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Diagonalization of the Antiferrornagnetic Magnon-Phonon Interaction*
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A technique is developed for the diagonalization of quadratic forms consisting of operators whose commu-
tators are c numbers. In particular, it is shown that the transformation matrix S which diagonalizes such
quadratic forms, must satisfy S g' S~=g, where g is a matrix whose elements are c numbers depending upon
the commutation relations of the original variables which constitute the quadratic form, and g' is similarly
defined by the new variables. A perturbation expression is then derived for the elements of S.These results
are applied to the magnetoelastic interaction in antiferromagnets. It is found that a magnetic field oscillating
at a frequency co«p (2HsH&)it' applied transverse to the s axis can parametrically excite phonons at half-
frequency when the amplitude of the field exceeds a certain critical value.

I. INTRODUCTION

M~ WING to their success in high-energy phenomena,
field-theoretical techniques are now being applied

extensively to solid-state problems. Thus the fields
associated with the various degrees of freedom in a
crystal have been quantized. For example, phonons are
quantized lattice vibrations, magnons are the ele-
mentary excitations of an exchange-coupled spin
system, and plasmons are the collective Coulomb exci-
tations of an electron gas. The introduction of such
"particles" is particularly convenient because most of
them behave like bosons. In determining the static
properties of a system this boson nature greatly sim-
plifies the evaluation of expectation values. Further-
more, in the calculation of dynamic quantities such as
relaxation times and thermal or electrical conductivities,
the concept of boson scattering is very convenient.

BrieQy, the 6eld quantization as applied to solid-state
situations is achieved in the following manner. The field
to be quantized is defined by its Hamiltonian. The
canonical field variables associated with each normal
mode are determined and expressed in terms of creation
and annihilation operators uI,~ and a~ such that the
quadratic terms in the Hamiltonian take the form
+cot, (ttetas+ —,'). Here k is the normal-mode designation.
In most cases the modes are taken to be plane waves,
in which case it is the propagation vector.

If a perturbation is now introduced which couples
this field to itself or to another field described, say, by
b~t and bI„ then the total Hamiltonian will no longer be
diagonal but will contain o6-diagonal terms of the form
aI,ur, , u~b~ a~bi, ~, etc. In classical coupled-mode theory
the procedure for the diagonalization of such terms is
well known. ' However, for noncommuting modes the
inclusion of the subsidiary condition that the transfor-

mation is such that the new modes satisfy certain com-
mutation relations, modi6es the diagonalization pro-
cedure slightly. The second section of this paper con-
siders this problem.

Actually, the technique developed in Sec. II is
more general than that just described. It enables one
to diagonalize any quadratic sum of operators whose
commutators are c numbers, assuming that the diagonal
form exists. Thus, one can directly diagonalize quadratic
forms of coordinates q and momenta p and spin opera-
tors S~=S,&iS, (in the linearization approximation
in which S.=constant) without first introducing un-
coupled boson operators.

It is found that the transformation is, in general, not
unitary. For example, when boson creation operators
couple to boson annihilation operators or vice versa,
the diagonalizing transformation is not unitary. A
perturbation theory is presented in Sec. III for finding
the eigenfrequencies and the mode admixtures in the
regions where the modes are nondegenerate. Finally, as
an example of these procedures, we examine the modes
resulting from the interaction between antiferrcenag-
netic magnons and phonons.

II. GENERAL THEORY

A. Eigenvalue Condition

Any Hamiltonian which is quadratic in collective-
mode amplitudes may be expressed in the form

se= XtHX,

where X is a column matrix consisting of the rt inde-
pendent operators g;, the row matrix Xt is its trans-
posed Hermitian adjoint, and H is the c-number
Hermitian matrix which produces the original quad-
ratic form. If S is a linear transformation of the form
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familiar eigenvalue condition for c-number quadratic
forms. However, as we shall see below, S need not in
general be unitary.

The commutation relations may be written

[X,Xt]=X(X*)'—(X*X&)&=g (4)

where X* is the column matrix of the Hermitian ad-
joint operators, X~ is the transpose of X, and g is a
matrix whose elenients g,; are c-numbers. For boson
operators g is diagonal. Notice that the transpose of the
product of matrices whose elements do not commute is
robot equal to the product of the transposes in reverse
order.

By using Eq. (2) in Eq. (4), we have

[SX',X'tStj—=SX'(X'*)'(S*)'
—(S*X'*X"S')'=g. (5)

Since S is a c-number matrix, the second term becomes
S(X'*X'~)r(S*)~. We seek new operators X' also
having c-number commutators g'. ' Thus we have

where I is the e by e identity matrix. If x,=P, S,,x is
to be consistent with x +,——P;5„„;,;x then the S
matrix must also have the form

(12)

From Eqs. (10) and (12) and the eigenvalue condition
given by Eq. (9) it can be shown that the eigenvalues
associated with the adjoint part of X are the same as
those associated with the first e elements. Therefore the
diagonalization of the 2e by 2e matrix (10) actually
reduces to diagonalizing an e by e matrix because the
secular equation is of order e in 0 where 0 is an eigen-
value. Furthermore, it can be shown that the eigen-
values are also real even though the matrix gH is not,
in general, Hermitian.

In most applications it turns out that the Hamil-
tonian does not contain terms coupling operators to
their adjoints.

[X',X't7=—X'(X'*)'—(X'*X'&)'= g'. (6) B. Equations of Motion

Therefore, Eq. (5) reduces to

Sg'(S*)'=g - Sg'S"=g.

From this result we have

(7)

S—' =g'S'g —' a,nd (S')—' = g
—'Sg'. (8)

Thus, we can immediately write the inverses of S and
S"without tedious calculations.

By these results, the eigenvalue condition (3) now
becomes

In many cases, particularly in classical situations,
mode coupling is described by equations of motion
which relate the time or space derivative of X to itself.
The relation between our direct treatment of the
Hamiltonian matrix and the equations of motion is now
established; the methods of Sec. II A then apply also
to the equations of motion. However, in the usual case
where a Hamiltonian is given, the equations of motion
need not be written down. Consider the equations of
motion

H S=g-'Sg'o& iaX/at= LX, (13)

This is the matrix eigenvalue equation which determines
S and Qz. In Eq. (18) we show that this may be written
as a usual eigenvector equation.

It should be noted that in writing the Hamiltonian
in the form of Eq. (1) that for the case of boson opera-
tors the column vector X will, in general, contain all
the appropriate operators plus their adjoints. Thus, if
the first e elements of X are independent annihilation
operators and. the v+1 to 2e elements are their corre-
sponding creation operators, then H takes the form

where L describes the coupling. Such an equation of
motion can be obtained from the Hamiltonian 3C by the
relations

&gX/at= [X,xj=gHX. (14)

If we introduce new variables by X=SX', Eq. (13) is
diagonalized if

LS=Sal„ (15)

where Qr, is the eigenvalue ma, trix of L. By comparing
Eqs. (13) and (14) we see that

Hii H, 2 )H= H* H'1 (10)
(16)L=gH.

Therefore the eigenvalues of L are related to the eigen-
values of H by

where Hii and H, 2 are e by I matrices. The metric for
this choice of X is

tl 0~
Eo —I)

' If we were to require that g'= g this would be just the quan-
tum-mechanical condition that the transformation be canonical,
analogous to the classical condition that the Poisson brackets be
invariant.

(17)

In the boson case where K contains terms which
couple operators to their adjoints then X will consist of
twice as many elements. In such cases Eqs. (14), (16),
and (17) are multiplied by a factor of 2.

It is interesting to note that the matrix g also appears
classically when one is dealing with modes which are
the components of axial vectors. This occurs, for exam-
ple, in the case of spin S in a, magnetic field H, where
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the energy has the form S.H while the equation of
motion is S~S&(H. In this case Qz has eigenvalues
which are negative relative to one another correspond-
ing to oppositely precessing modes. The form of g, how-

ever, ensures that the energy eigenvalues are all positive.
A diagonalization procedure based on the equations

of motion has recently been described for noncommut-
ing modes by R. L. Walker. '

III. PERTURBATION THEORY

Although the application of the theory developed in
the preceding section is straightforward, it is often
tedious. Also there are certain calculations for which
one needs only certain elements of S. Therefore an
approximate expression for 5;, itself is desirable.

For this purpose we 6rst notice that the matrix
equation (9) can be written as the eigenvector equation

The 6rst-order correction to the eigenvalues is zero
since H&'& has no diagonal elements. But the second-
order correction is

(HijHjkgiigjj/(gii Hii gjj Hjj )) ~ (25)

IV. ANTIFERROMAGNETIC MAGNON-PHONON
INTERACTION

A. Simple Antif erromagnet

Let us take as our simple antiferromagnet a two-sub-
lattice system in which sublattice i is exchange-coupled
to sublattice j, both having uniaxial anisotropy. The
Hamiltonian is then

K~F ——2J p S,"S,—E (p (S *)'+p (S')') (26)

gHS;=x;S;,
where S; is the ith column of S, i.e.,

(18) The spin fields of each sublattice are quantized into
magnons by the transformations

S""=(S/2A')'is P (a +a st)e'~'*
S'= (S/2X)' 'Pi (bs+b i, )e'"'& (27a)

and
(20)

S,s= i(S/—2')'i' Ps (as—a st)e'""'
SP =i (S/2N)'I' Ps (bi, be)e'"'i— (27b)

This holds when g' is diagonal, which is the case when
the final modes are bosons. Since this is what we usually
desire we shall consider this case. A nondiagonal g' is
easily handled.

The usual perturbation theory4 now applies. Some
care is required since gH is not Hermitian in general.
We consider the case in which the off-diagonal com-
components of H are small and write and

S,*=S—(1/A) Q ai,tag e i&~ a) r;-
ick~

S *=—S+(1/X) Q bi, tbs. e "" i'"i,

[as,ai,']= 1

[ai„a-s]=[as', a i,']=0,

(27c)

(27d)

gH= gH«&+gHi'&, (21)

where H&'& is the diagonal part of H and H&'& is the
oG-diagonal part. We also consider only the nondegen-
erate cases. The zeroth-order eigenvectors are chosen as

with similar relations for the b~ s. The resulting Hamil-
tonian is

BC~F=+i, [Ai.ai,tai, +Ai,bstbi, +Bgag, b s+Bsaitb st],
(28)

where

S'(0)= S""' (22) As —2$Js+2SK=y(Hz+H—g) =—yHz(1+—n), (29)

&a =2S»Va =VBzV a . (30)

The zeroth-order eigenvalues are X;&"=g; B';;~') . The
erst-order eigenvectors are

S,(1) P (S,(0)S,(0)Fg H (1)S.(D)/(g, !H, ,(0) g. ,lH . .(0)))
(23)

Therefore, we obtain

S, ,(1)— ,
g. H, , )O(/g!H, ,(s) g, !H., (0)) ~ S, , (0) 0

' L. R. Walker, Magnetism I, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1963), p. 312.

4 See, for example, L. I. SchiB, Quantum 3IIechanics (McGraw-
Hill Book Company, Inc. , New York, 1955), 2nd ed.

Here s is the number of nearest neighbors and
ys =—(1/s) Ps exp(ik 5) where 5 is the vector to the
nearest neighbor.

Equation (28) shows us that the magnons on the in-
dividual sublattices are coupled together. This coupling
is removed by employing the theory of Sec. II. The
diagonalizing transformation is

(31)

where

ug,
—= ((As+Op)/20(, )'i' sp= ((Ap —Qi)/2Q&)'I' (32)
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and
Q~=y[QA(QA+2IIE)+QE'(1 7'—)J» (33)

Under this transformation Eq. (28) becomes

OAF Qk f)k(crk oIk+pkpk ) ~

B. Magnon-Phonon Interaction

(34)
Pro. 1. Orientation of

phonon propagation and
polarization vectors.

Let us now investigate the effect of lattice vibrations
on our antiferromagnetic modes. These modes can
interact in a number of ways. First of all, if the lattice
parameters change, the dipolar energy between the
spins will change. Similarly, since the exchange integral
J is a function of the lattice parameters, the exchange
energy will also change (exchangestriction). Another
source of magnon-phonon coupling arises from the fact
that the anisotropy constants are also functions of the
lattice parameters (magnetostriction). Whatever the
source of this coupling, one usually represents it by a
power series expansion in the strain and spin variables.
Therefore we take as our total Hamiltonian

Ek.= (sk/Nk)Dk, .
Then X can be written in the form of Eq. (1) with

(41)

(42)

~AF+3cy+~ME (3S) Cks

C—ks

q, s
&qsCqs Cqs ~ (36)

For the magnetoelastic interaction we take

Here 3(!AF is given by Eq. (34).Assuming that the lattice and
vibrations have already been quantized into phonons
with amplitudes c„,propagation vectors q, and polari-
zations s, then 3C„ is

Qk

0
0
0

Dks
Dks

0
Qk

0
0

Dk

0
0

Qk

0

0
0
0

Qk

~ks
&k.

D
Dks

+ks

D
—Dk.

&k.
Ek.*

0
+ks

(43)
%ME ——G Q, (S,*S's,*'+S."S's "')

+GQ, (S,*S's s+SrsS 's &s) (37)

where 6 is the magnetoelastic constant and e is the
strain. In this expression x, y, and z refer to crystallo-
graphic axes. It will be assumed that the sublattice mag-
netizations are directed parallel and anti-parallel to the
crystal z axis. The strain is related to the phonon
opera tors by

q, s

L(q *".) ('. *".)+ (Il &.)('. &.)j
(2A"Mo)s, )' is

X (c c t)cis rr (3g)

3C= P PDkQk Qk+DkPk Pk+OIksCks Cks
k, s

+Dk,Ck, Q' k+Dk, *Ck,Q'k"+Dk, Ck, Qk

+Dks Cks rr kEksCksPk Eks —CksP k—
—Ek,Ck,tP kt Ek,*Ck,tPkj, —

where

Dk, —=—,'GSuk(S/MoIk )'"
Xt (k r" ) (e,, s)+(k z) (e, r ))

(39)

If the phonon polarizations are defined as in Fig. 1,
the total Hamiltonian then becomes

With the magnon-phonon coupling expressed in this
form we can apply the perturbation theory results pf
Sec. III to determine the new coupled modes.

C. Parametric Excitation of Phonons

One particular phonomenon which depends upon a
knowledge of the normal modes of the system is para-
metric excitation at high-power levels. It is a well-
known phenomenon in ferromagnetic insulators that if
a magnetic 6eld, oscillating at a frequency comparable
to or greater than required for magnetic resonance, is
applied transverse to or parallel to the saturating field,
spin waves are parametrically excited when this field
exceeds a certain critical value. ' It has also been ob-
served that if one drives the system at a frequency far
below the resonant frequency it is possible to para-
metrically excite phonons. 7' In antif erromagnetic
materials only the so-called second-order Suhl trans-
verse spin-wave instability has been observed. ' Part of

s H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).' E. Schlomann, J. J. Green, and U. Milano, J. Appl. Phys. $1,
386S (1960).

7 B. A. Auld, R. E. Tokheim, and D. K. Winslow, J. Appl.
Phys. 34, 2281 (1963).' R.. L. Comstock and R. C. LeCraw, Phys. Rev. Letters 10,
219 (1963).

s A. J. Heeger, Phys. Rev. 131, 608 (1963).



&454 WHITE, SPARKS, AND ORTENBURGER

ANTIFERROMAGNETIC

UNIFORM P R EC ESSION

( OFF RESONANCE )

HQNON

The interaction responsible for this process is again
the magnetoelastic interaction. However, since this is a
three-boson process it must arise from terms of the form
(S,*)'e,**, etc. As a particular case let us calculate the
instability threshold for a longitudinal phonon propa-
gating in the xs plane (i.e., &q=0 in Fig. 1). The per-
tinent terms in the Hamiltonian are then

X=GLED; (S )'e,* +g, (S;*)'e,**].

LIKE

Using Eqs. (27), (31) and the perturbation results for
the transformation which diagonalizes Eq. (43), we
obtain terms of the following form:

+= s fqtcrq cql c ql +C.C. sfqlPO &ql c—ql +c.c.
& (45)

where

T 2HEH G 5 coqz sin Oq cosHq S

23APyHg iP (2H@Hg)"'

—1/2

= k, q

Fro. 2. (a) Schematic representation of parametric phonon
excitation. (b) Dynamics of the parametric process in relation
to the normal-mode dispersion diagram.

the reason for this is the practical difhculty in obtaining
high-power sources at frequencies comparable to the
antiferromagnetic resonance frequencies. The question
of low-frequency phonon instabilities is therefore of
importance.

In antiferromagnets characterized only by isotropic
exchange and uniaxial anistropy it is not possible to
excite phonons by parallel pumping because the s com-
ponent of the magnetization does not have a time-
varying part. When dipolar interactions are introduced
in the absence of an external 6eld the individual spins
on the sublattices process elliptically but in such a way
that the s component is still time independent. "Only
by adding an external field to such a system can a time-
varying s component of magnetization be produced.
However, the normal modes of such a system are ex-
tremely complicated. Therefore we shall consider only
the excitation of phonons by transverse pumping.

The lowest order transverse process is that in which
the antiferromagnetic uniform precession, driven far
below resonances, parametrically excites a g, —q pair
of phonons. This is illustrated schematically in Fig. 2.

"R. M. White, Ph.D. dissertation, Stanford University,
Stanford, California, 1964 (unpublished).

and nq', Pq', and cqt' are the new coupled-mode operators.
The sum over q has vanished because there is only one
longitudinal mode at half the pump frequency, co« ———,'~.

The rate at which the number of phonons builds up
through the excitation of the e, mode is, by perturba-
tion theory,

(dlqt/dt), = 2
I fq) I'~~,nqt/rtqt, (47)

where p« is the relaxation frequency of the longitudinal
phonon. The rate at which they relax back to the
thermal value n, ~ is described by

(dmq[/dt)rqtqx 2tfqt(Sqt nqt)

Parametric growth will therefore result when

tq-. &n, i'/
I f,i

I'

(48)

(49)

Expressing the phonon relaxation frequency by its
"Q", rtq~= rqq~/Qq~, the threshold of the driving magnetic
field is

h„„-,=Min
2%vPgtlsHg (2HsH g)'t'

O'S'Qqt sin'Hq cos8q

The minimum threshold occurs for that longitudinal
phonon which makes an angle 0=60' with the s axis.
For the typical number M 10 s'

g, v& 5X10' cm/sec,
&~~10' Oe, HE~10' Oe, and G'~10 "erg this reduces
to hr„;~ 10 Qqt '. Since acoustic Q's are of the order
of 10' such an instability should be relatively easy to
produce. This instability will be characterized by a
sudden increase in the imaginary part of the suscep-
tibility p" or equivalently by a sudden increase in
the eRective a,coustic Q.


