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Six hundred and fifty levels of the low even configurations of the second spectra of the iron group are cal-
culated. The values of the parameters appearing in the theoretical formulas are determined by comparison
with 408 experimental levels. The use of interpolation formulas for the parameters reduces their number to
46, which makes the results very reliable. The introduction of the interaction between 3d and 3s electrons,
and the Q correction reduces the mean error from 230 cm™ to 115 cm™, which is 0.129, of the experimental
range. The special role of the interaction between configurations having the same set of principal quantum

numbers is discussed.

INTRODUCTION

INCE the fundamental paper of Slater,! several

corrections to his first-order formulas for the elec-

trostatic interaction have been introduced and success-
fully used.*¢

By using an old idea of Bacher and Goudsmit,” Racah
has been able to interpret the aL(L+1) and BQ cor-
rections [Q is the “‘seniority operator’’; see, for example,
Ref. 9] as two-body ‘“model interactions” which can
represent the effect on the configuration d" of the inter-
actions with all the configurations differing from it by
two electrons and lying far from it.8*

The present author performed a systematic treatment
of many spectra of the iron group in which the above-
mentioned corrections, as well as the interaction
between the neighboring configurations, 3d”, 3d"4s,
3d"24s? and the spin-orbit interaction were included.*?
Similar treatments were also performed in the Pd
group®!® and in the Pt group.’® In general, very good
results were obtained. It was found possible to treat all
the spectra belonging to the same period and with the
same degree of ionization (a “sequence’) as one problem
by introducing simple interpolation formulas for the
interaction parameters, and to calculate many hundreds
of experimentally known levels belonging to eleven dif-
ferent spectra by use of 31 to 36 adjustable parameters
only. Thus, we could get a very reliable check of the
various corrections. It turned out that the aL(L-+1)
correction is very important in the iron group, while in
the palladium group, its role is less important. The
interaction between the three neighboring configura-
tions is probably the most important correction in the
Pd group. Its effect is still remarkable in the second
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spectra of the Fe group; but it is negligible in the third
spectra of the Fe group. In the second spectra of the Fe
group it was possible also to evaluate the importance
of the BQ correction.’

In 1961, Trees and Jgrgensen!! tried to explain the
observed values of & and 8 by considering the inter-
action of 3p%3d" with 3p*3d"*2. But when they intro-
duced the exchange integrals evaluated from observed
data of Ca 111, they got for @ a value which was smaller
than what was considered the experimental value.

The above-mentioned treatment of the third spectra
of the iron group® was generally rather satisfactory.
(Four hundred eighty-three levels, 307 of which are ex-
perimentally known, were calculated by the use of 31
parameters only ; the mean error is 4-160 cm—'—about
0.139%, of the range of the observed levels.) Only the
configuration 3d® of Fe 111 remained problematic. The
deviations in this spectrum are much bigger than in the
other spectra of the sequence; especially the level
3d% 'S deviates by more than 1000 cm™ from its ob-
served value. It should be noted that the same deviation
appears for the level 3d%(1S)4s @S of Fe 11, so that we
have here a systematic discrepancy between theory and
experiment.

In 1962, Trees' tried to improve our calculations on
the configuration 3d% of Fe 11 by including the inter-
action of 3s23p%3d% with 3s3p%3d7, and got excellent
results (a mean error of 465 cm™).

We therefore thought it worthwhile to perform a new
systematic treatment of a whole sequence of the Fe
group including the new interaction. Such a treatment
is necessary in order to get more reliable information on
the relative importance and interconnections of semi-
empirical interaction parameters, independently of
accidental features of a too limited amount of experi-
mental material.

For this renewed treatment we chose the second
spectra of the Fe group, in which all the interactions
except the new one already had proved significant. In
this sequence we also have maximum experimental
material: Out of 650 theoretically predicted levels, 408
were actually observed.

1 R.E. Trees and C. K. Jgrgensen, Phys. Rev. 123, 1278 (1961).
2 R. E. Trees, Phys. Rev. 129, 1220 (1963).
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THE INTRODUCTION OF THE INTERACTION OF
3s23d" WITH 3s3d»*! AS A “MODEL
INTERACTION”

Let us designate states belonging to 3s?3d™ by Latin
suffixes, and states belonging to 3s3d”t! by Greek ones.
An element Ej, of the energy matrix connecting such
states can always be written in the form

Eka:hkaH’, (1)

where /., is a numerical factor depending only on the
angular part of the matrix element; its value was cal-
culated long ago by well-known algebraic methods.'* H’
is essentially a Slater integral.

H'= (1/35)R2(3d3d ; 3d3s) . (2)

Now, one could calculate the effect of this interaction
by direct diagonalization of the energy matrix of both
configurations. The configuration 3s3d”*! is completely
unknown, but the distance between 35s23d” and 3534t
is much bigger than their internal spread, so that it is
permissible to assume an arbitrary large value for
(3s3d"*+1—3523d™), and determine H’ by least squares.!?

This direct method is, in the general case, very
cumbersome. One should remember that we are already
treating three configurations together: 3s23d", 3s23d"4s,
3s23d"?4s% Thus, we have to add three interacting con-
figurations, respectively, 3s3d™t!, 3s3d"4s, 3s3d"'4s>.
This would result in energy matrices of gigantic size.
Therefore, we replace the direct method by second-
order perturbation theory.

In this case, obviously,
]Ekk_E11l<<Eau_—'Ekk 3 (3)
| Eaa—Egg| KEaa— Ens.

Hence, one has to use perturbation theory for degen-
erate cases, and we may assume

Eoo—Ery=W =const. 4)

Adding the perturbation-theory correction terms to the
energy matrix Ey; of 353d", we get a modified matrix
Ex':
En'=Epn+AE, (5)
where
AEw= =2 a (EraEa/W);

using relation (1), we get

AEn= Qa brakiar) (—H'Y/W) . (6)
Now, we define
t=2a Mrahar; T=—H"*/W. (7
Thus, we finally have

Eu'=En+inl. 8)

In (8) the t; are numerical factors. T is treated as an

18 G. Racah, Phys. Rev. 63, 367 (1943).
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additional parameter of the energy matrix; its numeri-
cal value is to be calculated by the least-squares
method as usual. In (8), only that part of the energy
matrix which belongs to 35?3 is involved ; hence the
effect of the perturbing configuration is represented by
an internal “model-interaction” of 3s23d™ alone. It has
been shown that this “model interaction” is a three-
body interaction.”*!s The reason for this situation is
that three different electrons (at the most) can partici-
pate in the definition of the matrix elements £5;.1%

NOTATIONS AND DEFINITIONS

First we shall define the parameters which refer to
the configuration 3d; they are 4, B, C, «, 8, T, ¢. 4 is
an additive parameter common to all the levels of the
configuration. B and C are linear combinations of
Slater integrals: B=F;(3d%)—5F4(3d?), C=35F4(34d?).
The quantities @ and B are the parameters of the
L(L+1) and Q corrections, respectively. T is the new
parameter representing the interaction of 3s23d™ with
3s3d™t" as a model interaction of the 3d electrons only
within the configuration 3d”. The exact definition of T
is given in Eq. (7). {={4 is the parameter of the spin-
orbit interaction.

A, B', C', o, B, T”, {’ are the analogous parameters
for the configuration 3d"4s, and 4", B"”, C", o, 8",
T", ' are the analogous parameters for the configura-
tion 3d"%4s?.

In the least-squares calculations, 4, 4’, and 4" were
replaced by the centers of gravity of the configurations
M, M', and M'’; then the differences D’=M'— M, and

"=M"—M'" were introduced, and M’ and M"’ were
replaced by M'=M~+D’ and M"'=M-+D'+D". Thus,
M became the additive parameter for a whole spectrum,
while D’ and D" were expressed by interpolation for-
mulas like the interaction parameters.

G=G,(3d4s) measures the exchange interaction
between 3d and 4s electrons, and is also the parameter
of interaction between the configurations 34 and
3d"?4s?. H=R*(3d3d, 3d4s)/35 is the parameter of the
interaction of the configuration 3d*'4s with the con-
figurations 3d™ and 3d"?4s2. It should be noted that the
parameter H defined here and the parameter H’ which
is defined in Eq. (2) are analogous, but differ in the
principal quantum number of the s electron.

“L.S.” is an abbreviation for “least squares” or for
“least-squares calculation.” “Diag.” is an abbreviation
for “diagonalization.”

A is the mean error. It is defined by

A=[(2:82)/ (n—m) 2. 9)

In Eq. (9), é: is a difference between the observed and
calculated values of a level ; % is the number of observed
levels; and m is the number of free parameters.

The mean error is essentially different from the mean

4 K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 (1963).
15 (3. Racah and J. Stein (unpublished).
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TaBLE I. General parameters in the various stages of calculation.
LS. 1 LS. 2a L.S. 2b L.S. 2¢ L.S. 24 L.S. 2¢ L.S. 3a
Dy 8112458 8105429 8105430 80944-33 8112450 811557 811029
Dy’ 35972476 36 035439 36 03339 36 002444 36 001465 36 96176 36 03539
Dy’ 39434-18 394449 394449 3944410 3943415 394618 394649
Dy’ 588629 5859415 586715 585616 585925 5889428 5857415
Dy’ —11447 —11244 —113+4 —1124+4 —112+6 —112£7 —111+4
Dy’ —118+10 —11545 —11745 —112+6 —11348 —118+10 —11445
By 76343 75942 7562 7592 76543 76243 759-£2
By 86242 86441 86541 863+1 86242 8592 864+1
B, 5942 561 561 5541 601 5842 561
BY 601 5241 521 5441 601 601 5241
Co 2841415 3039422 306911 308213 290814 28544-15 3037421
Co 322610 34399 343718 3427419 3285410 323811 344249
Ci 33949 34710 364+5 36616 34347 34149 349410
cY 3067 34446 3401-4 33244 3106 3087 3456
Go 1595411 158845 15895 15906 159149 1596410 158845
G —S5+7 143 114 —0.4+£3.9 —3+6 —67 243
Hy 85+6 10043 10143 963 8745 856 95+3
H, —2643 —2242 —2242 —24+2 —26+3 —26+3 —24+1
@ 1 37+3 384-3
o, 672 002 }3&1 }33:&2 }60:}:1 }64:1:2 prarad
o 842 T2
a, Jrt §2 }5:;:1 et }7:!:1 }7i1 12
8 —5154-40 _ }_ _ —511+£37
o e T251520 55718 538420 249+22 Tl
B1 . 49423 e e 48123
B _13:}:14%1 24 02 —154-14
T s —1.9+0. —2.44-0. —1.840.3
Y . —44x02 —43302 }“3'510‘2 }—o.sio.z 44102
T oo 0.2+0.2 e o (R 0.2:+0.2
T —0.140.1 0.040.1
to 36733 36517 36517 369419 374129 365433 36417
& 402426 39613 39513 39315 40022 40325 393413
e} 88412 8746 866 867 91411 87412 8846
o’ 9547 974 9744 97414 9746 9447 97+4
Co=¢2 8+3 742 T2 742 8+3 (E=X] T2
A +229 +115.8 +117.0 +131.6 =+196.4 +227.3 +114.6
deviation a least-squares calculation. Of course, all this is done by

s=[(X2)/n]"

because it takes into account the statistical effect of the
number of free parameters. Therefore, an addition of
free parameters reduces the mean deviation, but does
not reduce the mean error if the parameters are not
significant. In the present paper only the mean error is
used.

The “general parameters” used in Table I are the
coefficients of the interpolation formulas for the parame-
ters defined in the present section. Their exact definition
is given by Egs. (10) and (11) in the following sec-
tion.

THE TECHNICAL PROCEDURE

The algebraic energy matrices for the configurations
d™*s* were calculated long ago; in the scheme we use,
Q is diagonal and its eigenvalues are given in Ref. 13;
the elements #;; were calculated by using formula (7).
Having the algebric matrices, it is possible to give
reasonable values to the interaction parameters, to cal-
culate the energy matrices numerically and to diago-
nalize them. Then one can improve the values of the
parameters by comparison with the observed levels in

an electronic computer. To get best results it is usually
necessary to iterate this process.

In our calculations we express each parameter P by
an interpolation formula having the form

P=Py+ P+ Py, (10)

(11)
and # is the total number of electrons in the states 34
and 4s.

In fact, for the electrostatic parameters linear for-
mulas are good enough. For D', D”, ¢, ¢', ¢ only, a
small quadratic correction is necessary.

We call the coefficients of the interpolation formulas
(10) “general parameters.” We first choose starting
values for these general parameters, and by substituting
in (10) calculate the parameters for each spectrum.
These interpolated parameters are used in the diago-
nalization of the energy matrices of each spectrum. In
the least-squares calculation, all the spectra of the
sequence are treated as one problem and the role of free
parameters is given to the general parameters. The im-
proved set of general parameters obtained in the L.S.
can be used for a second iteration of the calculation.

where

x=n—06; y=x2—10
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The number of known levels in the configuration
3d"%4s? is so small that in most cases it is impossible to
determine the values of its parameters by direct com-
parison with experiment. Thus, for each parameter P/,
we required

P"—P'=P'—P (linear progression) .  (12)

Only D", which is the difference between the centers of
two configurations, remains a free parameter. The list
of the free general parameters in the L.S. is given in the
first column of Table I.

In the L.S. we transfer from 4, 4’, and 4" to M,
M’, and M"'. To do that, we have to express each M as
a function of the other parameters. The matrix is linear
in the parameters, therefore M also is a linear function
of them. The coefficients of this function, except dM /3B
and dM /9T, were already calculated.* In order to cal-
culate M /8B, one should remember that Q is a pure
two-body operator. For the configuration d? one can see
by direct calculation that M /dB=7%; thus for d7,

OM/3B=3n(n—1)5; (r<5). (13a)

For #>5 one should replace # by (10—#). T represents
essentially a three-body interaction; hence, dM /3T is a
polynomial of degree 3 in #. This polynomial vanishes
for =0, 9, 10, since, in these cases, there is no inter-
action of s%d" with sd"*. For n=1, the configuration d”»
consists of the one term 2D so that one sees directly that
dM /8T ="70. Thus, for d», we get

OM /T = (35/36)n(9—n) (10—x) . (13b)

THE STAGES OF THE CALCULATION

The final parameters of the previous work on the
second spectra of the iron group* were used as initial
parameters for the present work; they are given in
Table I under the column “L.S. 1.” In that work 8 and
T were not included and o had the same value for all
configurations. In the previous work, 405 observed
levels were fitted to the calculated levels with a mean
error of £=229 cm™.

In the new diagonalization, 8 and T were given the
value zero, but we got the derivatives of the levels with
respect to these parameters which could be used in the
following least-squares calculation. This calculation in-
cluded four variations. In L.S. 2a, the parameters «, 3,
and 7" were allowed to be different for ¢» and 4! and
to change linearly with %. The mean error was reduced
to 115.8 cm™; the deviation of the above-mentioned
(15)2S of Fe 11 decreased from 1039 to —59 cm™!; also,
it was found possible to include in the L.S., three ob-
served levels belonging to the Crir spectrum, which
were discarded in the previous work.

Owing to the fact that in L.S. 2¢ the difference
between By and B¢’ and the # dependence of 8 and T
appear to be almost zero within the statistical errors,
two variations were performed in order to eliminate
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unnecessary parameters. In L.S. 25, the » dependence
of B and T was neglected, and 8 was also forced to be
equal for all configurations. The mean error was 117.0
cm~ In L.S. 2¢ the parameter T also was forced to be
equal for all configurations. The mean error was 131.6
cm™L

In order to check the relative importance of the two
new parameters and their interconnections, two more
variations were performed. In L.S. 24, the parameter T
was neglected and the restrictions on 8 were the same
as in L.S. 2¢. We got a mean error of 196.4 cm™. In
L.S. 2e¢, the parameter 8 was neglected and the restric-
tions on " were the same as in L.S. 2¢. We got a mean
error of 227.3 cm™.

The parameters of the above-mentioned variation are
given in Table I.

In order to check the convergence of the calculation,
a second iteration was performed. In the new diagonali-
zation the general parameters were given the values
achieved in L.S. 2b. The derivatives of this diagonaliza-
tion were used for two L.S. calculations; L.S. 3¢ and
L.S. 3b. In L.S. 3a, the parameters were subjected to
the same conditions as in L.S. 2¢. We got a mean error
of 114.6 cm™ which is practically equal to the mean
error of L.S. 2a. Also, the values of the parameters in
L.S. 3a and L.S. 2¢ are practically equal. The parame-
ters of L.S. 3¢ are given in Table I.

At this stage a new feature in the behavior of the
parameter [ was noticed. In the previous work, the
value of H tended to zero for the spectra in the right
side of the sequence; this fact manifested itself in the
interpolation formula (L.S. 1) and in the separate L.S.
calculations of Fe1, Co1r, and Cu1r as well. In the
present work, the interpolation formula for H still
showed the same tendency ; but in the separate L.S. of
Fe1r we got H=95411, while the interpolated value
is 71. This situation was explained as follows: The in-
clusion of 8 and T" canceled the tendency of H towards
zero in the right side; on the other hand, H is still more
important in spectra of the left side; hence, the co-
efficients of the interpolation formula are mainly deter-
mined by the ‘“left” spectra. The above-mentioned
assumption was checked in L.S. 35, where a quadratic
dependence of H on 7 was allowed. The assumption was
justified ; the new interpolation formula gives practi-
cally the same values for H on the left side, but H does
not tend to zero on the right. In L.S. 35, the mean error
is =113.8 cm™. All the parameters assume the same
values as in L.S. 3a, except Hy, H1, H, which are

Hy=125413, H,=—15+4, H,=34+1.
The interpolated value for Fe 11 is H=83+13.

DISCUSSION OF THE RESULTS

The mean error of the present work is 4115 cm™!
which is one-half the mean error of the previous work.
The range of values of the observed levels in the se-
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quence we treat is from 0 to 95 560 cm™; hence the
mean error is about 0.129, of the experimental range.

Comparing the values of the parameters of L.S. 3a
or 2a (which are practically identical) with the parame-
ters of the previous work, one sees that D', D", B, B’,
G, ¢, and ¢’ did not change considerably. The parameters
C and C’ changed; in particular, the linear coefficients
of C and C’ became equal within their statistical errors.
In the previous work only the linear coefficients of B
and B’ were equal. The different behavior of H has
already been mentioned in the previous section.

In the present work, ao is one-half «, of the previous
work. The new linear coefficients of a and o’ are not
much smaller than the previous ones, so that on the
left side of the sequence « is now very small.

Comparing the results of L.S. 2¢ to Ref. 9 and to
L.S. 2d we see that the introduction of T also doubles
the value of 8. The parameter 8 is practically constant
for all the spectra and for all configurations.

The parameter 7 is very different in the configurations
3d™ and 3d"4s: To=—1.94-0.3 while Ty=—4.440.2;
both T and 7" can be considered constant for all the
spectra of the sequence.

Let us examine L.S. 25 more carefully. In this varia-
tion of the L.S. calculations, the 8 and T corrections are
introduced simultaneously by the use of only three new
parameters which appear to be the only meaningful
ones: Bo=00,T, and T¢’. The mean error of L.S. 2b is
+117.0 cm™, while in the previous work it was =4-229
cm™. The total number of free parameters is 39 (in the
previous work we had 36 parameters) which is rather
small comparing with 408 observed data. In L.S. 2¢,
only two new parameters are used and the mean error
is £131.6 cm—.

Since the definition of the mean error takes into
account the number of free parameters, the fact that
two parameters are sufficient to reduce the mean error
from 229 to 132 is definite proof of the importance of 3
and 7. The fact that the separation of 7" and 7" again
reduces the mean error by 16 shows that there is some
meaning in assuming that they are different.

The change in the old parameters because of the
introduction of the new ones has already been described.
In principle this fact could be foreseen since 7' is not a
pure three-body interaction and a part of its effect can
be described as a linear combination of the parameters
of two-body and one-body interactions. Nevertheless,
it is striking to compare L.S. 25 with L.S. 2¢ and 2d.
The parameters 8 and 7" together decrease the mean
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““error A by about 100 cm™, while 8 alone decreases A

by 33 cm™ only, and 7 alone practically does not de-
crease A at all. It turns out that in order to get a sig-
nificant improvement of the approximation both 8 and
T are necessary. In his paper? on Fe 111, Trees men-
tioned that the BQ correction alone did not improve the
results very much, but he did not realize that 7" alone
would not improve them either.

Having new values for @ and B, it is desirable to re-
examine whether it is possible to explain them as two-
body model interactions which represent the interaction
of 3d" (or 3d™4s) with configurations having the same
set of principal quantum numbers, and differing from
3d™ by the states of two electrons. For 3" these con-
figurations are 3s23p*3d"*? and 3s°3p%3d"+?; the contri-
bution of the first configuration to o and 8 was calcu-
lated for Ca1r by Trees and Jgrgensen.! They got
Aa=11 cm™, AB=—200 cm~. Considering the results
of the present work, it seems that their A« fits with the
actual value of . The interaction with 35°3p%3d"*+2 con-
tributes only to the value of 8; a contribution of about
—300 cm™ is necessary in order to fit with the experi-
mental 8. Taking for G»(3d,3s) and for the distance
(3s93p63dm+2—35°3p%3d") the wvalues calculated by
Watson! by self-consistent-field methods, one actually
gets the correct contribution. It is not very desirable to
mix two methods of calculation, but unfortunately we
were not able to estimate G»(3d,3s) from the experi-
mental material.

The results of the present work, as well as some pre-
vious papers,!!+? emphasize the importance of the inter-
action with configurations in which the electrons have
the same set of principal quantum numbers. This fact
was first pointed out by Layzer.!” This feature suggests
a hydrogenic spectrum in which states belonging to the
same principal quantum number are degenerate. Hence,
it is plausible that the above mentioned effects will
become more important for higher ionizations, where
the central field becomes more ‘“Coulombic.” A similar
treatment of the third spectra in the iron group is now
in progress in order to check this assumption.
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