
A 428 D. L. COWAN AND L. W. ANDERSON

nucleus, and M, is saturation magnetization. We ob-
serve first that the ratio (H„/M, ) is nearly the same
for Fe, Ni, and Co so that a difference in g must come
from a difference in domain and domain-wall structure.
Fe and cubic Co have very similar magnetic properties
and, as expected, their enhancement factors are about
the same (for Co, ii=1500).' The magnetic properties
of Ni are different. Nonetheless a rough calculation
indicates that D(dg/dZ) should be nearly the same for
Ni as for Ie. The dimension D for the underlying
domain structure of a ferromagnetic particle is de-
termined by competition between domain-wall energy
and surface energy. Since our filings have surfaces
which are randomly oriented with respect to the
crystalline axes, either free magnetic poles will form on
the surface or domains of closure must form along hard
directions of magnetization. For materials, like Fe and
Ni, having weak anisotropy, we expect the surface
energy will be of the form E, n EiD{1+C(Ei/MP)},
where E& is the anisotropy constant and C is a number
of order of magnitude 1 or smaller. (The simple closure
structure described by Friedel and deGennes" leads
to values for C(0.1. Since Ei/MP is small and only
changes by a factor of about 0.7 on going from Ni to
Fe, the closure structure will be similar in the two

I J. Friedel and P. G. deGennes, Compt. Rend. 251, 1283
(1960).

materials and the details of closure are not very im-
portant. An elementary calculation then gives D(d8/dZ)
~ (Ei/JS')'t', where J is the exchange constant and S
the ion spin. This expression for D(do/dZ) is about
20% smaller for Ni than for Fe.)

Finally, we would like to point out the advantages
in observing this kind of resonance in the fast-passage
mode at 90' phase setting. Not only is the quantity
h(co, too) more easily interpreted than the derivative of
the susceptibility, but the 90' phase setting makes for
an improved signal-to-noise ratio because of the high
stability.

Note added t'rt proof (j).Professor A. M. Portis has
informed us that the paper, A. C. Gossard, A. M. Portis,
M. Rubenstein, and R. H. Lindquist, Phys. Rev. 138,
A1415 (1965) contains a theoretical discussion of the
mode mixing in ferromagnetic materials. The analysis
suggests that Po

——2tor, where r is the relaxation time of
the domain wall.

Note added irt proof. (Z) Dr. R. L. Streever has in-
formed us that in an unpublished extension of the work
reported in R. L. Streever, Phys. Rev. 134, A1612
(1964) he has measured Ti in pure well-annealed Ni
metal at room temperature and found that Tj is about
0.16 msec although the accuracy of the measurement
was poor. In addition he has found T~ to depend on the
state of anneal of the metal. He has found T~ to be
0.35 msec in a sample which was not carefully annealed.
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A set of translation operators is de6ned which commute with the combination of operators occurring in
the time-dependent Schrodinger equation for an electron in potentials periodic in time and space, with
uniform applied electric and magnetic fields in arbitrary directions. It is shown that the operators form a
group. The group is made finite by imposing periodic boundary conditions, and restrictions on the electric
and magnetic fmlds are obtained. All irreducible representations of the group, and corresponding basis
functions are generated. The limit of these functions is found as the distance between boundaries becomes
infinite and the restrictions on the fields disappear.

I. INTRODUCTION

HEN there are no applied 6elds, the Hamiltonian

~ ~ ~ ~

~

~

~ ~

for an electron in the periodic potential of a
crystal lattice is invariant under a symmetry translation
R„of the lattice. A group of translation operators of
theformexp(R .V) may thenbe defined, anditmaybe
shown that the wave functions take the form of Bloch
functions, exp(ik r)u|, (r), where k is a, wave vector
and ut, (r) has the period of the lattice. However, when
uniform electric or magnetic fields are present, the
Hamiltonian may contain terms linear in r or 3 and hence

it no longer retains the translational symmetry of the
lattice.

It was pointed out by Kannier and Fredkin' that a
uniform field physically does not destroy the transla-
tional invariance of the crystal, since the physical
environment of the electron is the same at all sites
whose positions differ by a lattice vector R„. Thus it
follows, as noted by Brown, ' that a type of translation

'G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910
(1962).

2E. Brown, Bull. Am. Phys. Soc. 8, 259 (1963); Phys, Rev.
133, A1038 (1964).
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operator should exist under which the Hamiltonian is
invariant. In transporting a charge e through a lattice
displacement R„ in the time T„ in the presence of
electric and magnetic fields E and B, an impulse I must
be supplied which is given by

I= —eR.X B/c —eET„

and work 8' must be done of amount

W= —eE R.
Thus in addition to a shift in position and time there

must be a shift in the kinetic momentum p+eA/c and
in the energy H in order to leave the electron in an
invariant condition. In the quantum mechanical
formalism, the translation operators which commute
with the Hamiltonian should incorporate these momen-
tum and energy shifts as well as the shifts in position
and time.

For an electron in a crystal lattice with a magnetic
6eld, Brown' has de6ned a set of translation operators
which form a ray group. Zak' has recently shown, for
this same physical situation, how to define a set of
operators which form a group and which commute with
the Hamiltonian, and he has obtained irreducible
representations and basis functions for this group.

By assuming that the Hamiltonian contains time-
dependent terms which may be arbitrarily small and
which are periodic in the time, we may generalize to a
group which includes the effect of a uniform applied
electric field in addition to the uniform magnetic 6eld.
The periodicity in time is assumed in order that the
group may be made finite. The period may at the end
of the calculation be made to approach zero, to obtain
an infinite group corresponding to infinitesimal transla-
tions in the time.

In Sec. II, the operators of the group are defined.
Born—von Karman boundary conditions are applied and
the 6nite electric and magnetic translation group is
obtained in Sec. III. Irreducible representations and
basis functions are generated in Secs. IV and V.

II. DEFINITION OF GROUP OPERATORS

coordinates r and time. The primitive translation in ct
will be assumed to have the period ao. The primitive
spatial translation vectors are ai, a2, and a3. A general
translation will be of the form

R Slal+22282+S8$8 CT 22 pltp

where eo, e~, n2, e3 are integers.
The periodic spatial potential of a crystal is a special

case of these potentials where

AP(r, t) = V(r), A=O

V(r+R„)= V(r).

'tA"e wish to define a set of operators which commute
with the operator S acting on f(r, t) in Eq. (1). These
operators will be chosen to form a group, and to reduce
to the ordinary translation operators when there are
no applied electric or magnetic 6elds.

Brown' and Zak' have introduced operators which
commute with the Hamiltonian when no electric 6eld
is present. This may be immediately generalized to
obtain an operator that commutes with S. Consider the
operators

lr p
——(iB/Bt =,'eE r/I—t)/c,

20 = —iV'+ (e/2t'tc) (B x r—cEt) .

It is easy to verify that these four operators commute
with the operators

ibad/Bt+ 2eE r and -i%' (e/2—c) (B x—r—cEt),

which occur in S.
Operators which also commute with the periodic

functions Ap and A, and thus with S, are defined by

T(R„,T ) =exp(iR 20—icT„harp) 1

where R and T are translations of the lattice, as
defined in Eq. (2).

The combination of the differential operators, R„V'
+T„B/Bt, in the exponent of Eq. (4) commutes with
the rest of the exponent. Then the operator T(R„,T„)
may be written as

The time-dependent wave equation for a particle in T(R T ) —exp( (ie/2$c)[R, (Bxr)+cT
u»f»m electric and ~~g~~t~~ fields may be w»t«»n —R„E t)} (R„V) (T„B/Bt). (5)
the form

S@=[iAB/Bt+ s—eE r eA'(r-, t) X—(y+2eEt--
——,'eB x r/c eA(r, t)/c)Q(r—t) =Ep@, (1)

where the vector and scalar potentials have been
chosen in a convenient gauge for the uniform electric
and magnetic fields. The eigenvalues Eo simply corre-
spond to different choices of the zero of energy. The
potentials AP and A are functions periodic in the

' J. Zak, Phys. Rev. 134, A1602 (1964); D4, A1607 (1964);
136, A776 (1964); 136, A1647 (1964).

The product of two such operators, T(R1,T1) and
T(R„T2) is

T(R1,T1)T(R„T2)= T(R1+R2, Tl+T2)exp((ie/2kc)
X ([R1XR2] B+c[T2R1—T,R,j E)}. (6)

Therefore the operators T(R„,T„) do not form a group
because the product of two such operators does not form
another operator of the same type. However, by analogy
with the work of Zak, ' a group of operators

&(R Tn
~
RlTl j R2T2 j ' ' ' j RiTi)
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may be defined as follows:

r(R„T„~RgTg, RpTp, , R(T()

—=exp(-', i P [(R,XR;) h

—c(T,R;—T,R;) e7}T(R„,T„), (7)

h= eB/hp, e= eE/Ac.

The ordered set of translations R~Tq, RpTp, R~T,
form a path in four-dimensional space which joins the

origin to the point R„T„.Thus,

l l

R =JR; and T„= P.T, .

Clearly the operators 7 commute with 8 since l'
commutes with S.

To show that the operators 7 form a group, let us
form the product of the two operators

r(R„T~I Rg j i
' ' '

i RP't)

r(R„'T„'iR,'T,';;R,'T, ').
Their product is

r(R„T„~R~Tx, .
, R)T()r(R„'T„'~ Rg'Tg', , RI'TI')

=exp(~~i[ g ([R;XR,7 h —c[T;R,—T;R,7 e)7+pi[/ P([R,XR,'7 h c[T,R —T,'R~7—.e)7

+hi[ 2 ([R,'XR, '7 h —c[T R —T,'R,'7 e)7}T(R.+R„',T„+T.')

=r(R„+R.', T +T 'i Rd'i; . ; KTi; Ri'~Y; . ; RI, '&'e'), (10)

which is another member of the same set of r operators.
It is easy to see that the operator inverse to

where /' is an integer or zero. The reciprocal lattice
vectors are defined in the usual way:

r(R.T.~R1T1 '' RlTl) K, = 2~(a;X a)I/V, (14)

is simply r( R„—T„—
~

—R&—T&, ~ ~ . ,
—R&—T&). Thus

the v-'s form a group. We will call this group the electric
and magnetic translation group (EMTG).

III. FINITE GROUP

%hen the electric and magnetic 6elds are zero, the
translation group is ordinarily rendered finite by
imposing Born-von Karman boundary conditions, which

imply that the operators T act in a function space such
that

T(1Va~,O) = T(lVa2, 0) = T(1Vap, O)
= T(0 1Vcp/c) = T(0 0) (11)

where E is a large integer. As shown by Zak, a general-
ization of this set of conditions for the group of operators
v. is to require that the operators

where i, j, k are in the cylic order (1,2,3) and V is the
volume of the unit cell in three dimensions. Condition
(13) then immediately implies that e must be in the
direction of a reciprocal lattice vector:

e=2(gyKy+ f''pKp+ fpKp)/1Vap) (15)

(1VagXR„') h=4nl, (17)

where f'~, fp, i p are integers.
Further, if R„=1Va~ and T„=O, the exponential

factor from Eq. (10) which must be set equal to unity is
exp(-,'i[(1Va~X R~') h+ cT 'R e7},giving the condition

(1VapXR„') h+cT '1Vaq e=4vrl", (16)

where 7,
"is an integer. The term involving e in Eq. (16)

is 4n times an integer, from Eq. (15), and therefore
we find

r(0,1Vgp/p i RyTy,' ' ', RiTi),
r(X~aI„O~RgTg, ~, R(T() k=1) 2, 3

where i is an integer. The factor al, XR„' is a sum of

(12) reciprocal lattice vectors times V/2n and therefore h
niust be in the direction of a lattice vector:

are constant factors.
From Eq. (10), if R„=O, and T„=iVap/c, then in

order for the operator r(0,1Vap/c~ R~T~, , R~T~) to
act as a constant factor, the exponential,

exp(-,'i[—1VapR„' e7},

must be unity. Therefore,

~~coR.,' e= 4~1'.,

where (~„p,(p are integers. Thus imposition of periodic
boundary conditions limits the possible directions and
magnitudes of both e and h.

To simplify our further development, we shall from
now on choose new basis vectors Rl, R2, R3 of the unit
cell such that R3 is the smallest lattice vector in the
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direction of B.
nR, =N Uh/4,

where e is an integer. We choose R~ to be a vector of
the lattice which is perpendicular to e, and Rp is chosen
so that R1 (RpXRp)= V. There are many choices
for R1 and R& which satisfy these conditions. We
may also define new reciprocal lattice vectors by
K,=21r(R, XRo)/ V where i, j, k are in the cyclic order
(1,2,3).

Since R1 is perpendicular to e, and since any vector
of the lattice can be written in the form i1R1+l2Rp
+lpRp, Eq. (15) is of the form

e = 41rrt (loRp+ loRp) XR1/ UNap

27j ( lQ Ko+ lo Kp)/Nao, (20)

where 32, I3 are integers which are relatively prime and

q is an integer.
The group of operators v. is now finite. To prove this,

we note that with the above choices for e and h, the
extra exponential factor multiplying T in the definition
of r, Eq. (7), is

exp{-,'i Q l
4 nR (R,X R;)—4 1t (l R + l R )

i(j
XR, .c(T,R; T; R,)/ao j/—VN }

=expL21ri(nm+rtt1)/N j, (21)

where nz and p are positive or negative integers or zero.
Suppose that n, 1t and N have a common factor P'. Then
the number of independent values of (nm+1tt1)/N as m
and p vary, which lead to different values of the expo-
nential in Eq. (21), is N/p'. Thus the set of inequivalent
values of m and p. is finite. Since there are Ã4 translations
which are independent of the path, the total number of
elements of the finite group is N'/p'.

IV. IRREDUCIBLE REPRESENTATIONS

We shall base the construction of the irreducible
representations of the finite group on the fact that if
the resultant translational parts of the operators v are
confined to the two-dimensional subspace formed by
multiples of the lattice vectors R~ and uo, the resulting
group of operators 7 form an invariant subgroup of the
total group. We then augment the invariant subgroup
by adding separately translations in the R, direction,
and then in the R3 direction. We then show that the
representations obtained by combining the results of
these two augmentations gives all the irreducible
representations of the full EMTG.

Consider the subgroup of all operators

ko"= 21tko+mo,

k1"= 2nk1+m1. (25)

With this relabeling, as the integers ko and k& vary, in
general we do not obtain Ã independent values for each
of ko" and k~", and thus the integers mo and m~ are
introduced to give the complete set of independent
values. The ranges of the values of mo and m~ are found
in the appendix. The representations are then

D(& e kom o)l 1r (r1~t~
I
R1T1 R„T„)]

=exp{2s ifnm+rtt1+ 2rtn pk p+ 2nn1k1

+mpnp+m1n1$/N}. (26)

We augment first by adding to the translations r„t„
of the subgroup, translations whose resultants lie in
the R2 direction. Consider the similarity transformation

may include Rp and Ro components. Such elements are
denoted by

r(r„t„lR1T„;R(T,)
= exp{ (21ri/N) (nm+1tt1)}T(r,t„), (23)

where T(r„,t„) is given by Eqs. (4) or (5).
It is easily seen that this subgroup is an invariant

subgroup; for if r'= r(R„'T. „'l R1'T1', , R('T1'), then
from Eq. (12) the product,

r'r(r„t „IR1T1. , ~, R(Tt) (7') ',
is equal to an operator r(r t„l ) where the resultant is
still r„t„but the path may be diferent. Therefore the
resulting operator is an element of the subgroup, and
the subgroup is an invariant subgroup.

Further, it is a commutative subgroup, for (r Xr„') h
=0 and (t„r„' t„'r„)—e=0 since r„, r„' are normal to e,
for all r„t„and r„'t ' in the 1—0 subspace. The irreducible
representations are well known. They are

D(' '""""'1((r(r„t„l R1T1 . R(T1)g
=exp{2miLnms+1tt1o+kp"np+k1 n1J/N} (24)

where n1 and np are defined by Eq. (22). The parameters
s and 0 are integers, and the number of independent sets
of values of s and o such that expL21ri(nms+rtpo)/NJ
takes on all possible different values, is N/p'. The
quantities k&" and ko" are integers which take on the
values 1 through E.The total number of such represen-
tations is N'/P'. Because expl 21ri(nm+gt1) j occurs in
the actual operators w, it is sufficient in a physical
problem to consider only the representations for which
s= r= i. This reduces the number of representations we
consider to g'. It will be convenient to relabel the
representations D so that

such that
r(R.T.lR1T1 '', «T1) r(—npRo)Ol npRp, O)r(r~t„l—R1T1),R1T1)

Xr (npRp)O l npRp, O)

R„=r„=—n1R1, cT„=ct„=npap. (22)

The paths by which the resultant r„, i is reached are
not assumed to lie in the 1,0 subspace necessarily, but

=r(r„t„lR,T,;;R,T,)
Xexp{4~iLnn1no —qlononoJ/N}, (27)

which follows from Eq. (10). Let lko, mp, k1,m1) be a
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column eigenvector representation of an eigenfunction
of the operator r(r„t„~ R1T1, , RlTl), and let D now
be a representation of the augmented group. Then the
matrix representation of Eq. (27) yields

D[r(r-t. lR1T1 " RlTl)]
XD[r(rl2R2, 0) n2R2, 0)] ( kp, mp, kl, ml)

=exp {22li[nm+))tl+ 2)) (k p
—4n2) no

+2n (k 1+n2)nl+ mono+ ml'nl)/N }
X D[r(n2R2, 0 ( n2R2, 0)]

~
kp, mp, kl, ml) . (28)

It is clear that the vector D[r (n2R2 0
~
n2R2 0)]

X
~
kp, mp klml) is an eigenvector of

D[r(r t
f
R)T1', . ,

' R1Tz)]

corresponding to the eigenvalues labelled by kp —las2,
kl+n2.

The OperatOr r (noR2, 0
~
noRQ, O) COmmuteS With

T (n2R2, 0
~
n2R2, 0), because (R2X Ro) h= 0. Thus the

order of augmentation of the subgroup by these two
operators is immaterial. Augmentation by

r (noR2, 0
~
n,R„O)

using a procedure similar to the one above yields

D[ (r„t„iR,T; . ; R T,))
XD[r (npR2, O

~
noR2, 0)]~

komok lml)
=eXp{22ri[nm+))tl+2)) (kp+4no)np

+2nk lnl+ mpnp+ mlnl)/N }
XD[r (noR2, 0

~
noR20))

~
komoklml) . (29)

Thus the vector D[r(noR2, 0~ noR2, 0)]
~
kpmoklml) is an

eigenvector of D[r(r„t
~
R1T1, , RlTl)] correspond-

ing to the eigenvalues labelled by kp+4no, kl.

Any element of the total 6nite group may be written

in the form

r(R„T.
~
R1T1, . . . .

, RlTl)
= r (n2R2, 0

~
n2R2, 0)r (noRQ, O

~
noR2, 0)

Xr(r.t.
~

—n2R20 'noR20 R1T1 ' ' ' RlTl).
(3o)

Therefore, the matrix representation of Eq. (30) may
be written in the form

D[r(R„Tn~ R1T1, , R(T1))ikpmpk, m, )
=e Xp[2 lri(m 2n2+ mono) /N] ezp{22ri[nG+Ttl'

+22)k pn 0+2nk ln 1+mon o+

min1�]/N
}

X
~

ko+4no —4no, mo, kl+no, m,). (31)

Here m& and m3 are integers, and clearly if this is a
representation when m2 ——m3 ——0, then it is also a
representation when m2 and m3 are integers. The range
of inequivalent values of m& and m3 will be found in the
appendix. The quantities G and r are given by

22rnG/ N=-', (—n2R2Xr, ) h+2T(nm/N
= 22m (m+n, n, )/N. ,

and

22r))I'/N = -', cT „(—n2R2 —npRQ) e+ 22r))tl/N

= 22r)) [tl+ no (—4n2+4np)]/N, (33)

l

22rnm/ N= , 2+ (R;-XR;) h, (34)

l

22rrttl/N= ——,
' P c(T;R,—T;R,) e. (35)

The matrix of the assumed representation is

where from Eq. (21), the integers m and tl are given as

(mP mIm27N3)

D(ko'k 'ikok ) [r(R„T„IR1T1, , RlTl)]

Bko,kp+ll l 2Bk,k + 2 exp—{22ri[nG+2)I'+ 2))kono+ 2nklnl+ mon0+ mlnl+ m2'n2+ mono)/N }~ (36)

Let us now prove that the matrix given in Eq. (36) is indeed a representation of the group. Using Eq. (36),
the matrix representation of the product of two operators, r(R„'T„'~ Rl'Tl', ~, Rk'Tk')r(R„T„~ R1T1, , RlT l),
is found to be

(flP mI m2m3} (mpm, gm2m3)

Q D(kp'kl [ t)) [T(R„'T„'
~

Rl'Tl', , Rk'Tk'))D(. )2(kok, ) [r(RnTn
~
R1T1, , RlTl)]

=Bk;ko+l, („,~„;) 1,,(„,+;)Bk;k,+„,+„, exp{, 22ri[n(G+G')+Tt(I'+I")+2rtkp(no+no')+2nkl(nl+nl')

+mo(no+no )+ml(nl+nl )+m2(n2+n2')+mo(no+no')+22)no (&2no 4n2)+2nnpn—l ]/N} ~ (37)

The matrix corresponding to the product of the two operators is

(mp mI tn2tn3)

D(kp'ky'(kokl) [T(R +R T +Tn
~
Rl Tl ' ' ' Rk Tk R1T1 ' ' ' RlTl]

Bko,kp+l2(n3+np') —ll (no+no')Bkl', kl+n2+n2 exp{2 2ir[ nG" +Ttp"+21)ko (no+no')+ 2nkl (nl+nl')

+m, (n,+no')+ m, (n,+n, ')+m, (n,+n, ')+mp(no+ no'))/N}, (38)
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where G" is given by

2~nG"/N= 2n(nm+nm')/N+2{ —(n2+n~')LR2X (r„'+r )).h}+2(R„'XR ) -h
= 2m n $rn+n in2+ rn'+ ni'n2'+ 2ni'n2]/N
=2xnLG+G'+2ni'n2 1/N.

The number I'" is given by a similar calculation:

2~rlF"/N=27r(qp+gp, ')IN ', c(T—-'R„T„R—') e+ ', c(T -+T„')[ (n2—+n~')R& —(n3+na')R3) e
=2m.qLp+no( —4na+4ns)+y +no (—4n2'+4ns )+2no (12ns —4n2) j/N

2~'gt.F+F +2'no (12na ian2)]/N ~ (40)

Upon comparison of these results with Eq. (37), it is
seen that the matrix D~I„'A,'~q, A',

~
is indeed a representa-

tion of the group of operators v.
In the appendix the ranges of values of the integers

m; are found. For that argument, it is necessary to
define common factors of S, 2e, 2ql~, and 2ql3 as follows:

N =PuvwnPyA a',

2n =puorn8o Ba,

2gl2= puwrp5vCa,

2gi3= pmvryovD,

where p is the largest common factor of all four quanti-
ties; (ua), r, w, and w are the remaining largest common
factors of the quantities taken three at a time; n, p,
y, p, 0-, and 6 are the remaining largest common factors
of the quantities taken two at a time, and (Aa), B, C

and D are the remaining factors. Also u is the largest
common factor of (ua) and (Aa). If N is odd, p is the
same as the p' of Sec. III. If N is even, p is either the
same as p' or is 2p' depending on the number of factors
of 2 inc andy.

The result, which is proved in the appendix, is that
the dimension of the representation (the number of
independent combinations of ko and ki) is NyA/p.
The integer mo can be chosen to include all integers in
the range from 0 through PwPa —1; rni then ranges
from 0 through pena —1; m2 can be chosen to range
from 0 through pena —1, and m3 from 0 through
puwpa —1.

To prove that these representations are irreducible,
we calculate the character for a particular representa-
tion, which is a sum over independent combinations of
the set of integers {ko,ki}.With the definition, h(n) = 1
if n is an integral multiple of N and A(n) =0 otherwise,
the character is

(mom~ m2m&)
x o ~"~ 8{r(R„T„~RiTi, .

, RtT,)}=g(J8p/ci)D(/cp/, 0, ~&,t» ——g(.. .~ &(2nn2)&(2&Llrn3 —l&n2])

Xexp{27ri(nG+gF+2gkono+2nkini+rnono+rnini+rn2n2+rnan3)IN} ~ (42)

where, when we take a diagonal element, it is necessary
to note that e2 and m3 can take on more than one value
each. The total number of values that m~ and e3 can
have in this case is N'/(NyA/p)=Np/yA since the
number of independent combinations of ko and k~ is
NVA/p. In performing the summation over the
independent set of values of ko and k~, the exponential
factor exp{2vri (2gkonp+ 2nkini)/N } will give zero
unless mo and m~ take on special values:

& (2g4no) = 1,
A(2nni —2ql, no) =1.

The total number of such values of mo and e~ is
N'/(N&AIP) =NPI&A. If n, and n, take on any of such
values, then the sum over {kp ki} gives NyA/p equal
terms, so

Since there are N/p' independent values of exp{2ni
X (nG+gF)/N} for varying G and I', the sum of the
squares of the characters over the elements of the
6nite group is

Q [
Xmpmgmgma

~

2

=(NIp')(Np/VA)'(N7AIP)'=N'/p' (44)

which is just the number of elements of the finite group.
If these representations were reducible, we would have
obtained in the sum a number greater than N'/p'. The
representations in Eq. (36) therefore are irreducible.
Further, these give all the irreducible representations
since it is easily seen that the sum over all representa-
tions (including those for which s/1, o/1) of the
squares of the dimensions just gives N5/p'.

V. BASIS FUNCTIONS
~-0-I-~-3= ~&2m~, ~~ t'2&B,~3—1 +,.l~zt'2&&, , In this section we will use the properties of the

~ s 0)( 7 /P)exP{2'vari(nG matrices of the irreducible representations to guide us
+4+rnono+rnini+rnmn2+rnan3)IN}. (43) in constructing the general form of the solutions of
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Eq. (1), which are basis functions for the representa-
tions. The general expression for an operator of the
6nite EMTG may be written:

r(R T„iRgTg, , R(Ti)
= expL2ori(nm+ gp)/N jexp{(in (no K~—n~ Ko)

+ignp(4Ko —4Ko)$ r/N) expr 2orip

X (4no 4no) ct /1V apje xpLR,„&+T„B/WJ. (45)

W„„(r+R~, t) =W„„(r,t),

W„„(r,t+ap/c) =W'„„(r,t),

(55)

(56)

where L3 is any integer and Lo is related to the integer
L2 by Lo——srL2. The various coeS.cients are defined in
Eq. (41). Therefore, in order to give a closed set of
independent values of ko and k~, the function W„„(r,t)
must satisfy the periodicity conditions:

'We take the solutions P(r, t) to be of the form

P(r, t) =C (r,t)e*"' '"''W„„(r,t), . (46)

W„„(r+N,v~AaaR, +N, LN/pv]R„ t)
=exp f —(2inNo/pv) Kz r—2orirvct/ap) W„„(r,t), (57)

where

with

and where

oc Lg+oco+'Ico )

pod
——(2nk g+ my) Kg/N,

ooo ——moKo/N,

no ——moKo/N,

a) = —2vc(2gko+mo)/Nao (48)

W„„(r+wyA 4Ro+ wyA 4Ro)
=exp f —iurPoBCK~ r) W„„(r,t) . (58)

Also as shown in the appendix, alternate equivalent
conditions for Eqs. (53) and (54) are

Ano ——(N/pv) L4+wyA4Lo, (59)

Ano vyA a——aLo+wyA4Lo, (60)

and
2'g (46no l36no)/N= integer= Lp

2ndno/1V = integer =L~,

(50)

(51)

then the new k() and k~ are equivalent to the original
ko and k~. In the Appendix, it is shown that if X2 and JV3

are particular integer solutions to the equation

NoSC No(owDy) = 1, — (52)

then the solutions of Eqs. (50) and (51) for Dno and Dno
are

Ano No(N/pv)Lo+4w——yA Lo, (53)

(54)Dno NovyA uaLo+ lowyA Lo, ——

The solutions are chosen so that 4(r, t) does not depend
on oo or ~. The operator r(noRo, 0~noRo, O) acting on f
should change k~ to k~+no, and ko to kp —lono. The
function W„„(r,t) is assumed to depend on kp and k~,
and is thereby changed by r, and C(r, t), which is
assumed to be independent of ko and k~, should give an
additional factor exp{ (i2nno K~ r/N) —i4orqlonoct/1Vap).
Further, the operator r(noRo, 0~noRo, O) acting on f
should give the exponential factor exp{4'.iglonoct/Nap).
A function which has these properties is

C (r,t)=exp{ (i/2n. )((n/N)K~ rKo r)
—(iv)/N) (—4Ko+4Ko) r(ct/ap)) . (49)

It is easily verified that any operator z. acting on
e'"' '"'C (r, t) has the same effect as the matrix D(r)
acting on the column eigenvectors

~
kp, mp, k~,m~), except

that the set of values of x and ~ do not form a closed
set. By choosing W„„(r,t) to satisfy appropriate bound-
ary conditions, the set of values of x and cv will be the
same as those obtained for the matrix representations.

If a translation by an amount corresponding to Ae~
and Ano is such that the changes in 2rtkp/N and 2nk~/N
satisfy the simultaneous conditions

where L4, L5, and L6 are arbitrary integers. For these
conditions Eqs. (55), (56), and (58) would remain
unchanged while Eq. (57) is replaced by the two
equations,

W„„(r+(N/pv)Ro, t) =exp{—2inK~ r/pv

+ 4origct 4/pvap) W„„(r,t), (61)

W „„(r+vyA cxaRo, t) = exp {—2v.ict (r5vC)/ap}

XW„.(r,t) . (62)

The resulting expression for P(r, t) can be put in
the form

tp(r t)=c'"' ' 'exp{i(qo+Ko r/4v)(RoXh) r
—i(goRo+q, R,+-,'r) ect}

XW (r+ qoRo+q, Ro,t), (63)

where q2 and q3 are integers corresponding to transla-
tions in the 2 and 3 directions. These functions P are
described by eigenvalues mp, m&, mo, mo, kp+411o 4go,
and kq+qo arising from group theory; further eigen-
values would be obtained by solving the wave equation.
The usual orthogonality relations hold for these
functions.

VI. INFDTITE EMTG

In order to accommodate all possible electric and
magnetic fields, it is convenient to let E approach
infinity, and thus we obtain an infinite group. The actual
wavefunctions in the interior of a reasonably large
crystal should still be similar to functions of the type
of Eq. (63), since boundary conditions should have
little effect on the general form of wave functions in the
interior.

In letting S' approach infinity, there are several
possibilities, depending on whether 2n/N, 2rt/N, 4/N,
and lo/N approach rational or irrational numbers. If
these are all rational numbers, we obtain an infinite
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number of finite-dimensional representations. If some
are irrational and some rational, we 6nd an in6nite
number of infinite-dimensional representations. If all
are irrational, we find one infinite-dimensional represen-
tation, and mo ——m~=m2=m3 ——0. We shall consider
explicitly only the latter, most simple, case. The various
cases differ only by infinitesimal changes in the electric
and magnetic fields, so the phenomena of physical
interest may be discussed with the aid of any one of
the cases.

To obtain the case in which all these numbers are
irrational, we assume that %=A, 2m= 8, 2ql~= t C,
2&la ——vD, fall other factors in Eq. (41) being unity),
and let A, 8, and M approach infinity so that the ratios
2'/N, 2q4/N, 2rt4/N, and thus the electric and
magnetic fieMs, remain finite. For convenience we
assume that C and D remain finite.

Redefining ko and kj so that

we have

lim(2u/N)ki —+hi,

lim(2rt/N) ho-+ko,

(64)

(65)

W(r+R„ t) = W(r, t),
W(r, t+ap/c) = W(r, t) . (67)

An interesting special case is that in which there is no
time dependence of the periodic potentials. To treat
this case, we let ao approach zero in such a way that
ko/ao, e and h remain finite. Then we may assume that
ko has been chosen so that S" approaches a function
independent of the time. Thus the basis function is of
the form

P= exp[i&i Ki r —ia&t]exp(i(g~+ K2 r/4x) (RsXh) r
i(q2R, +—q3R3+-,'r) ect}W(r+q,R,+q,R3). (68)

This is similar to the usual time-separated solution to
the wave function, but with an additional phase factor
corresponding to our choice of gauge. The factor,
exp( —i(q2R2+q~R3) ect}, corresponds to the shift in
potential energy under a translation parallel to the
electric field.

vu. comcLUslom
%'e have defined a group of electric and magnetic

translation operators which commute with the operator
5, and have shown how a set of basis functions suitable
for describing an electron in a lattice, with applied
uniform electric and magnetic fields, may be derived.

iP =exp[ikiKi r+i2xkoct/ao]exp(i(q2+ K2 r/4x)
X (R2X h). r —i(q~R2+q, R,+-', r) ect}

XW(r+q2R2+q„R„ t), (66)

where q2 and q3 are integers which range from 0 to
infinity. Thus ko and k& may have any values we please.
The function 8' now satisfies only the periodicity
conditions

As Zak pointed out, for a crystal of dimensions of the
order of 1 cm, the imposition of boundary conditions
restricts the magnetic field only to values which can
differ by about 10 G. If we also choose ao ——10 ' cm,
then the electric field is restricted to values which differ
by about 10' U/cm. However, for a periodic applied
fieM, of frequency 3&(10'~ sec ', corresponding to ao
=1000 A, the electric field values may differ by about
10 V/cm, a more reasonable value. The longer the
period in time, the more closely the allowed values of the
electric 6eld are spaced. For the magnetic 6eld there is
no such possibility of choice because the spatial con-
figuration of a crystal lattice is fixed. However, it is
presumed that these held spacings are without much
physical significance since they arose from the arbitrary
imposition of periodic boundary conditions.

The representations of the group were seen to be very
sensitive to the common factors of 2e, 2ql~, 2ql3, and E.
On the other hand one would not expect the important
physical characteristics of the wavefunction to be
sensitive to these factors. Thus one could probably
choose any one of the possibilities to describe a given
physical situation. The various possibilities were
discussed in detail because in a particular problem one
of them might be easier to treat mathematically than
the others. Also, the number of independent solutions
for a given periodic function W(r, t) is given by the
dimension of the matrix representations, Ny A/p.

Changing the size of the sample by a small amount
(say, changing N by unity) or changing the fields (e or

q) by a very smail amount, can change the number of
solutions by a large amount. Therefore, it is useful to
have the representations for the cases when the quanti-
ties X, 2n, 2gL~, and 2gl3 have various common factors,
in order to be able to calculate the number of solutions.

N =p (ua) iiicupp (A a),
2' =p (ua) iirn5&r 8,

2qlg= p(ua)wrpbpC,

2rtl3 peoria uD——
(A1)

Here all the symbols represent integers with p the
largest common factor of all four quantities, Na the
largest remaining common factor of S, 2e, and 2gl2, ~

the largest remaining common factor of g, 2m, and.

APPENDIX

In this Appendix we wiB derive the number of
independent combinations of the integers ko and k~

introduced in Eq. (25) and the corresponding ranges of
the integers mo, mj, m2, and ma. In addition the related
question of the conditions imposed on the function
W(r, t) of Eqs. (55)—(58) for changes in rt& and rt& will
be discussed. For these discussions a knowledge of the
common factors of the various integers involved is
important. We therefore introduce common factors of
S, 2n, 2gt2, 2gl3 as follows:
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2q/3, etc. Some of these integers in the same quantity,
such as 8 and r for instance, may still have some
common factors. However, the only one of these that is
important in the discussion below is the possible
common factor a between Na and Aa.

The quantities that generate ko and k& are l2m3 —13QQ

and m&, respectively. The combination of k& and kj
within the exponent thus starts repeating when the
changes in m~ and e3 are such that the following relations
are satisfied simultaneously:

L2——SCL6—myo-BI 4,

Lg = oaN—2L6+naNgL4+L6,

(A9)

(A10)

where L4, L5, and Le are arbitrary integers. Then it may
easily be shown that

The conditions (A7) and (AS) on the changes Anq
and lbs3 may be written in an equivalent, and sometimes
more convenient form by choosing L2 and L3 in Eqs.
(A7) and (AS} so that

(2g/N) (lgAn, —l,hng) =Lp,

(2n/N) Sn, =I.„
(A2)

(A3)

Dn2 uwPyA——a(naL4+oCL5), (A11)

hn3 vvA (n——aL6+ wyoL~) . (A12)

where Lo and L~ are integers. After using Eq. (A1) and
cancelling common factors, we And from Eq. (A3)
the relation

(rboB)hn2= (wpyAa)L~. (A4)

Thus An2=wPyAaL&', where L~' is another integer.
Substitution of this Anm into Eq. (A2) and cancellation
of common factors leads to

rv (uoCan, vwy'AoDL—,'}//(uvnyAa) =Lo. (As)

Thus the number of diferent values less than rv that
the left side of this expression may have is mo.&ATE.
This times wPyAa, which from Eq. (A4} is the number
of values 2qdn2/cV can have less than r5oB, gives the
number of independent combinations of ko and kq.
It is uvwnPy'A'a'=NBA/P.

To find the specific values of Ae2 and Ae3 such that
kp and k& start repeating, set Des ——v&AL7 L$ —QL8)
Lo——rvL2 where all the L's are integers and where we
have factored out of Ae~, Lj', and Lo all possible factors
which Eq. (A5) forces them to contain. Then Eq. (A5)
becomes

(&C)L,7
—(wyoD) L8——(na) L2. (A6)

Thus, if L7 ——naE~ and L8 ——o.a/2 give a particular set
of integers which satisfy Eq. (A6) for L2 1, the general——
solution of Eq. (A6) for a given L~ is Lq ——L2o.aN3
+L3wyoD, Ls ——I~naN2+L35C . where L, is another
arbitrary integer. Thus

hn2 ——uwPyA aLS uwPyA a(L2naN——~+LaoC) (A7)

and

Dn3 ——vyAL7=vs (L~naN~+LawyoD). (AS)

The basis functions for the representations should then
have their ko and k~ periodic for a change in m2 and e~
corresponding to L2 ——1 and L3=0 and also for L2——0
and L3=1.

Although three arbitrary integers appear in these
latter expressions, different choices of L4, L5, and L6
do not all give independent conditions on he2 and hm3.
In some cases, however, it may be more convenient to
use Eqs. (A11), (A12) rather than the equivalent
Eqs. (A7), (AS) where only two arbitrary integers occur.

The choice of the ranges of mo and m~ is not unique.
One choice is made by noting that the number of ko's
for each kz is N&A/p divided by the number of k&'s

or nvo. yea, so that for a given k~, the range of mo is
0, 1, , (N/uvnyAa) —1 or 0, 1, , pwpa —1. Then
since the number of k~'s is wpyAa, the range of m~ is
0, 1, . . ., (N/wPyAa) —1 or 0, 1, , Puvna 1. Al—ter-
natively, one could start with the number of k&'s for
each ko and divide this into E to find the number of
m&'s, and divide E by the number of ko's to And the
number of mo's. These choices would give different
ranges, but the product of the number of m&'s and mo s
is the same, Np/pA. The different choices simply
correspond to a relabeling of rows and columns of the
representation matrices.

In finding the matrices of the irreducible representa-
tions, we could have started with matrices which are
diagonal for operators corresponding to translations in
the 2,3 space. Augmentation with r(O, T ~O, T„) and
v. (Rqnq, O~Rqnq, 0) would then have generated matrices
whose rows and columns would be labeled by k2 and
k3 rather than the ko and k& previously. The number of
combinations of k2 and k3 would be the same as the
previous number of combinations of ko and k~, NyA/p.
This corresponds to the fact that the dimension of the
matrix remains unchanged under a similarity trans-
formation. Since under a similarity transformation, the
labels of the diferent representations, mo, ms~, mg, and
m3, can be taken to be unchanged, we can now use the
procedure, followed above in finding the ranges of mo
and m~, to find the ranges of m2 and m~. The result is
not unique; one choice is: m2 ——0, 1, , pvua —1 and
nvg=O, 1, , puwpa —1.


