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have been measured over the temperature range from
3 to 300'K. Phonons are the dominant carriers of the
thermal energy. It is suggested that the thermal con-
duction in the molecular solids such as orthorhombic
sulfur and cubic (white) phosphorus is caused by lattice
phonons only; the phonons associated with the internal
vibrations of the S8 or P4 units do not contribute to the
conduction because their propagation velocities are
zero. Since only a fraction of the phonons can carry heat
and since their mean free path in the solid at the
melting point is only about one molecular diameter,
the molecular solids have thermal conductivities much
lower than those of monatomic solids of similar average
atomic mass. In monatomic solids such as orthorhombic
(black) phosphorus there are no molecular groups. Thus
all of the phonons contribute to the heat transport,
their mean free paths at the melting point are of the
order of twenty interatomic distances, and the thermal
conductivities of such solids are high.

The P-rhombohedral form of boron has a crystal

structure somewhere between the molecular and mon-
atomic types. Its measured thermal conductivity has a
value intermediate between the limits predicted by the
molecular and monatomic models. Because of the simi-

larity in the crystal structures of the several poly-
morphs of boron, it is believed that the other poly-
morphs as well as many of the interstitial compounds
of boron will also have low thermal conductivities quite
close to that of the P-rhombohedral form.
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This paper is an extension of the work of Rorschach on the interactions of dipolar nuclei with paramagnetic
impurities in dielectric crystals. The inQuence of the average "static" moment on the nuclear resonance line-
width is considered. It is suggested that by measuring T& and the nuclear resonance linewidth as a function
of temperature, magnetic Geld intensity, and sample orientation it is possible to determine the autocorrela-
tion time of paramagnetic ions as a function of these parameters.

INTRODUCTION

INCR Bloembergen' showed that nuclear spins could
be relaxed in an insulating crystal by small amounts

of paramagnetic impurities, several publications have
appeared indicating information could be obtained
concerning paramagnetic ions using nuclear magnetic
resonance. Most of the attention has been given to the
effect of impurities on the spin-lattice relaxation time Tj
of the nuclei. However, Verber, Mahon, and Tantilla'
have demonstrated that paramagnetic ions also broaden
the nuclear resonance at low temperatures. By utilizing
the results obtained from both T~ and linewidth mea-
surements it is possible to eliminate most of the uncer-
tainties of the theory, and thereby get more reliable
information concerning the paramagnetic ions and their
behavior in the crystal. In the theory section an ex-

*Work supported by National Science Foundation.
N. Bloembergen, Physica 15, 386 (1949).

s C. M. Verber, H. P. Mahon, and W. H. Tantilla, Phys. Rev.
125, 1149 (1962).

pression is derived for the effect of paramagnetic ions on
the nuclear-resonance linewidth based on Van Vleck's'
method and Rorschach's4 treatment of the motion of
the paramagnetic moment. This calculation gives rise
to an expression for the second moment containing the
autocorrelation time of the paramagnetic ion, the ion
concentration, and the average of the square and the
square of the average of the s component of the magnetic
moment for the paramagnetic ion. Also a discussion is
given for T~ based on Rorschach's paper.

THEORY

Line width

The nuclear-resonance linewidth of a system of
nuclear spins can be calculated using Van Vleck's
moment theory, and is in excellent agreement with
experiment. If electron paramagnetic impurities are

3 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
4 H. E. Rorschach, Jr., Physica 30, 38 (1964).
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present in the sample with high enough concentrations
they may contribute significantly to the linewidth be-
cause of their very large magnetic moment relative to
the nuclear moment. It should be possible to take this
into account by using Van Vleck's theory and a con-
sideration of the effective moment of the impurity as
seen by the nuclei.

According to the theory of Van V1eck. the dipolar
term in the truncated Hamiltonian between like spins is

(Ei~')r-r = 1/4yPA' P (1—3 cos'8, q)

X r;L
—'(3I„I,p —I,' Ig);

the mean-square linewidth due to like spins is

(»'&r-r = -'»'&'I (I+1)Z (1—3 cos'0,')'r~' '; (1)

r, is the autocorrelation time for the impurity. (p. )
and (p,)' can be comput;ed using statistical mechanics,
provided the energy levels are known and the impurity
spins are more strongly coupled to the lattice than to
each other. The Fourier transform of n(r) is the spectral
density given by

J(M) = K(7.)e'~'c7 = (pg)'2m'(M)

2Tg
+ (&..'&-&')'), (4)

1+(o'rP

where 8(co) is the Dirac delta function. The square of
the average s component of the moment, effective in
perturbing the nuclear spins, is thus given by

the coupling between unlike spins is

(Hz')r z=yrygA'P (1—3 cos'0;,)r,, 'I„J„;' 2
=(& )'+—((&*') (& )') t ' /T . (5)

and the contribution to the second moment is

(»')r g
——-', pr2yg'O'J(J+1)

Er ' P (1—3 cos'8,;)'r;; '. (2)

In Eq. (2), it is assumed that the magnetic moment of
the nonresonant spin (represented by J) is independent
of the magnetic Geld, temperature, crystal orientation,
and lifetime of spin I. This, of course, is not true in
all cases. In particular, if the spins J are paramagnetic
ions the probability of occupation of a lower magnetic
substate can be signifj. cantly greater than (2J+1) '.
That is, the Boltzmann factor can not be safely approxi-
mated as being unity, as is done in the derivation of
Eq. (2). Another important consideration that must
not be overlooked is the average lifetime of spin J
relative to spin I.

It should be possible to account for these eGects by
determining the s component of the magnetic moment of
spin J; (p,~), effective in broadening the resonance of the
spins I. Rorschach has proposed a theory to determine

(p,*) using harmonic analysis and random tirne-

dependent perturabation theory. The theory involves
determining the magnitude of that part of the spectrum
of the magnetic Geld due to spin J that is "suSciently"
near the Larrnor frequency of nuclear spins I to be
effective in interacting with the nuclei adjacent to J.
If the spectral density is denoted by J(cu), then the
average static moment which is effective in broadening
the nuclear-resonance line is determined by that part of
the spectrum with frequencies between ~T2 '. Ror-
schach assumed that the autocorrelation function for
spin J, hereafter referred to as the impurity, was

Now to correct Eq. (2) we must replace -',yq'O' J(J+1)
by (p,)'. One then gets

where P;,= (1—3 cos'8,,)'-r,, '. Now assuming the im-

purities are located at equivalent sites in the crystal and
the number of impurities is denoted by Ez, Eq. (6)
becomes

(~~'&r ~=mr'(I .*)'(&zP'r) 2 P'

The mean-square linewidth (doP) total is the sum of the
two contributions (»')r r and (AaP)r q. It is convenient
to consider

where IJP=qyPA'I(I+1). In Eq. (8), the sum in the
denominator is over all nuclear spins in the lattice,
whereas the sum in the numerator may not include all

spins. Nuclear spins very close to an impurity have
their Larmor frequency shifted far into the wings of the
absorption line and contribute signi6cantly to the second
moment. However, in observing the resonance line

shape, the wings of the resonance are usually not ob-
served. This means one can omit terms in the sum close

to the impurity. A criterion for the critical radius
inside of which the terms should be omitted is that
the dipole field of the impurity at the critical radius be
equal to the local field of the nuclei alone. A measure
of the nuclear local field is the root-mean-square
second moment.

~(r) = (S .&'+ ((u.'&—(~.&')~ '" (3) &~II'&'"=( **)/(f')'
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where b' is the critical radius. Typically b' is about ten
lattice spacings, which means the lattice sum can be
replaced by an integral

P'P, , 2~ pr(i —3 cos'8)'r ' sin8d8dr

16m.
= pr (&') ' (1o)

Here p~ is the number of nuclear spins per unit volume.
If a simple cubic lattice of nuclear spins is considered,
one has for the sum in the denominator of Eq. (8)

g P, ,= 16 4f(~.)a

For a simple cubic lattice

(dH')'t'=6. 06pza 'f't'(X) (12)

Combining Eqs. (8)—(12), one obtains

&=0.55($ /1V )((p,*)/p )f 't'(X). (13)

Finally using Eqs. (5) and (13), ] becomes

)=0.55(SJ/Nr)pr lf 1/2P)—
X[(p )'+2/vr((p ')—(p )') tan '(r,/T2)]'t'. (14)

All of the magnetic field and temperature dependence
for p is contained in (p,)', (p,'), and possibly in r, .
However, if one knows the energy-level configuration
for the impurity, the field and temperature dependence
of (pP) and (p,)' can be calculated. By measuring the
magnetic 6eld and temperature dependence of $, one
can then conclude the dependence of v, on these
parameters.

It should be pointed out that it is not necessary for
the impurity spins to change magnetic substates to give
rise to a fluctuating 2' component of magnetic moment.
For example, the energy levels of the impurity may
Quctuate due to lattice vibrations through the crystal-
line field splitting. Therefore the autocorrelation time of
the impurity 7, may not be simply related to either the
spin-lattice or the spin-spin relaxation time of the
impurity. The significance of v. would depend on the
type of impurity and its interaction with the lattice.

Relaxation Time

Bloembergen' has shown that nuclear spin-lattice
relaxation in dielectric solids by means of paramagnetic
impurities is the result of two processes operating
-serially: spin-energy diBusion and direct relaxation.

where f(X)= (X~'+X2'+X~'—0.187). The 'A, represent
the direction cosines of the external magnetic field
referred to the principal axes of the crystal and a is the
distance between adjacent nuclei. For a simple cubic
lattice p~= a ' and the ratio of the lattice sums become

2'O';/ 2 0 ~=0 204(n/&')'f '(~).

Diffusion of Zeeman energy towards an impurity by
means of mutual spin-flips occurs as a result of the
gradient in magnetic energy density created by the
direct relaxation of nuclei near the impurity through a
dipole-dipole interaction. This direct relaxation is
effective only at short ranges due to the inverse sixth-
power radial dependence of the transition probability.
Thus, it is possible to consider only a spherical volume
of radius R surrounding one impurity and containing
X' nuclei as representative of the total crystal. There
are pg of these spheres per unit volume of the crystal, pg
being the impurity concentration. The Hamiltonian
for one of these representative volumes may then be
written in spherical polar coordinates in the familiar
form of the sum of six components, arranged according
to their selection rules.

/

H"r ~=+ yryzA'r, '[A'+&'+C'+D'+&'+F'], (15)

where

X'=Sr/Xq=number of nuclear spins associated with
each impurity spin

A'= I„J,(1 3cos'8,); A—rm;= hm„= 0
8'= ~[I, J++I,+J ](1—3 cos'8,);

hami= —Am„= &1
Q'=D'*= ,'[I,+J,+J+I„—]—sin8,cos8;Xe '4"

Ami= 0; Am„= &1; Ami= %1; Am„= 0
E'=P'*= ——,'I~+J+ sin'8;Xe "&' hnz =Am =+1
I is the spin operator for ith nuclear spin
J is the spin operator of the impurity spin.

Because of the large energy difference between nuclear
transitions and impurity transitions, the only term of
interest is the third term (C') which involves a nuclear
transition with the impurity remaining in its same mag-
netic substate.

Using first-order perturbation theory of the jth
term of Hz J" to calculate the probability that the
jth nucleus will undergo a downward transition while
the impurity does not change its state, one obtains

lid =9/4v'1(l II'I —l )I'
Xsin'8; cos'8;r, 6J(cu;), (16)

where n represents the quantum numbers that specify
the state of the impurity and J(a&;) = I

(-', ,n I p,, (t) I

——,',n) I

'
is the intensity of the Fourier spectrum of p, (t)
evaluated at the resonant frequency of nucleus j.Since

I (,',nI I,+I —~»n) I-'= 1, the transition probability is

W;=9/4yjr ' sin'8 cos'8 J(~ ) (17)

All variations in r;, 0;, and @;, due to lattice vibrations
have been neglected, on the assumption that the im-
purity is much more effective in relaxing the nuclei
than are the lattice vibrations.

In order to evaluate J(~) it is necessary to assume
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some mathematical description of p, Following
Rorschach, it is assumed that p, is a randomly Quctuat-

ing stationary function of time, which can be described

by the autocorrelation function given in Eq. (3).
The spectral density given in Eq. (4) gives the

amplitude of that part of the random motion of p,
occurring at frequency to Su.bstituting Eq. (4) into

Eq. (17) and averaging over the solid angle yields, for
the average direct interaction transition probability
of these nuclei at a radius r from the impurity,

(lW(r)) = (C/2) r—'
=lv"((t') —(t )')( /(1+ o' '))r ' (1g)

The substitution of the average I armor frequency No

for co is valid for all nuclei except for those within a
distance b' of the impurity, whose resonant frequency
is shifted out of the resonance line shape. This radius
b', the critical radius, may or may not correspond to
the spin-di6usion barrier radius b, as pointed out by
Blumberg, ' but the two are of comparable magnitude
and usually small compared with the distance between
impurities. Now by integrating Eq. (18) from b' to
R, where R is the radius of the sphere associated with

each impurity, one has for the spin-lattice relaxation
time

Tt ——3 (h') '/4tr Cpg, (19)

where pz is the impurity concentration (4/37'') '.

& yt. F. Blumberg, Phys. Rev. 119, 97 (1960).

This agrees with Blumberg's expression for the rapid-
diftusion T1.

Rorschach' has recently derived a general expression
for T& which has two asymptotic forms, according to
the magnitude of a dimensionless parameter. This
parameter it is equal to ts(P/b)', where P is the pseudo-
potential radius as defined by Deoennes' and b is the
barrier radius for spin diffusion. For 5&(1, the asymp-
totic form is the same as that above, while for 5&)j.,
the form is that of the original diuffsion limited expres-
sion of DeGennes.

It should be pointed out that, if one knows the energy-
level configuration of the impurity and the impurity
concentration, then the only unknown in the expression
for T& is the autocorrelation time r, of the impurity.
By measuring T& as a function of magnetic Geld, tem-
perature, and sample orientation one should be able to
determine r, as a function of these experimental
parameters as in the case for $.

CONCLUSION

Preliminary measurements of the second moment and
T1 have been made on CaF2'. Eu'+ for two concentrations
as a function of temperature and magnetic Geld in-
tensity. The results tend to confirm the essential features
of the theory. Currently a number of other rare-earth
and iron-group ions doped in CaF2 are being studied
and the results will be published shortly.

' P. G. DeGennes, J. Phys. Chem. Solids 7, 345 (1958).
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Recently several experiments have been reported on electroabsorption spectra in indirect-bandgap ma-
terials. These observations refer essentially to the change in absorption produced by an applied electric
6eld 8 in the material under study. The particular photon-energy region explored has been that where
phonon-assisted interband absorption obtains. Usually, considerable structure appears in the experimental
curves. The absorption change ~~ varies quite radically with photon energy both in amplitude and in sign.
All theories extant on the phenomenon of electroabsorption are concerned with direct-bandgap transitions,
In the light of recent experimental results, however, in the neighborhood of indirect transitions, it is appro-
priate to calculate the electroabsorption spectrum for phonon-assisted processes in order to have a more
applicable theoretical model with which to compare experimental results. The present paper reports just
such a calculation. A formula for A~ is presented in the case of phonon-assisted interband absorption.

INTRODUCTION

ECENTI,Y, several experiments have been re-

ported on electroabsorption spectra in indirect-

*This work. was sponsored by the U. S. Atomic Energy
Commission.

$ NATO Fellow (Deutscher Akademischer Austauschdienst,

Bad Godesberg) on leave from the Institute fur Theoretische

physik der Technischen Hochschule Karlsruhe, Germany.

bandgap materials. ' ' These observations refer essen-
tially to the change Aa in absorption produced by an
applied electric field h in the material under study.
The particular photon energy region explored has been

' A. Frova and P. Handler, Appl. Phys. Letters 5, 11 (1964),
'M. Chester and P. Wendland, Phys. Rev. Letters 13, 193

(1964).
e A. Frova and P. Handler, Phys. Rev. Letters 14, 178 (1965).


