energy
absorption, 8,,&~ 0.

The preceding analysis closely parallels the classical
theory of shock waves in an ideal Quid. As in classical
shock-wave theory, the electromagnetic shock is re-
garded here as a surface of discontinuity without inter-
nal structure, and the energy-dissipation mechanism
that works within the shock is not treated explicitly by
our theory. Nevertheless, it is obvious from physical
considerations that finite conductivity effects and the
modification they render to the second Maxwell
equation in (2) can account for detailed (finite) shock
structure and the associated energy dissipation mech-
anism. That Maxwell's equations (2) are valid outside
the electromagnetic shock is however sufBcient in itself
to give the over-all rate of field energy absorption (15),
although not the rate at which this "shock energy"
is then spent irreversibly within the shock.

FORMATION OF ELECTROMAGNETIC SHOCKS
AND THE SELF-ANNIHILATION

OF RADIATION FIELDS

where the subscripts i and f refer to field conditions
before and after the shock front, respectively. Using
the jurnp condition for the magnetic field

H' —HI=( o ) '(E*—E/) (14)

derived from (7), (9), and the first Maxwell equation
in (2), expression (13) is evaluated algebraically:

tromagnetic shocks usually proceed to overrun the
simple-wave domains, "sweeping up" and eventually
dissipating all of the radiation field energy and thereby
giving rise to the complete self-annihilation of the
electromagnetic field. This extraordinary phenomenon
is illustrated in the following paragraphs for two cases
of practical importance involving . monochromatic
radiation.

Case 1. Monochromatic electromagnetic radiation at
normal incidence to a semi-infinite dielectric for t~&0
[with no delay in the nonlinear electric polarization,
represented in (1) by the riE' term); we have the pure
harmonic boundary condition on the semi-infinite
domain x&~ 0,

E=E sin&oI at x=0 for I& 0 (17)

with no electromagnetic field initially in the domain
x~&0, E=O at t=0. Adjusted for the boundary condi-
tion (17), the form (4) vanishes for negative values of
the argument, while for positive values, (4) gives the
electromagnetic field implicity as

E=E sin~[t —(x/r (E))$ for I & x/e(E) ~&0. (18)

Some elementary a,nalysis applied to (18) demonstrates
that electromagnetic shock discontinuities develop from
this simple wave solution, the first electromagnetic
shock appearing at about t&m/ei[(1+ (3ri/e)E')' s—1j,
that is, the earliest time at which two E=constant
characteristics intersect. Using the method of char-
acteristics in conjunction with the shock conditions
(7) and (8), the space-time evolution of the radiation
field can be worked out numerically for all positive
values of t, as shown in I'ig. 1 for the numerically
convenient parameter value E'= e/g, the space-time
evolution being qualitatively similar for all values of B'.
In Fig. 1, positive acceleration of the first electromag-
netic shock is apparent during the phase of formation
with t &7r/&u, the shock velocity of propagation increases
monotonically and approaches (@ac) "' in an asymptotic
fashion as the electromagnetic shock overruns
constant characteristics, absorbing and eventually dis-
sipating radiation-field energy. The complete self-
annihilation of the radiation field is clearly evident.

Case Z. Monochromatic electromagnetic radiation
propagating in the +x direction at t=0 through an

Subject to initial or boundary conditions of experi-
mental interest, solutions for the electromagnetic field
given implicitly by the form (4) can develop shock dis-
continuities for certain 6nite values of x and t, like the
simple wave solutions of other nonlinear hyperbolic
partial differential equations. ' Once formed, the elec-

See, for example: R. Courant and K. Friedrichs, Supersonic
Flow and Shock 8'aves (Interscience Publishers, Inc., New York,
1948).

9 For instance: P. D. Lax, J. Math. Phys. 5, 611 {1964),and
works cited therein.

FIG. 1. Space-time evolution
of the electromagnetic radia-
tion Geld for Case 1 with
8'=e/e. Dashed lines repre-
sent the E=constant char-
acteristics while heavy solid
lines represent the electromag-
netic shocks.
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unbounded dielectric (sudden activation or "switching
on" of the nonlinear electric polarization); we have the
pure harmonic initial condition for the unbounded
domain —po x(+ op,

E=A sinkx at t=0. (19)

Adjusted for the initial condition (19), the form (4)
gives the electromagnetic field implicitly as

E=E sinkLx —s(E)tj for t ~& 0. (20)

Like solution (18), the simple wave solution (20)
develops electromagnetic shock discontinuities, but in
the case of the latter solution an infinite number of
uniformly spaced shocks appear simultaneously at about
t)vr(@pe)i s/2k[(1+ (3'/e)E ) —1g. Figure 2 shows
the space-time evolution of the radiation field for the
parameter value E'=e/tt. Again positive acceleration
of the electromagnetic shocks is apparent during the
phase of formation with t&s.(@pe) ~/2k; the shock
velocity increases and asymptotically approaches
(ppe) '" as E=constant characteristics are overrun
and the radiation field energy is absorbed and eventually
dissipated. Once again the complete self-annihilation
of the radiation field is clearly evident.

The preceding cases are typical for an intense,
linearly polarized electromagnetic plane wave of radia-
tion in an ideal dielectric material with the displace-
ment field given by (1).Electromagnetic shocks gener-
ally develop from the continuous simple wave solutions
of Eq. (3) with (1), and the shocks then proceed to
"sweep up" and eventually dissipate all of the radiation
field energy. Hence the theory predicts the extraordinary
phenomenon of complete self-annihilation of the elec-
tromagnetic radiation field.

THE ELECTROMAGNETIC SHOCK
WAVE TRAIN

Let us now consider the possibility of steady, time-
independent wave-forms composed entirely of piecewise-
constant electric and magnetic fields through space-
time domains separated by electromagnetic shocks,
an electromagnetic shock zvuve traie, without any simple
wave of the form (4) being present in the radiation

irjgpt
I / / / r rII II I

/IIII I I I / rr I I I I
/ ~/III I I I « I I I I / r I
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X»0 X»—. X»
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F&G. 2. Space-time evolution of the electromagnetic radiation
6eld for Case Z with 8'=s/g. Dashed lines represent the E=
constant characteristics while heavy solid lines represent the elec-
tromagnetic shocks.

field. Whereas, the shock formation and self-annihilation
phenomenon discussed in the section above appears to
be rather general in theory, the development of a shock
wave train would require very special initial conditions
that are much less likely to be realizable in an experi-
ment. Nevertheless, the electromagnetic shock wave
train, being wholly consistent with Maxwell's equations
and exhibiting dynamical stability, is of considerable
theoretical interest.

Consider a solution to Eq. (3) that takes the form (9)
for all values of x~&xj with lim, „E=O. Condition
(10) then gives

S=+E*, E*, or—0, (21)

where

(22)

Ps(E*)j'(cPO/Bx') —(8'8/Bt') =0, (23)

implying that small perturbations in the field propagate
without growth in amplitude at the characteristic
velocity (5) with E'= (E*)'. Therefore, an electro-
magnetic shock wave train exhibits dynamical stability.

If an electromagnetic shock wave train were to
develop from an intense and linearly polarized beam of
radiation in a suitable dielectric material, then the
radiation would propagate at the special velocity (22).
It is relatively easy to measure the transit time for an
intense laser beam through ten meters or so of suitable
dielectric material, photomultipliers and fast electronic
circuitry determining the transit time accurately to
within a couple of nanoseconds. Such an experimental
measurement would give the velocity of propagation
accurately to about 5% and enable one to discern
propagation of the radiation at the special shock velocity
(22) and to infer the existence of an electromagnetic
shock wave train.

and E*is a disposable constant electric field amplitude,
assuming that S is not identically equal to zero for all
values of (x—v,t). Thus, the solution is composed
entirely of domains in which the electric and magnetic
fields are piecewise-constant, in accordance with (21).
Furthermore, Eqs. (21) and (16) admit an arbitrary
number of electromagnetic shock discontinuities in the
field function S provided that ~AS~ =2E* across a
shock, but if the electromagnetic field shocks to 5=0,
say at (x—e,t)=xp, then S=—0 for all x& (xp+s, t) by
virtue of (16).Let us suppose that a perfect absorber of
radiation exists at x= x~ so that the electromagnetic shock
wave train propagates at a constant velocity (22) with
E=&E* throughout the finite spatial region (xp+'v t)
&~x&~ xi. Equation (15) shows radiation field energy is
absorbed and dissipated only by the tail shock at
(x—s,t) =xp, for which g,= se,*ti(Ee)s. Moreover,
linearization of Eq. (3) for the perturbed. solution
E=+E*+8(x,t) with ~0~&&E* gives the elementary
wave equation
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FIG. 3. Pressure-versus-
speci6c volume diagram for an
ideal solid of Type CA-CX in
the DuvalPO classidcation, the
functional dependence repre-
sented by Eq. (24) here.
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and combine, with rigorous elimination of the local
velocity Geld, to give the governing dynamical equation"

r)'(1/p)/r)P+ r)'p/r)P =0, (25)

where P is a Lagrangian mass coordinate, a constan. t
value of f referring to a fixed element of the solid.
Since a formal mathematical correspondence between
Eq. (3) with (1) and Eq. (25) with (24) can be setup,
as shown in Table I, it follows that the two nonlinear
wave theories are mathematically equivalent.

A REMARKABLE PHYSICAL ANALOGY

There is a rigorous mathematical correspondence,
and therefore an illuminating physical analogy, be-
tween the theory presented here for intense linearly
polarized electromagnetic plane waves in an ideal
dielectric material and the theory of large-amplitude
one-dimensional pressure waves in an ideal solid
material. "With the latter theory already established on
an experimental basis, " the mathematical correspond-
ence provides some additional insight regarding the new
and essentially nonlinear electromagnetic phenomena
conjectured theoretically in the preceding sections.

We consider an ideal solid material for which the
local specific volume 1/p is given effectively by a cubic
function of the local pressure p,

(24)

t a, b, p„, and p„=constants) in case of extremely high
pressure waves (see I'ig. 3). Equations expressing mass
continuity and momentum conservation take the
standard form for ideal one-dimensional unsteady fiow"

' G. E. Duvall, Les Ondes de Detonation (Centre National de la
Recherche Scienti6que, 15 Quai Anatole-France, Paris (VII'),
1962), pp. 337-352. R. G. Payton, J. Acoust. Soc. Am. BS, 525
(1963).W. Band and G. E. Duvall, Am. J. Phys. 29, 780 (1961).
W. Band, J. Geophys. Res. 65, 695 (1960)."J.O. Erkman, J.Appl. Phys. 32, 939 (1961).L. V. Al'tshuler,
K. K. Krupnikov, and M. I. Brazhnik, Zh. Eksperim. i Teor.
Fiz. 34, 886 (1958) LEnglish transl. : Soviet Phys. —JETP 34,
614 (1958)j."M. H. Rice, R. G. McQueen, and J. M. Walsh, Soled State
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc.,
New York, 1958), Vol. VI. G. E. Duvall and J. S. Koehler, Bull.
Am. Phys. Soc. 4, 283 (1959).

TABLE I. Mathematical correspondence between the two non-
linear wave theories, one for large-amplitude mechanical pressure
waves in an ideal solid, the other for intense linearly polarized
electromagnetic waves in an ideal dielectric.

Quantity in the theory
of large-amplitude
pressure waves in

an ideal solid

t
(b/a)'( P.)—

(b/a')'(1 o.—I/o)

Quantity in the theory
of intense electro-

magnetic waves in an
ideal dielectric

(y,pe) &x

(n/p)'E
(s/")'D
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For the theory of large-amplitude pressure waves in a
solid, there is an extensive literature" "concerned with
the formation of shock discontinuities, their propaga-
tion, stability and dynamica1 decay behavior in a
pressure field of simple waves. We find qualitative
evidence in support of the essentially nonlinear dynami-
cal phenomena discussed above for linearly polarized
electromagnetic radiation Lfor example, the existence
and dynamical stability of rarefaction shocks with

pr( p; provided that (pr p„)' ~& (p;—p—„)', in cor-
respondence with our condition (16)g. A more detailed
comparison of the two theories is encumbered at the
present time by considerable dissimilarity in the initial
and boundary conditions germane to specific problems
of practical interest.


