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The pseudopotential method which was previously used to discuss the optical reQectivity of silicon has
now been applied to study its photoelectric properties. A quadratic interpolation procedure has been used
in conjunction with the pseudopotential method to get a very dense sampling of the Brillouin zone. This
allows a detailed comparison of the band-theoretic results for the energy distribution of photoemitted
electrons with experiment. Most of the structure in the kinetic-energy distributions in the optical 'and near-
ultraviolet region of the electromagnetic spectrum can be understood in terms of direct interband tran-
sitions, although line shapes appear to be distorted by processes which are not treated in the present calcula-
tion. The photoelectric yield has been recomputed assuming total randomization of the crystal momentum
for escaping electrons. The discussion of the optical properties has also been extended.

I. INTRODUCTION
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NUMBER of recent experiments have shed
considerable light on the photoelectric effect in Si.

The band-bending experiments of Gobeli and Allen'
and of Van Laar and Scheer' emphatically demonstrate
that photoemitted electrons originate in the bulk
crystal states rather than from surface (Tamm) states.
Further work indicates, that for energies above the
appropriate interband thresholds, the electrons are
produced by k-conserving excitations. ~' Experiments
done on Si with a work function artificially reduced by
deposit of less than one atomic layer of cesium on the
surface' ' have provided rich spectral data. Such
samples have shown very interesting structure in the
kinetic-energy distributions for electrons emitted at
various photon frequencies as well as in the spectral
dependence of the yield efFiciency.

Since it is believed that direct electronic transitions
between bulk crystal states provide the electrons seen
.in photoemission, one expects that a study of the Si
energy bands would be critical in interpreting the data.
A semiempirical pseudopotential model was previously'
used to construct the energy bands throughout the
Brillouin zone. From the resulting joint density of
states, the frequency dependence of the imaginary part
of the dielectric constant was computed in the optical
and near-ultraviolet regions. The good agreement be-
tween theory and experiment confirmed the pseudo-
potential band model. Thus, we have a realistic band

structure to use in the study of the photoelectric
problem. Below we shall apply it to gain an understand-
ing of the Si photoelectric data, particularly the energy
distributions. The problem is basically more complex
than the case for the optical-absorption data. This is so,
since electrons excited into the conduction bands can
be scattered many times before ultimately being
emitted from the crystal. However, as a first approxima-
tion we shall take a simple point of view in which dy-
namical electronic e8ects are neglected. Ke shall find
that this gives a good qualitative understanding of the
photoelectric data. This is essential to a further more
quantitative analysis which would ultimately account
for the dynamical processes as well.

II. DEFDTITION OF PHOTOELECTRIC
VAMABLES

The two principal quantities which have been
measured in the photoelectric experiments for Si are
the yield eSciency and the energy distributions. The
first of these which we designate by I'ti(&o) =number of
electrons emitted/quanta absorbed. Assuming that all
electrons escape via the bulk conduction bands of the
crystal,

I', (u) =g r„(k,~)
BZ

XP(Z,k)d'k/ Q r„(k,~)d'k. (I)
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Here r (k,co) is the rate at which electrons are excited
from the valence bands to a state in the conduction
band with index n and wave vector k. P(E,k) is the
probability that an electron produced with energy E
and wave vector k will escape, and the integral extends
over the Brillouin zone (B.Z.). It is true, of course, that
the probability factor should be dependent on the
depth s below the surface at which the electron is
produced. Neglecting dynamical processes, however,
removes the s dependence from I', provided that we
also assume a Oat-band situation. All of our calculations
will be done assuming no band bending, and will be
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compared to experiments in which band-bending effects
are minor. Considering only vertical transitions (1)
can be written as

Va(to)=g b(co„,, (k) —to)iM„„(k)i'8
A)8 + g

&(d'k/ g 6((o„,(k)—to))
~
M„„(k)~'d'k. (2)

e,e

Here the delta function standing alone in the integrand
would give the joint density of states for the conduction
band (e) and the valence band (s); co,,= (E„—E,)/is,
and ~3I~' is a dipole matrix element connecting the
bands.

The energy distribution function 1V(E,Aa&) is defined
such that the number of electrons d,g emitted with a
range of kinetic energy hE is

S~=X(E)n )aE. (3)

u refers to the frequency of the incident light. S can be
written as follows:

~(E,)sto) =C g 8(to„,(k) —co) ~M„„(k)~'E

&&8{E—E„(k))dsk. {4)

The first, delta function picks out the set of states with
a vertical energy gap Pun, and the second delta function
selects from the 6rst set those with a final conduction-
band energy equal to E. Energies in this expression are
measured relative to the vacuum level. C is a normaliza-
tion constant. %e should note that this expression
assumes that an electron produced with a conduction-
band energy E„(k)=E can only appear in vacuum with
the energy E. If dynamical events such as loss to
phonons and Auger pair production were to be con-
sidered, then electrons produced in state E„(k) would

give rise to a distribution of emitted electron energies.
We should then have to consider a function g(E„(k),E)
which would give the number of electrons seen with

energy E as a result of producing one in state E„(k).
For our simple picture g(E„(k)&E)~P8(E—E„(k)).

III. CONTRIBUTION OF THE ENERGY SANDS

As expressions (2) and {4) indicate we need to com-

pute the integrals throughout the zone to get the energy-
band contribution, the dipole matrix elements, and
6nally appropriate escape probability factors. In our
work on the orbital absorption, ' we found that the
effect of including matrix elements could be taken as a
minor correction to the contribution arising solely from
density-of-states considerations. The same conclusion
will also apply for the photoelectric properties. Further-
more, we shall see below that the results are not highly
sensitive to the method of computing the escape
probability (after we take account of energy conserva-

tion for the transmission of electrons through the crystal
surface). In this section, therefore, attention is con-
centrated on the method of computing the energy-band
contribution.

V~=+ V„(Gg) expt (2s.i/a)Gg r]. (5)

In (5), (2s/a)Gg are the reciprocal lattice vectors of
the diamond structure, and a is the lattice constant
for Si. By using the high symmetry of the diamond
lattice, it turned out that we could represent V„ade-
quately by using only the lowest three independent
Fourier coefhcients in the expansion. These three
coefficients could then be treated as disposable param-
eters. ' " The three parameters were determined
empirically from a set of model interband gap splittings
at the symmetry points I', X, and I.which were known
through previous work. "' The properties of the result-
ing eigenvalues of H„are, erst, that they give the proper
interband gap splittings at the symmetry points, and
second, that they represent a reliable interpolation for
the energy bands throughout the rest of the zone. The
reliability of the interpolation was well established by
the good results H„gave for the distribution of elec-
tronic states. The eigenfunctions of the Hamiltonian
represent the smooth slowly varying part of the true
crystal wave function outside of the atomic-core region.

It has been demonstrated" "that V„can be thought
of as arising from the sum of two terms VxT~L+ Vn
where VxT~L is the usual crystal potential, and Vg is a
repulsive potential arising from the orthogonalization
of the crystal wave function to the core states as in the
orthogonalized-plane-wave (OPW) method. The effect
of V~ is to cancel out the strong attractive part of the
crystal potential near the atomic core. One can directly
compute VxT~L+ Vn and from it construct the OPW
solutions. (For a discussion of the general theory of
pseudopotentials see Ref. 15.) Errors, however, can
then arise in some of the principal band gaps amounting
to 3 eV.ts Our V„can be gotten from VxTAr. +V@ of
the OP% method by treating it as local, and by
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(1962)."F.Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).

A. Pseudoyotential Calculation

In Ref. 8 we used a model Hamiltonian H~=K.E.
+V~. Here K.E. is the kinetic-energy operator, and V~
is a semiempirical pseudopotential. V„ is a simple local
potential. Since V„depends only on the coordinate r, it
can be written as
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slightly changing the Fourier coefficients of the latter
to make the interband splittings agree with the experi-
mentally determined model. Since our potential can be
derived from the theoretical one by a slight readjust-
ment of the coeKcients, we may refer to it as a semi-
empirical pseudopotential.

The method of solving for the eigenvalues of H„was
thoroughly discussed in Ref. 8. BrieQy, we start with a
plane-wave representation. All plane waves with a
kinetic energy &E& are treated exactly in the expansion
of the wave function, while plane waves with a kinetic
energy &EN but &Ez are treated by perturbation
theory. E& and Ep are chosen so as to insure reasonable
convergence of the eigenvalues. Higher lying plane
waves are ignored. This is rather like ordinary perturba-
tion theory when a zero-order degeneracy is en-
countered; the degenerate states are treated exactly,
and the eQect of the other states is brought in through
perturbation theory. Here the group of low-lying states
are treated in a quasidegenerate fashion.

As one moves from a given point in the zone to a
neighboring point the eigenvalues should vary con-
tinuously with k. In general, this will be the case for
our treatment of H„; however, occasionally a discon-
tinuous jump will occur when the kinetic energy of a
plane wave crosses either the energy Ez or Ez. This
situation is sketched in Fig. 1. When this happens, the
manner in which the plane wave C~+K.——e'&"+K"" is
treated according to the present procedure changes,
thus producing the discontinuity. We wished to reduce
the discontinuous jumps from the value in our previous
calculation. To do so we varied E~ and Ez and examined
the eGect on some representative eigenvalues. The
results are plotted in Fig. 2. Our values for the choice
of E~ and Ep were

E~=9.0(27r'A'/ega') 4S eg
Er= 24.0(2x'h'/ma') ~12O eg.

FIG. 1. The depend-
ence of ) K~+)r['a'/4ns
as h is varied across the
Brillouin zone in the
(1,0,0) direction. The
lower curve is for
K; = (2e./a) ( —3,1,1)
and the upper curve for
K;= (2e/a) (4,0,0).The
points A and 8 refer to
locations in the Brillouin
zone where there is a
discontinuous change in
the treatment of the
plane wave.

PFRTURBATlON
THEORY

EXACT
TREATMENT

r(o,o,o) X(I,O,O)

Since it is desired to make the bands vary smoothly
throughout the zone, it is of interest to estimate the
discontinuities from Fig. 2. The two examples in 2(a)
indicate that with Ej.——24.0 moving 6 plane waves
from the set included by perturbation theory to the set
being ignored changes the eigenvalues by no more than
0.01 eV (a change in Er of 1.0 shifts ~6 plane waves

across the boundary). This implies that the perturbation
contribution from plane waves near 24.0 is (0.01 eV,
and that we can therefore expect discontinuities associ-
ated with them to be small, also &0.01 eV. Looking at
Fig. 2(b) we estimate the effect of moving plane waves

from the set being treated by perturbation theory to the
set entering into the exact calculation. Here the effect
of shifting 4 plane waves is &0.02 eV. Hence, the
error made by treating plane waves with kinetic energy
near 9.0 through perturbation theory rather than
exactly is 0.01 eV. Therefore, the discontinuities en-

countered when a plane wave moves across the bound-

ary 8& in Fig. 1 is 0.01 eV, and we conclude that with

the parameters chosen our energy bands should be
extremely smooth.

I j

E„=9.0

,04 eV

I

E~= l9.0
t

.04 eV

FIG. 2. Convergence tests for some
representative eigenvalues. To the
right of each curve we give the point k
at which the eigenvalue was computed
and the level number according to the
ordering principle described in the
text. (a) as a function of Ep, (b) as a
function of EN.
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B. Application of Quadratic Interpolation

In order to evaluate expressions (2) and (4) we

calculate the eigenvalues of H„at a large number of
points in the B.Z., and replace the integrals by discrete
sums. In Ref. 8 we found eigenvalues to represent the
bands at 1000 points in 1/48 of the B.Z. This gave

50000 points for the whole zone. For the present
case, however, the second delta function in (4) implies
a second sampling such that values are now character-
ized by E„(k) as well as Z„,(k). With this further sub-
division histogram statistics based on a 1000-point
sample would be inadequate. The sample size must be
increased by an order of magnitude. It would lead to
an excessively time-consuming calculation if the secular
equation for H„had to be diagonalized at so many
points. Instead we chose to use the following scheme.
First we found eigenvalues for II„at a small number of
discrete points in the shaded region of the B.Z. shown

in Fig. 3. Then we used an algebraic interpolation to
find the eigenvalues at neighboring points. The use of
an algebraic interpolation is computationally very
simple, and we are not severely restricted in terms of
sample size.

For our current work we start by calculating the
energy eigenvalues over a simple cubic mesh embedded
in the 1/48 volume of the zone being used. This mesh
has a lattice constant equal to 1/28 that of the reciprocal
lattice of diamond. With this spacing we have 400
points at which to diagonalize II~. We call this set of
points 5„. Next we want to find eigenvalues (and
matrix elements) for a much larger set of points S~ in
order to evaluate (2) and (4). The details for construct-
ing the set S~ are discussed below. Here the algebraic
interpolation will be described. For simplifying the
discussion we imagine k space to be two dimensional.
In Fig. 4, A represents a point of the set S~ and the
P's a neighboring group of points from S~. In order to
get the eigenvalues at 3 from the P's, we use a simple
quadratic interpolation. The interpolation can be
generated as follows. First do a quadratic interpolation

using standard formulas for the one-dimensional
problem along the solid lines to get a value at X~, X2,
and X3.Then use the values generated at X~, X2, and X3
along the dotted line to get the value at A. In 3 dimen-
sions the process involves 27 points neighboring 3 and
one extra step.

The point A may lie near the boundary of the small
region in which we are working. In this case some of
the points P of Fig. 4 may not be included in the set S~.
There are three ways in which this can happen:

(i) The point I' lies inside the erst B.Z. but outside
the shaded region of Fig. 3. In Ref. 8 this region was
dedned by the conditions

k.~k„~k,~O. (6)

Hence, if a point lies outside the region we simply re-
order the values of k„k„,k, so as to satisfy condition
(6). This is equivalent to an application of the group
elements of the diamond lattice. '7

(ii) The point I' may lie outside the UXW boundary
of the B.Z. In this case all that is necessary is to use the
reQection symmetry of the plane to get an equivalent
point in the shaded wedge.

„P
A'(-- —--)l———-—&(2 5

PIG. 4. Schematic diagram for the alge-
braic interpolation procedure.

(iii) The point can lie just outside of the boundary
plane I.OWE. Since this plane is defined by the
equation

(u,+k„+k,) = (-;) (2~/a),

a point which lies just outside of the plane will be
given by

(k.+k„+k.)a/2m= ', +a. -

To get a corresponding point inside the wedge, construct
the quantity

I

This corresponds to first reordering to get k„k„,k„ then
inverting to,get —k„—k„, and —k„and finally adding
the reciprochl lattice vector (2~/a, 2~/a, 2~/a). All of
the operations are group operations; therefore, the
resulting point will be equivalent to the initial one, and
will be inside of the wedge since

(k.'+ k„'+k, ')a/2x =

Of cour.'se, we may have to do more than one of the

Pro. 3. Brillouin zone for Si.
'V. Reflections in the (110) planes will interchange a pair of

values for the components of &.
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operations indicated by (i), (ii), and (iii) in some
instances.

0 0 0 0 0- 0 0

0 o 0 — 0 0 0 0 0

C. Monte Carlo-Generated Samyle

The next question is the generation of the sample S&
which will be used for constructing the histograms. In
the previous work the points S& lay on a lattice having
the bcc structure, so that the sampling points were just
contained within the elementary region of the B.Z. To
get some idea of the statistical fluctuations expected
with this spatially uniform sample we examine Fig. 5 (a).
Here we have a two-dimensional problem in which we
wish to estimate the area of the square by the number
of sample points within it (this corresponds to finding
the size of a region for which the energy lies in some
range AE). For this case the error is approximated by
the total number of points on the boundary (Nb)
divided by the total number of points in the square (N);
i.e., error -Ns/N. For a three-dimensional problem

1/P and Nb 1/P, where t is the dimension size of
the sampling lattice. We then have

We can imagine another situation. Suppose the bound-
ary of the region whose area we want follows a complex
path through k space as in Fig. 5(b). This we can
suppose to be essentially a random path with respect
to a rectangular sample. There will then be no correla-
tion between the position of the boundary at one
surface sample point and a neighboring one. In this
case,

error N s't'/N ta/t t' 1/N'" (g)

If, on the other hand, we use a randomly generated
sample, then irrespective of the shape of the region
being sampled the Quctuations will go like

error~1/N'"

We see that (9) in its rate of convergence as a function
of N is superior to (7) but inferior to (8). Previously
we found a good deal of boundary correlation error
when a rectangular sampling grid was used. Hence, in
our present work, we generate S& by a Monte Carlo
technique.

IV. ESCAPE PROBABILITY

0 0 4 0 0 0 4 0

4 0 0 0 4 4 0 0

O 0 4 0 O 4 O O

o 0 0 0 O 0 0 0

0 0 0 0 .0. 0 0 0

transmitted. Ke then compute the escape probability
according to two different assumptions.

(i) We assume tha, t the electron after being excited
into the conduction band propagates with mo scattering.
With this assumption all electrons which initially travel
with a group velocity away from the surface continue
to do so and cannot possibly escape. Electrons whose
group velocity is directed toward the surface may, under
the correct conditions, be emitted into the vacuum. For
these electrons we write

P (E,k) = Constant, if E„(k))ts'kz'/2m

=0, otherwise
(10)

with all energies measured relative to the vacuum level.
In Eq. (10), kr is the component of the received wave
vector parallel to the crystal surface. The factor
fr'l'r&'/2m comes from the wave-mechanical boundary
condition. It gives the minimum kinetic energy with
which the electron is able to appear in vacuum.

(ii) We now assume that elastic-scattering processes
randomize the crystal momentum before the electron
reaches the surfaces. " Doing this removes the k de-
pendence from I'. The resulting P(E) as found from
the energy-band model of Si is shown in Fig. 6, where
the vacuum level 8" was taken as 2.5 eV above the top
of the valence band.

V. RESULTS

A. Yield EKciency

I'IG. 5. Kvaluatiori of the area of a given region by counting the
number of sampling points it contains (a) for a region with a
simple rectangular boundary, showing how a large number of
boundary points can be moved as a group across the boundary if
the sampling mesh dimension is changed slightly, (b) for a region
with a highly irregular boundary.

In expressions (2) and (4) there appears the escape We Previously analyzed the structure of Fir(or) on

probability factor P(E,k),. To treat this exactly would the 0% scattering modeL' "Here we have recomPuted
necessitate having rather' detailed information about it on both the 0 and, 100% scattering model. In Figs.
the surface potential. For the p'urposes of the present 7(a) ., and 7(b) we compare the results for the two

study we neglect partial reaectlon of electrons from the limiting cases with the experiment of Allen and Gobeli 21

surface barrier which is.' probably small, throughout, . i9 This does not contradict the earlier statement concerning the
most of the Ilriliouin zone "With this model an electron .neglect of dynamical events. The'tool scattering as treated here

' p'"gng n th f "" 'th ~ tot ll ~ 8 t d Spsu~s no epergy transfer and is equivalent to taking the
"''el'cctr@n's cry~pal momentum as being random immediately after

exc1tatioii intg the conduction, band."D 'Srust, M. I. Cohen, and J. C. Phillips, Phys. Rev. Letters' C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185 9, 389 (1962).
(1949). "F. G. A/en, Bull. Am. Phys. Soc. 8, 422 (1963).
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&l .4
COI-~.5—

lL
2

I-I
K
~.l "

taJ

Q.
2.5 3.0

1

5.5 4.0
E, (evj

4.5 5.0

FIG. 6. Sketch of the escape probability assuming total random-
ization of the electrons before they reach the surface. E, is the
conduction-band energy measured from the top of the valence
band. The vacuum level is taken as 2.5 eV above the valence band.
As E becomes large E(E) ~ 0.5, which means that all electrons
with a group velocity directed toward the surface will escape. It
has also been assumed that the crystal is cut on a (111)plane.

B. Kinetic-Energy Distribution

Frr(o&) has been constructed using interband. transitions
4 —+ 5 and 4 —+ 6 only. The dipole matrix element has
been taken as a constant.

Examining the 6gures indicates that treating the
problem in the 100% scattering limit gives somewhat
better results. This is what one might expect, as the
experimental curves were taken with nearly one
monolayer of C, on the surface. Experiment indicates
that deposition of more than about 0.3 of a monolayer
of C, on a silicon surface will result in total randomiza-
tion of escaping electrons. ' We note, however, that the
principal features in the structure are similar to that
obtained before, and we have made no changes in the
previous identifications.

alld Aro =5.0 eV) . In computing the dipole ma tl 1x
element appearing in expression (4) for one of the
randomly generated points in our sample we substituted
the matrix element at a neighboring point of the simple
cubic interpolating mesh. This simplification will have
a very minor eGect on the results presented here. In
order to evaluate the matrix elements the eigenfunctions
of the pseudopotential Hamiltonian were used. This
corresponds to using only the smooth part of the wave
function, and as was previously discussed' generally
should lead to errors no more than 20%.

In arriving at the graphs of I'ig. 8 we used only
transitions involving bands 3, 4, 5, 6, and 7, i.e.,
(3,4) ~ (5,6,7). For the photon and kinetic-energy
range under discussion these transitions will dominate
the bulk photoelectric response. This is apparent from
examination of I'ig. 9 where the symmetry directions
6, X, and Z are drawn. It should be noted that we have
shown all our results with a vacuum level 2.5 eU above
the top of the valence band. YVe have done the calcula-
tions for other values, but the results can essentially be
generated by shifting the curves to higher or lower
energies as the vacuum level is moved down or up.

VI. DISCUSSION OF THE KINETIC-ENERGy
DISTRIBUTIONS

A. Role of the Conduction-Band Structure

Before comparing theory with experiment, we hand

it valuable to develop some basis for understanding the
results of the calculations. The discussion of the results,
however, should be preceded by a brief digression on
the question of normalization. From Eq. (4) we have

N (E,hu&) dE =C Q 6(r0„„(k)—ro)

&&(~...(k))'~. (»)

es(M)- —P bLro„, (k) —ro)~3E„,(k) j&dsk (&2)
QP %,8

We have computed the kinetic energy distributions
for escaping electrons with photon energies between 3.2
and 6.2 eV. The kinetic-energy range is 0.0-2.8 eV.
In I'ig. 8 we present the results of the calculation using We recall that
only the 100% scattering model. The results are quite
similar if the 0% scattering situation is assumed except
that the peaks are sharper (particularly for 8=2.0 eV

GOBELI AND ALLEN

THEORY WITH SCATTERING """""-
THEORY WITHOUT SCATTERING -L —,~

CI
W
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O
Ch
Co
% co

zz
W
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0 W

O

3

3.0 4.0 5.0
Im(ev)

(a)

6.0

CI
4l
CQ
CL
O

Z
~ W
(y 0

Z ~O
CL ~

~io'

J~'
3.0 5.0

Ocv(eV)--
(b)

4.0

GOBELI AND ALLE N

THEORY WITH SCATTERING -""-
THEORY WITHOUT SCATTERlNG ——

1

6.0

Spectral de-
pendence of the yield
efficiency (a) experi-
mental vacuum level=2.7 eV, theoretical
vacuum level=2. 5 eV,
(b) experimental vac-
uum level =3.2 eV, theo-
retical level=3. 0 eV.
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5.3eV

3
LLj

--4.leV

3

bJ

3.02.0I.O I.Q2.0 3.0 2.0 3.0
E (ev) E (eV) E(ev)

(a) (b) (c}

Fro.Ig. Kinetic-energy distributions with the vacuum level taken 2.5 eV above the top of the valence band. Z refers to the kinetic
energy in vacuum. The curves are plotted for several values of ~ as a computational parameter. For a discussion of normalization
refer to the text.

from which follows

N(E&4r)dE = DYE(or) es(or)or'. (13)

D is an unspecified constant whose value may be set by
6nding the area under any one of the curves of Fig. 8,
and then satisfying condition (13).The constant D will
be the same for all other curves. This has essentially

been done in Fig. 8 except that we have decreased D by
a factor of 2 upon going from 8(a) to 8(b) which
corresponds to shrinking the vertical scale by the same
factor.

Examination of Fig. 8 indicates that the most
prominent and persistent features of the computed
kinetic energy spectra are the peaks near 1.0 and 2.0 eV
(we shall refer to these as series A and 8, respectively).
The origin of these two series can be qualitatively under-
stood in terms of the conduction band density of states.
Figure 10 shows a sharp maximum near 4.5 eV (which
corresponds to a vacuum kinetic energy of 2.0 eV when
the vacuum is 2.5 eV above the top of the valence
band). "Broadly speaking, series 8 results from transi-
tions between the valence bands and states near the
maximum. Series A results from the maximum near
3.0 eV in the conduction-band density of states. How-
ever, since this maximum occurs just above the 2.5-eV
vacuum level the peaks associated with it are somewhat
more complex. At this energy P(E) is still rapidly

(0,0,0) (I,o,o) (s 3
o) (0,0,0)

FIG. 10. Electronic den-
sity of states for Si. In this
case E refers to the energy
measured relative to the
top of the valence band.
This includes only the
highest valence band (4)
and the lowest conduction
bands (5,6).

R 0 R + Q
E{eV)

FIG. 9. The energy bands of Si from the pseudopotential model. ~'The maximum at 4.5 eV appears somewhat sharper than it
The bands between X and E are drawn along the straight Hne should due to our omission of band 7 in computing the density
connecting them in the plane defined by hz=0. of states.
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FlG. 11. Energy
contours of band 6
plotted in a (110)
reflection plane, The
energies are mea-
sured relative to the
vacuum level of 2.5
eV.

increasing as E is. increased. Hence, the peaks in the
kinetic-energy distribution occur at slightly higher
energies than the maximum in the density of states
would suggest.

The origin of the 4.5-eV maximum in the density of
states can itself be understood after examination of
Fig. 11 in which the energy contours of band 6 are
drawn in a (110) reflection plane. The band is extremely
Rat near the A symmetry line giving rise to the sharp
maximum. Therefore, we can associate our correspond-
ing peaks in series 8 with A. electrons. The lower maxi-
mum appears to come from states distributed through-
out a large part of the zone, and there does not seem to
be a simple way of identifying it with a definite location.

Further analysis of the structure requires a much
more rigorous examination of the energy-band contours.
In the next section some further aspects of the energy
distributions are examined. We will develop a somewhat
more quantitative understanding of the results; how-

ever, the basic picture described in this section will

remain unaltered.

B. Analysis in Terms of Critical Lines

Before further analyzing the results of the computed
kinetic-energy distributions presented in Fig. 8, we

briefly discuss the analytical tools which are helpful in

giving meaning to the structure. In the discussion of the

E„,(k) =0

-Ens~ ~ ~ -"&Co+

dielectric constants of Si and Ge, ' the concept of a
critical point was extremely useful. Most of the com-
puted structure in that case was attributed to critical
points (c.p.) in the joint energy bands, i.e., points where

E„,(k) I
=0. The c.p. gave rirse-to Van' Hove singu-

larities in the integral for the density of transitions '

J„,((u)- ds/
i
VgE„:,(k) i

.
p„(k) =@co

The theoretical and corresponding, experimental line
shapes were then vjell understood'in terms. of the
behavior of the joint density of states in the vicinity
of the c.p.

It is not to be expected that we can achieve a,s good
an account of the experimental line shapes for the
energy distributions as for. the optical constants, . since
we are neglecting dynamical processes and'are using an
approximation to the surface refl.ection problem. Never-
theless, further analysis of the theoretical structure can
be useful. Below we shall use an approach due to Kane"
to examine the analytic behavior of the bands in a way
similar to the c.p. analysis.

In order to understand the contribution of a given pair
of bands to the kinetic-energy distribution 1V(E,fia&),

consider the frequency Axed. This then defines a surface
Sa„ in 0 spa, ce given by the condition E„,(k) =Ace. Next
attention is fixed on the energy contours of the conduc-
tion band E„(k) imbedded in Sa„. To compute, the
density of states satisfying the conditions E„,(k) =fi~
and E„(k)=E, one must integrate along a line / in Sq„
defined by E„(k)=E.The density of states will then be

X'(E,h~)-P
n, s LL":a(g) =&0 &as(&) =&~l

[V,(S,„)E„() [[V,E„,(k) [.
Here Vi, (Sa )E„(k)gives the components of the ViE (k)
lying within the surface SI;„. This two-dimensional
gradient is proportional to the distance hk, between two
contour lines differing in energy by AE,. This is shown
in Fig. 12. The

~
Vi,E„,(k)

~

is a measure of the distance
between. two surfa, ces Sa„and Sa~„+ii &. Expression (14)
is equivalent to (4), the kinetic-energy distribution,
except for the omission of the matrix element

~
M„,(k)

~

'
and the probability-of-escape function P(E). Points
on Sa„where ~Vi, (Sp,„)E (k)~ =0 give rise to two-
dimensional critical points. The functional dependence
of E„(k) within Sq„can be of three types near a.two-
dimensional c.p. , i.e., a minimum, maximum, or saddle
point. Kane shows that near a minimum or maximum
we expect a discontinuity in X' of expression (14) as
a function of E; whereas, near a saddle point a logarith-
mic singularity is expected. This behavior is shown
ln Fig. 13.

Fzo. 12. Intersection of the L' .(k) surfaces with A„(k) surfaces. "E.O. Kane (to be published).
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If the photon energy is changed slightly we define a
new surface 5&(„+~„). According to 'Kane the Itwo-

dimensional c.p. 's on the first surface will be in one to
one correspondence with a neighboring set on the
second surface. The trajectory which is a two-dimen-
sional c.p. follows in k space as Ace is varied is called a
critical line (c.l.) (we use Kane s terminology). That is,
if ke(h&o), defines a c.l., the energy E„(ks(A&a)) plotted
as a function of A~ is called an E—A~ image of the c.l.
Kane also shows that every three-dimensional c.p.
either in the joint energy bands or in the conduction
bands (OCP or ECP) has at least one critical line

passing through it.
Below we shall draw E—A~ images for some of the

principal peaks in our energy distributions. These can
be compared with the analysis recently completed by
Karie for the 110 symmetry plane. In particular, we
shall find that the structure can be partially related to
c.l.'s in the 110 plane. It should be emphasized that
our bands are 311 ordered by increasing energy. Kane,
however, takes advantage of the reRection symmetry
of the 110 plane to classify his states according to the
reflection parity of the wave functions. The even and

4)0'
~~

ED

K

O

CL

4.4 5.0 5.6
0 m (ev)

6.2

c.p. 's into one another. Assuming that the analytical
assignments of Fig. 15 are basically correct, we can
draw E—Ace images. This has been done, and the result

FzG. 14. Strength plots for the separate histograms contributing
to N(E, Aa&). The peak contribution for each histogram (near
8=2.0 eV) has been selected and plotted as a function of ~.

Fzo. 13. Behavior of the density
of states near a two-dimensional
critical point according to Kane.
Sf' comes from an absolute mini-
mum, M, from a saddle point, and
M an absolute maximum. 8 refers
to the conduction-band energy
and Ace is the interband-gap energy
(taken as axed).

Mu

3

4J

z

(o)

Pi Ms
I

l

I

l.5

hcu=4. 4eV

2.5
E (eV)

1.5

h ~=4.7eV

2.5

odd states after having been separated are then ordered
by increasing energy. Hence, when an even band crosses
an odd band in the 110 plane there will be a discon-
tinuity between our definition and Kane's.

We are now in a position to re-examine our computed
kinetic-energy spectra in terms of their analytical
properties. The first thing to be discussed are the peaks
of series B. Examination of the individual histograms
shows that the largest contribution to E(E,Aa&) near
E=2.0 eV comes from the 4~ 6 transitions (see
Fig. 14), i.e., transitions from the topmost valence band
to the second lowest conduction band. Attention is
therefore focused on this pair of bands. In Fig. 15,
E(E,flu) is drawn including only the contribution from
the 4 —+6 transitions for a number of different fre-
quencies. We have attempted to resolve the structure
in terms of the singularities expected from K.'ane's
analysis of two-dimensional critical points; although,
this is somewhat difficult to do in a categorical way.
This is particularly dificult when several c.p. fall near
the same energy as is apparently the case for the higher
frequencies of Fig. 15.The three-point averaging which
is used to reduce statistical scatter tends to blur the

(c) h cu = 5;0*eV

5.3 eY

3

4J

z

I.5, 2.5 l,5
E (eV)

2,5

(e) htu=5. 6 eV htu*5.9eV

3

4J

z

l.5 2.5
E {eV)

1.5 2.5

FzG. j.5. The contribution of the 4~ 6 h&stograms to X(E,~)
for several choices of Ace. The dotted lines represent analytical
behavior associated with two dimensional critical points (c.p.).
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C. Comparison of Theory and Experiment

In Fig. 17 we directly compare our current theoretical-
energy distributions with the preliminary 'results 'of

experiments by Gobeli and Allen'4 which are similar,
apart from peak heights, to those of Spicer."We find
that all of our structure is in good one-to-one relation-
ship with experiment for the values of Ace under study.
The only disappointment in this respect is the failure
of the experiment to show any evidence for the Z4 —+ Z&

peak we see in our 4.4-eV distribution. There is a
possibility that the experiment missed the narrow-
frequency range required to observe it. From the experi-
ment it appears that the series-8 peaks are rigidly 6xed
with respect to kinetic energy for Ace&5.0 eV, whereas
our results show a slight movement of the peak. The
experimental resolution, however, is such as to not rule
out a slight variation in kinetic energy as A~ is
changed. ' The point of greatest disagreement between
theory and experiment is in the difference between our
peak intensities and those seen experimentally. The
main discrepancy is the relative heights of peaks of
series A and B. We might assume that a large number
of h. electrons are degraded in energy, as, for example,
by Auger processes. This would lower the peak heights
of series 8 with respect to those of series A. For the
sake of discussion, we may assume that the heights of
the peaks of series 8 are reduced by a fixed fraction.
In Fig. 18 we compare the experimental strength of
series I3 with theory (the latter reduced by a fixed
factor), where both have been normalized to the peak
heights of series A. This procedure allows us to eliminate
errors which enter the problem due to an inapprorpiate
treatment of P(E). It is clear that P(E) may be sub-
stantially reduced at energies corresponding to that of
series 8 by energy-dependent scattering effects. This
method of comparison eliminates P (E) f'rom the
problem by comparing intensities at nearly fixed
energies (i.e., series 2 and series 8). We therefore get
a good test of the density-of-states arguments upon
which the analysis of the photoelectric emission
depends.

It would appear then that our model of the photo-
electric process in Si including only direct transitions
between bulk valence and conduction bands is able to
explain the basic features of the data. A more complete
calculation to give better results for the line shapes
should include dynamical effects that we have neglected.
From the present calculation it seems that indirect
transitions are considerably weaker than for cadmium
sul6de where Spicer'~ has found that they must be
included to explain his data.

~ G. W. Gobeli and F. G. Allen (to be published).
"W. E. Spicer and R. E. Simon, Phys. Rev. Letters 9, 385

(1962).
ss F. G. Allen (private communication).
» N. B.Kindig and W. E. Spicer (to be published).
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I'IG. 18. Ratio of peak heights in series B to those of series A.
Series B has been multiplied by an arbitrary factor to approxi-
mately normalize the two curves.
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Fro. 19.Comparison of e& (ca) as presently computed with experi-
ment (Ref. 28). We have taken a constant dipole matrix element
in constructing es(cu), and have normalized the two curves at
4.2 eV. Only the 4 —+ 5 contribution was included since for this
energy range contributions from aH other pairs of bands are
negligible (Ref. 8).

's H. R. Philipp and E. A. Taft, Phys. Rev. 120, 37 (1960).

VII. FURTHER DISCUSSION OF THE
DIELECTRIC CONSTANT

In Ref. 8 we considered es(&o), the imaginary part of

the dielectric constant. We found. good over-all agree-
ment between theory and experiment for Si, however,
there did not seem to be any evidence for the sharp peak
at 3.4 eV seen in the measurements. "Our present study
including a sample 20 times larger than previously em-

ployed does clearly show the peak (see Fig. 19).The peak
is associated with a critical point at I'(I'ss~ I'is), and

perhaps another one on 6 as seen in Fig. 20; although, an
increase in our interband energy 0.02 eV at the critical
point would serve to Qatten out the kink in the bands
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C. P. urements on stressed Si samples by Gerhardt. "Gerhardt
finds, when he applies a stress along the (111)direction,
that the effect is to shift the optical peak in energy but
to leave its shape the same. This is what we expect with
our model, since all the 6 axes should be equally
affected by a (111) stress. When Gerhardt applies a
(100) stress, however, the peak broadens. Again this is
what our model should predict since a (100) stress will
move states on different 6 axes by different amounts
depending on whether the 6 axis is perpendicular or
parallel to the stress direction.

K

FIG. 20. The 4 ~ 5 energy bands in the 110 plane for interband
gap energies near ~3.5 eV. The shaded portion represents the
region of the 110 plane which contributes to the 3.5 peak. The
two narrow strips along h. are drawn considerably wider than they
actually appear.

along 6 enough to eliminate this c.p."The important
thing to notice in Fig. 20 is that most of the states
contributing to the 3.4-eV peak come from points near
6; although, we may speak of the c.p. from the topo-
logical viewpoint as being located at I'.

This interpretation is supported by reflectance meas-

' Actually a thorough survey of k space near I' might very well
show a cluster of weak critical points. Since the positive identi6ca-
tion of these is probably beyond the limits of our present proce-
dure, the search for them does not appear to be warranted.

ACKNOWLEDGMENTS

The author is grateful to F. G. Allen and G. W.
Gobeli of Bell Telephone Laboratory for extensive
discussion of their data prior to publication. He would
particularly like to thank E. O. Kane for many stimulat-
ing discussions and for allowing the author to read his
manuscript before publication. Thanks are due to
H. Y. Fan and S. Rodriguez for useful conversations,
to H. M. James for providing the author with ideal
working conditions during his stay at Purdue Univer-
sity, and to the staff at Northwestern University for
final preparation of the manuscript. He would also like
to acknowledge the 7090 staff at Purdue for technical
assistance. Finally, the acknowledgments could not
possibly be complete without the author expressing his
gratefulness to J. C. Phillips for having introduced him
to the study of energy bands and having encouraged
him to undertake this problem.

30 U. Gerhsrdt, Phys. Letters 9, 117 (1964).


