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Cerenkov Radiation from Charged Particles in a Plasma in a Magnetic Field*
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The Cerenkov radiation from electrons in a plasma in a magnetic field has been calculated by Kolomen-
skii, who determined the allowed frequency regions and the energy loss. It is shown here that his results are
in error. The allowed frequency regions have a much more complicated dependence on the plasma frequency,
gyrofrequency, and electron velocity than he indicates, and he overestimates the energy loss for electrons in
the earth's ionosphere by a factor of about 100. The total energy loss from slow electrons by Cerenkov
radiation is comparable to their synchrotron loss, but is mainly at lower frequencies. For fast electrons, the
Cerenkov loss is much smaller than the synchrotron loss.

I. INTRODUCTION

' N this paper we investigate the Cerenkov radiation
~ - from an electron, moving uniformly in a collisionless
electron plasma in a magnetic field. This radiation was
first calculated by Kolomenskii, ' who derived the al-
lowed frequency regions of the emitted ordinary and
extraordinary Cerenkov waves for a given plasma
electron-number density E and magnetic 6eld H. Also,
he calculated the energy loss of an electron due to the
emission of Cerenkov radiation.

We have reinvestigated this problem and have come
to conclusions that differ from those of Kolomenskii. In
particular, we find a more complex frequency region for
the allowed waves, and that the energy loss is of a
qualitatively and quantitatively diferent character
than the results of Kolomenskii'.

Recent investigation of this problem has been due to
the interest in the radiation from fission electrons in the
earth's upper atmosphere resulting from nuclear ex-
plosions. ' We show that for relativistic electrons moving
in the earth's magnetic field in the ionosphere, the rate
of Cerenkov radiation is much less than the radiation
from an electron with the same energy moving in a
circle (i.e., synchrotron radiation). '

In the next section we derive the conditions under
which Cerenkov radiation is possible in a plasma. We
then go on to calculate the general expression for the
energy loss. The allowed frequency regions for Cerenkov
radiation for different values of the parameters (roII, too,

and v) are determined, and the energy loss evaluated.
Although the Cerenkov radiation is basically a classical
effect, a quantum-mechanical derivation for the energy
loss is somewhat simpler.

*This research is supported by the Advanced Research Projects
Agency under Contract No. SD-79.
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' Shafranov fV. D. Shafranov, Zh. Eksperim. i Teor. Fiz. 34,
1475 (1958)LEnglish transl. :Soviet Phys. —JETP 34, 1019(1958)j)
indicates that, for the case where the gyromagnetic frequency
(co+} equals the plasma frequency (cv0), the Cerenkov radiation is
larger by a factor oi (c/v) than the synchrotron radiation. We
show that this is not the case.

We are using Gaussian units with A=a= 1; then
e'—1/137. Four-vectors are denoted by small lightface
letters Le.g. , k= (&o,K)$. The dot product of two four-
vectors is taken as a b= a&b&—a b. Also, the notation
a=a&a& —a y is used.

rto'= 1—~o'/~', (2)

where cu is the frequency of the wave and the plasma
frequency is given by

coos = 47rXe'/m . (3)

(E is the number of electrons per cm'; and e and m are
the charge and mass of the electron, respectively. ) Since
v(1, it follows from Eqs. (1) and (2) that Cerenkov
radiation is not possible in this case.

In the case of a magnetic Geld the index is given by'

I"2 sin28
e2=1—X 1—

2(1—X)
V4 sin40 —i/2 —1

—+ l" cos'8
4(1—X)'

roo /ro + oIII/ro, roII= eH/m, and 8 iS the angle
between the direction of the magnetic field and the
direction of propagation of the wave. The plus and
minus sign in Eq. (4) refers to the ordinary and ex-
traordinary waves, respectively. For the case 8=0 we
obtain from Eq. (4) that

rts= 1—~os/~(~~~a) . (5)

Note that in this case (8=0) Cerenkov radiation is

4 J. A. RatcliB, The MagrIeio-lorlic Theory (Cambridge Uni-
versity Press, Cambridge, England, 1959}.

II. CALCULATION OF CERENKOV RADIATION

It is well known that Cerenkov radiation is possible if
the following condition is satisfied:

rt) 1/tt,

where e is the index of refraction and v the velocity of
the incident electron. In the case of a collisionless
isotropic electron plasma with no magnetic Geld
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possible only for the extraordinary wave. Furthermore,
the expression under the square root is never less than
the second term in the denominator. Hence, for the plus
sign (ordinary wave), the denominator is always posi-
tive, and the index less than 1. Therefore, there is
never Cerenkov radiation associated with ordinary
waves, and only extraordinary waves need be considered.

In the presence of collisions n' is complex. The
imaginary part of m' determines directly the polarization
loss while the real part of e2 plays the corresponding role
in the Cerenkov loss. We shall assume that the imagi-
nary part of e' is negligible in the following. In the
earth's atmosphere this assumption restricts the in-
vestigation to altitudes above 100 km.

For simplicity we confine ourselves to the case of
electron motion along the direction of the magnetic
field. The general case of an arbitrary angle between v
and H is unnecessarily complicated (algebraically) to
warrant a full quantitative analysis in view of the fact
that the Cerenkov radiation turns out to be much
smaller than other forms of radiation (e.g. , synchrotron
radiation). We have no reason to expect orders of
magnitude enhancement of the Cerenkov radiation for
arbitrary angle between v and H. The method that we
use to calculate the Cerenkov radiation for v parallel to
H can be applied directly to an arbitrary angle between
v and H.

To obtain the energy loss per unit time dW/dt we first
calculate the probability per second that the incident
electron of energy E (momentum LE'—m'jr~') makes a
transition to a state of energy E—~ in range der by
emitting a photon of energy to and momentum K(con =K).
Calling this quantity dI', the energy loss per unit time
dW/dt is given by

t'dl'q
I

k dM)
(6)

u„is the free-particle spinor of four-momentum p
(normalized to u„u~=2m) and ~„„is the photon propa-
gator in a medium and is given in Ref. 5. Only transverse
waves will be propagated. The transverse photon propa-
gator is given by

m =47r/( 'I' K'+is)—
'H. T. Yura, The RAND Corporation, Santa Monica, Cali-

fornia, Report No. R-410, 1963 (unpubhshed).

To calculate the decay rate dI'/d~ we use the result
that the total decay rate is twice the imaginary part of
the self-energy of the electron in the medium. ' The
Feynman diagram for the self-energy of an electron is
shown in Fig. 1. The probability amplitude M for this
process to first order in e' is given by )see Eq. (87) of
Ref. 5j

d'k t' 1
M=ie' u„!y, y„!u,m„„;(7)

(2~)4 k P—a—m+i. )

FIG. 1. Diagram depicting the self-energy of an electron.

I'= —2 ImhE.

Hence from Eqs. (6) through (10) we have

d W e' dtao&d'K ( 4m-

= Im —i
dt E (2s)4

(10)

&u„q„(p-k+m)q„u,gx . (»)
k' —2p. kjie

In Eq. (11) y4, are the appropriate transverse gamma
matrices.

In the terms in the square brackets in Eq. (11) we
may neglect k compared to P+m and in the denomi-
nator we may neglect k' compared to 2P k.s Noting that
u~y4, (P+m)74, u~= —424,'= —2P' sin'8 where 8 is the
angle between P and I, and using the well-known rule
to obtain the imaginary part of Feynman amplitudes'
we obtain

dW (e'
dk (2E

G)dcod E
(4m) (2m)'

(2n.)4

X8(4o'e' —K')8(2P k)2P'(1 —cos'8)

= e'v oidcvKdKd(cos8)

X8(40'rP —K')8! cos8——
!(1—cos'8)

ev)

2 {)

1
~d~ d(cos8)5! cos8——!(1—cos'8). (12)

1 m)

Note, if u is a function of frequency only Eq. (12)
reduces to the familiar Cerenkov loss expression in an

We are interested in the radiation of soft photons. That is,
~«m. For co&m, n'= 1 and hence there is no Cerenkov radiation.

7 See Ref. 5.

where''is given by Eq. (4) with the minus sign and 4 is
an infinitesimally small positive number.

With the normalization used, the relation between 3f
and hE (the self energy) is given by

DE= M/2E.

The decay rate F is related to AE by
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isotropic medium:

d8' e2V

dt 2 222 (cp) v'
cos20= 1/n2 (0)v'. (14)

In the case at hand 222 is given by Eq. (4). The delta
function in Eq. (12) indicates that we must obtain the
roots (cosset~) of

where the prime on the integral indicates integration
only over positive values of cp such that 22) 1/v. From Eqs. (4) and (14) we 6nd

=cos 0+=2

22~2 (cp)v'

sgv2 (s—1)'—c2'L2v's+. 1—v'f~c2{4v'(s —1)+c2'(1—v')')'"j
2v2( v'(s —1)'—c22sLsv2+1 —v2])

where
s=cd /cdp i c2= cps/cpp.

The frequency regions co corresponding
radiation are determined by requiring

cies in directions close to 8= 90'. If the condition is not
(15) satisfied, there will be a frequency cpr, for which the

square root vanishes, and no propagation is possible
to Cerenkov

below coL,. The frequency ~1. is

0&cos20~& 1.

III. ALLOWED REGIONS

(16)
GOL, =GOp

~2 (1 v2) 2- 1/2

In this section we shall consider the locations of the
allowed regions in the frequency plane as the parameters
Mp MJI and m are varied. Since the parameter cop only
appears in the ratios s and 0,, it may be used to normalize
the variables. Therefore, the problem is to ascertain for
what values of s the inequality (16) is satisfied as c2

varies arbitrarily, and m varies between 0 and 1. For the
earth's ionosphere, typical values of c2 are 0.1 )F2 layer,
winter day, sunspot maximum], 0.28 jF2 layer, sunspot
minimum), and 0.5 //P. layer, winter day, sunspot
minimum). These correspond to plasma frequencies of
13, 5, and 2.8 Mc/sec, with the variation of the earth' s

magnetic field taken into account.
Kolomenskii asserts that there are two different

propagation modes, depending on whether or not cv is
less than cop. We shall show that the behavior is con-
siderably more complicated, and there are 17 different
cases to consider.

The solutions of Eqs. (15) with the plus sign will be
referred to as P waves, those with the minus sign as Q
waves. It can be shown that the only values of s for
which the numerator can vanish are s= 0 and s= 1+c22,
equivalent to cp2= cdp2+cpir2. The latter root is a P wave.
A consideration of the values of the right-hand side of
(15) for s near 1+c22 shows that cos28+ is positive for
s(1+c22, and is negative for s) 1+c22. Hence, there will

always be an allowed mode for frequencies slightly
below cp2=cpp2+ ppii2=—cp~2.

For the zero of the numerator at s= 0 to be reachable
from finite values of frequency, corresponding to propa-
gation of low-frequency waves, the square root expres-
sion in the numerator of (15) must be positive for s=0.
This corresponds to the condition

cc) 2v/(1 —v') .

If this condition is satisfied, there will be two waves
(P and Q) capable of propagation at very low frequen-

The other end point of the inequality (16), cos'0= 1,
has three roots. One is at cop, which is a singular point
of the defining equation (4) for the refractive index. The
others are at the frequencies co+ and cv given by

GDII

erg= —1~ 1—
2 c22(1—v')

1/2-

(19)

For the roots cp+ to be real, the square root in (19) must
be positive, giving the inequality

n&, o)~ real.
(\ v2)1/2

(20)

e( 07 ~P~
(1 v2) (1+v2)1/2

(21)

The expression on the right of (21) and (22) is always
greater than that of (20), which is, of course, necessary.

Since the right-hand member of the inequality (20) is

always smaller then the right-hand member of (17), it
follows that if (20) is not satisfied, the only possible
mode of propagation is a P wave, which exists between
cpp and cp22. If (20) is satisfied, it is necessa, ry to consider
the relative values of cop, co+, ~, and col. if the latter
exists.

The roots ~p, ~+, and ~ are found by equating the
numerator and denominator of (15) and performing
squarings and other algebraic manipulations. It is
therefore necessary to ascertain whether the roots corre-
spond to P or Q modes. Direct substitution shows that
cop and co+ are always P modes. However, co may be
either P or Q, as determined by the inequalities
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The relative positions of co+, co, and cop mill now be
considered. By definition, or+) co, and it may be shown
easily that co+(co~, co )coI, when the latter exists. The
values of a&+ and &o become equal when (20) becomes an
equality.

The values of co+ and co may cross cop if n and e vary.
The conditions take a rather complicated form:

/
(

Gos

I

Cos~ y
a =2 2

v'(-' (u ~~a)o, if n~~ 1/(1 —n')

'0 (2 &
GO (COP

&

P )2, Cu+)COP,

&~ 1/(1

(23)

(24)

(25)

(26)
Cos~ e

The inequality (25) shows that for e')-'„there is a P
mode extending from co+ to co~. The relative values of
the inequalities (21), (22), and (23)—(26) depend on v.

They are equivalent if
Cos

L

1—v' (1—e') (1+v')'"
i/2 13'

(2&)
Cos~ g

Hence, there is a change in character of the modes for
p (3 and p ) ~ . Also, the relative values of the in-
equalities (17) a,nd (23)—(26) change at v'= 4. Therefore,
the position of the roots and mode types is different for
four different regions, viz. , Q(v'(-' —'(~'( —' —'(~'( —'
—('0 (1.

For the three ionospheric values of n, (0.1, 0.28, 0.5),

0
0 2

Ed/4l p
3 4

Pro. 3. Allowed regions for v2=0.3.

the squared velocities corresponding to the inequality
(20) are 0.0025, 0.0192, and 0.0588, which correspond to
electron energies of 6, 50, and 150 keV. These are all

0

L,
/

)' a =1.4 a2 —4

Cos 8
a2 Cos~ || a =3

Cos~ 8
a2 =1.02 Cos~ 8

a =2 ~ 7

Cos Cos~ 8

0
0

4l. GPpI

FIG. 2. Allowed regions for v~=0.2.

0
0 2

Cd/4l p

Fzo. 4. Allowed regions for e'=0.4.
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0

cos2 tt

cos~ &

cos~ &

a2= 16

0 = 7

a~= 6.2
1

Figures 2 through 5 show the characteristic pattern of
allowed modes for v'= 0.2, 0.3, 0.4, 0.6, covering the four
regions and displaying the numerous changes of type.
The abscissa is ps/osp, the ordinate is cos'8. When there
are both P and Q waves present, the Q wave always has
the larger value of cos'8. VVhile 20 curves are shown, the
single-branched patterns at the bottom of each set,
corresponding to the failure of inequality (20), are
essentially common to the four sets, so there are really
17 changes of type, all corresponding to extraordinary
waves, instead of the two described by Kolomenskii.

Kolomenskii presents an inequality similar to (23)—
(26). He asserts tha, t for magnetic fields less than a
critical value II&, there will be only extraordinary waves
(our P waves), and for EI)H&, also ordinary waves (our
Q waves), where, in his notation

cos~&

0
0 2

4P/C4g

StrA'ecp
Hg ———

(1 pp)1/2

4ziVec

p2

1
if P(—,

v2

1
p)—.

v2

FIG. 5. Allowed regions for e'=0.6.

relatively sIow compared with the electrons produced in
nuclear-bomb processes. Therefore, for most of the
electrons produced in nuclear explosions, the inequality
(20) will not be satisfied, and the only possible Cerenkov
radiation will come from the narrow region between co0

and Q),~.

This result is manifestly incorrect, since it does not
check dimensionally. If the equation is multiplied by
e/tttc, the left side is a frequency, the right is the square
of a frequency. The correct value for the critical field,
derived from (23)—(26), is:

Hi= (4srlVm)'i'c/(1 —p') .

)0 22

Q )p 23
O

8

a~ )0-24

Synchrotron loss ~
~r

FIG 6 Energy loss per particle

V
Cerenkov loss

)0-25

)0-26
0 .2 .5

V
.6 .7
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IV. ENERGY LOSS

Returning now to the expression for the Cerenkov
loss $Eq. (12)j, we have

Byusing the relation 5(f(x))=8(x x—o)/)df(x)/dx~t, „,
where f (xo) = 0 we obtain, with s= co'/co02,

dW e'~0'e ' ds(1 —cos'8+)
dS' e'v

dt 2 o

—1 1
&ed~ d(cos8)8 cos8—

1 e(8)e

X (1—cos'8) . (28) where

A (s)

u'(e' —1)'(1—~0')
A(s)= 1+——

2tt O2N2nm (n2 n—o~) —& (z —1)(~'p' —1) (1—No') (29)

Ã0 =1 Mo/M s~= 1/0' cos28

and cos 8+ is given by Eq. (14) with the plus sign in
front of the radical sign. The prime on the integral in
Eq. (29) indicates that the range of integration is re-
stricted to values of s such that 0&cos'-8+&1.

We write the Cerenkov loss as

value of a&(a&~; ) which corresponds to wavelengths
about 10 times the mean distance between particles of
the medium. To determine co~; we substitute E 1/10K a
(where X& is the Debye length) into the relation
rP=E'/&o' That i.s, co~; is determined by the equation

where

d W/dt = ',e'(so'I (n-,~),

(1—cos'8+(~) )
I(n,m) = v ds

A (s) .

(30)

(31)

e'((oi;.P) = (1/10Xg)'/csi; '.
Or, equivalently,

rP(si; ) = (10-'/si; )(m/kT),

(32a)

(32b)

We note that the upper limit on the integral in Eq.
(31) is at &o~' ——a&0'+co~'. This value of a& corresponds to
emission at O=~x. According to the relations cos'0
=1/~'p' and n'=uP/E' we see that at 8=-', m-, K= ~
(i.e., X= 0) where the results of the macroscopic theory
cannot be applied. Therefore, for the calculation of the
integral in Eq. (31) we have used as an upper limit that

where s~; ——su~; '/~0', k is the Boltzman constant and T
is the temperature of the plasma. In this paper we are
interested mainly in the evaluation of the Cerenkov loss
from free electrons in the earth's ionosphere. In this

0.6

0.10
0.5

0.08
0.4

0.06
0.3 r

v =0.9

0.04 0.2

0.02

v=112
v =1/8 0.1

0-
0 0, 1

c e

0.2 0.25 1.0
4I /hip

12

1.05
0
1.00 1.01 1.02 1.03 1.04

Pro. 7. Normalized power spectrum, a=0.28, slow electrons, Pro. 8. Normalized power. spectrum, n =0.28, fast; pit;t;t;runs,
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0.02

0.015

v = 1/8 We have solved Eq. (32c) graphically for a=0.28 and
various values of e, with the result that co~;,„'is ex-
tremely close to ~~'=&so'+co"'=1.078"o'. That is,
negligible error is introduced by integrating out to co~'.

In the next section we give numerical results and
compare the Cerenkov loss to the synchrotron loss.

V. NUMERICAL RESULTS AND DISCUSSION

v =1/8

0.01

0.005

1/12

0 ' 5 1 ~ 0

CU/OJp

I'zG. 9. Normalized power spectrum, n =1, slow electrons

case' co" 2mX1.4 Mc/sec, cu~2vrX5 Mc/sec (i.e.,

n=0.28), and T 1000'K,' Eq. (32b) becomes

" (~iim) = 10/'iirn ~

We have evaluated I(n, v) for various values of v and
n=0.28 Leo+= 2~X (1.4 Mc/sec), a&o= 2~X (5 Mc/sec) j.
This value of o, corresponds to the case of the earth' s
magnetic field and ionosphere ( 150 km). Figure 6
shows the total Cerenkov loss as a function of v for
a=0.28. Equation (20) shows that there will be low-

frequency radiation emitted only for n& 1/7. For larger
values of v, the radiation will be in the range from ~o to
&sir= (&uo2+~~')'~'~1. 04&so. The integral I(0.28, v) is of
the order 10 4 to 10—'. By contrast, Kolomenskii, who

incorrectly associates the Cerenkov loss with the
polarization losses in a plasma without a magnetic field

(i.e., the Coulomb loss), obtains a result that is loga, —

rithmically-dependent on a long-wavelength cutoff. He
takes the integral to be on the order of unity, and
thereby greatly overestimates the energy loss.

It is also of interest to determine the power spectrum
P(~) (energy radiated per unit time per unit frequency

(32c) interval). Now, dl'V/dt= J P(cv)d&u, hence from Eq. (29)

0.7

0.6

0.5
v = 0.99

0.4

0.3 Y =Oo
FIG. 10. Normalized power spec-

trum, + =1, fast electrons.

0.2

0.] v =1/2

0
1.0 1.2

(d/GJ0

1.3

H. K. Kallman-Bijl et el., Cospur International Reference Atmosphere (North —Holland Publishing Company, Amsterdam, 1961).
9 This value of T corresponds to temperature of the ionosphere
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we obtain
P (&o) = e'v co(1—cos'8+)/2A (&o),

—= se'v() (~) . (33)

d8', 2e'o)II'e'

dt 3(1—v')

Figures 7 through 10 show the normalized power spec-
trum Q(co) for cr=0.28, 1.0 and various values of v.

Ke now compare the Cerenkov loss to the synchrotron
loss of an electron of the same energy moving in a circle
perpendicular to the magnetic field. The synchrotron
dW, /dt loss is given by'

' L. D. Landau and E. M. Lifshitz, The Classicut Theory of
Fields (Addison-Wesley Publishing Company, Reading, Massa-

chusettss,

1958).

The synchrotron loss for n=0.28 is also plotted in
Fig. 6 as a function of v. At relativistic velocities the
synchrotron loss dominates the Cerenkov loss owing to
its (1—v') ' dependence on the velocity. At non-

relativistic velocities we see that the Cerenkov and
synchrotron loss are of the same order of magnitude
with the Cerenkov loss being a,t most 3 times as large
as the synchrotron loss for v~1/7.
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Enhancement of Plasma Density Fluctuations by Nonthermal Electrons*

FRANCIS PERKINS

Center for Radkophysics and Space Research, Cornell University, Ithaca, Xeno York
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In a plasma in thermal equilibrium, the spectrum of electron density Quctuations that have a wavelength
longer than the Debye length has a sharp maximum near the electron plasma frequency. In this paper, the
eBect of a non-Maxwellian electron velocity distribution on the spectrum of electron density Quctuations
is computed for frequencies near the electron plasma frequency. The electron velocity distribution is as-
sumed to be isotropic but not necessarily Maxwellian and the effects of electron-ion collisions are included.
The results show how the presence of a small number of energetic electrons can enhance the intensity of the
Quctuations near the plasma frequency, provided the Landau damping resulting from these energetic elec-
trons is greater than both the collision damping and the Landau damping caused by the ambient electrons.
The results are applied to the ionosphere radar-backscatter experiments, where the energetic electrons are
photoelectrons produced by solar uv radiation. In the case of the Arecibo radar experiments, the intensity of
the Quctuations near the electron plasma frequency is estimated to be enhanced at plasma frequencies
greater than about 4 or 5 Mc/sec.

1. INTRODUCTION

ADAR backscatter from suSciently high levels in
the ionosphere is mainly "incoherent scatter, "i.e.,

scattering from random electron density Quctuations
which exist because the electrons are discrete particles.
Such experiments single out the spatial Fourier trans-
form of the electron density with wave vector q= 4m X ',
where X is the radar wavelength. The experiments
measure the total backscattered power which is pro-
portional to the mean-square value of the spatial
Fourier transform and also the distribution of back-
scattered power with frequency which is related to the
time dependence of the Fourier transform.

~This research was sponsored by the Advanced Research
Projects Agency as part of Project DEFENDER and technically
monitored by the U. S. Air Force Of5ce of Scientific Research
under Contract Qo. AF 49(638)-1156.

$ Cornell-Sydney University Astronomy Center.

A number of authors' have calculated the theoreti-
cal frequency spectrum I(co) for a given wave vector.
These calculations in gen. eral assume (1) that the
dynamics of the plasma can be described by the Vlasov
equation which neglects charged-particle collisions, and
(2) that the electrons and ions have Maxwellian velocity
distributions which are not necessarily at the same
temperature. The charged-particle collision frequency
can be expressed in terms of the parameter, A:

A=4nnD'=DK(T)e '=(K(T))"'(4srn) 't'e ' (1)
where D is the electron Debye length. D is defined by

D '= 4rrn e'K '(T)— —
(2)

t E. E. Salpeter, Phys. Rev. 120, 1528 (1960) hereafter referred
to as I.' E. E. Salpeter, Phys. Rev. 122, 1663 (1961).' J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. (London)
A259, 79 (1960).

4 J. A. Fejer, Can. J. Phys. 39, 716 (1961).


