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Effect of Electron-Electron Interactions on Photoemission in Simple Metals*
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Recently interest has arisen in the possibility of significant deviations of the optical properties of metals
from their random-phase-approximation (RPA) values. Starting with the approximation that the crystal
pseudopotential can be regarded as weak, we have carried out calculations beyond RPA of the optical
absorption and primary photoelectron kinetic-energy distribution. Dynamic screening (as opposed to the
usual RPA static screening) results in corrections of great importance to the phonon (or disorder) contribu-
tion to the optical absorption and makes qualitative changes in the phonon-induced photoelectron distri-
bution for photons having energies above m„. A new feature is a marked peak in the phonon contribution
to the photoelectron distribution at the Fermi energy for photons having energies in the region of plasmon
energies. The supposition of a weak crystal potential prevents quantitative application of these results
except to Na and K, but the qualitative effect of dynamic screening should be the same in more complicated
systems. The possibility of the experimental existence of photoemission features inexplicable in RPA has
been recently discussed by Phillips.

I. INTRODUCTION

ECEXTLY, attention has been focused on the
possibility of the existence of anomalous effects in

the optical absorption' ' and external photoemission'
of simple metals. Various lines of theoretical approach' ~

have been utilized to explain the experimental effects.
Two features are common to these approaches for

calculating optical absorption. One feature is that fairly
radical departures from the usual Hartree approxima-
tion and Hartree dielectric function are employed. The
second is that when the optical absorption is calculated
in the long-wavelength limit, a sink which takes mo-
mentum from the electrons must be found. Overhauser's
optical-absorption calculation for the free-electron gas
seems to violate the conservation of momentum in its
present form as no sink for electron momentum is sup-
plied (see Appendix). Cohen does not carry his calcula-
tion of optical absorption out suKciently far to include
such details. His analogies with superconductors would
lead one to believe that phonons are the sink for mo-
mentum, although the temperature dependence he
mentions does not agree with this.

Photoemission studies provide additional information
about the nature of optical absorption at a single
photon energy through the distribution of photoelectron
kinetic energies, and serves, therefore, as a useful tool
in understanding the nature of optical absorption. In
this paper the effects of calculating the optical absorp-
tion for simp1e metals in the simp/est approximation

*Research supported in part by U. S. Air Force PfBce of
Research, ARDC.' H. Mayer and M. H. El Naby, Z. Physik 174, 289 (1963).

"- J. N. Hodgson, Phys. Letters 7, 300 (1963).
'M. H. Cohen and J. C. Phillips, Phys. Rev. Letters 12, 662

(1964).' J. C. Phillips, Phys. Rev. 137, A1835 (1965).' M. H. Cohen, Phys. Rev. Letters 12, 664 (1964).' A. W. Overhauser, Phys. Rev. Letters 13, 190 (1964).
A variety of other explanations, including excitons, the

anomalous skin effect, and indirect transitions to the zone edges,
have also been suggested (chiefly informally) as possible.

beyond the usual Hartree approximation on the energy
distribution of the primary photoelectrons is investi-
gated. . It is shown that when the optical absorption is
due to electron-phonon scattering or disorder scattering,
a sizeable excess of primary photoelectrons originate
near the Fermi surface for photon energies near the
plasma frequency. This mechanism can provide a simple
explanation for photoemission anomalies discussed by
Phillips.

In Sec. II, the framework of approximations in which
the results are calculated is discussed, and the calcula-
tion of the optical absorption is reviewed. The implica-
cations of this treatment for photoemission are treated
in Sec. III and numerical results presented for potas-
sium. The results are discussed in Sec. IV.

II. THE OPTICAL ABSORPTION

We treat a model of a simple metal in which the
electron Fermi sea is regarded as being weakly perturbed
by the positive ions in the metal. Each ion is regarded
as having associated with it a weak potential V(r).
Optical absorption will be calculated only to second
order in V(r), the first nonvanishing term.

The actual bare-ion potential is of course not smal1.
In pseudopotential form, there is a near ca.ncellation
between large Z effects and inner-shell repulsive ortho-
gonalization terms. Harrison' has noted that for Born-
approximation calculations the ion potential can often
be represented as

V(r) = Pe'/r Versions(r—)j, — (~)

where a is the Bohr radius and Vo is a constant. For
backscattering in sodium, Harrison' Ands that the
Fourier transform of (1) vanishes for a wave vector of
1.6)&108 cm '. We shall use this ion potential in
numerical calculations. Fortunately, answers are only
weakly dependent on Vo.

8 W. A. Harrison, Phys. Rev. 136, A1107 (1964).
9 W. A. Harrison {private communication).
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The effect of the ion potential on the energy band.
structure after the potential is screened by the Fermi gas
is in fact small in simple monovalent metals like Xa
and K.This does not guarantee that the potential can be
represented by a small pseudopotential for all purposes,
but no qualitative errors are presently known from such
a representation in these metals.

%hen electron-phonon coupling is small, the electro-
magnetic properties at frequencies large compared to
phonon frequencies can be calculated as if the ions were
fixed instantaneous positions, using the ensemble dis-
tribution of positions appropriate to the given system.
Such an approximation washes out dynamical electron-
phonon coupling effects and zero-point fluctuations, and
averages properties over an energy interval kO'o, where
O'D is the Debye tempera, ture. For high-frequency cal-
culations and T))OD, the error introduced is negligible.

If one Fourier component of the perturbation poten-
tial is written as V, expiq r, to calculate optical loss and
photoemission we must calculate the contribution to
the imaginary part of the dielectric constant of this
perturbation. In the absence of all perturbations,
denote the eigenstates of a many (interacting) particle
electron-gas system by IP;&, having energies E;. These
states are also eigenstates of the total momentum, so
have quantum numbers I'„also. If an electric field
perturbation in the x direction E=iE coswt is included
written as a vector potential, the Hamiltonian becomes

Telectrons+ Velectron-electron

e
+ +electrons n(Pn) 'iE since~ (2)

(omitting terms in the square of the vector potential,
as we seek a current linear in E). P„ is the electron
momentum operator. The many-particle eigenfunctions
ItJ,) are eigenfunctions of this Hamiltonian, and have
the time depend. ence

exp( —iL (E,/Ps) t—(P„eE/A m)ccosostot j}.

The current can now be expressed correctly to second
order in V, and first order in E by doing perturbation
theory with these basis functions correct to second order
in V,. If, in increasing powers of V„ the wave function
is expanded P=Pc+Pt+P, , then the current density
correct to order V,' is

e e
Q'I +electron nl Pn An

I I P)
m c

)X~ e' e'
(+I&l+&+—(ftl pl+i& (3)

I n)mc all

where 0 is the crystal volume.
Since A contains no spatial variation, its expectation

value can be trivially evalua, ted. Since
I go), the ground

state of the system, is an eigenstate of the momentum
having eigenvalue zero, other terms from the left-hand
side of (3) vanish in order V, . By writing out Pt
explicitly and summing over the various Fourier compo-
nents of the potential, one finds (for a system having an
isotropic conductivity) that the imaginary part of the
dielectric function is

4m'e' (P*s)
e2(~) = Z Zl

n '~' ~

x l(O, I v, 2 "™lao)I'~(E,-Eo-& ).

Comparing (4) and (5), one obtains

es(to) = P I

Vol�

'q, 'q'PIm(1/e(g, to))],
SS M

an expression exact to order V,' including all electron-
electron interactions.

This calculation has been made for an electron gas
at zero temperature. The smearing of the Fermi surface
by thermal excitation is expected to introduce no
explicit effects at optical frequencies except perhaps
slight broadenings. Equation (6) is not new —it is the
expression obtained by Ron and Tzoar" for absorption
in a quantum plasma. However, the present derivation
makes it clear that (6) is exact to order

I
V, l'.

A Hartree calculation of es(to), as described by
Ehrenreich and Cohen, " would proceed as follows.
First, find the self-consistent energy eigenstates of the
potential. For a weak potential, the self-consistent
potential would be the applied potential with static
screening from the electron gas. Second, calculate the
response of the system to an applied uniform electric
field oscillating in time, keeping self-consistently only
the response of the system at wave vector zero. The
potential due to the ions is screened statistically.

Let

e (q,co)=ei (q,co)+te2 (q,co)

A. Ron and N. Tzoa, r, Phys. Rev. 132, 2800 (1963).
~' H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, '786 (1959).

Perturbation theory can also be used to express the
dielectric shielding of an oscillating nonuniform poten-
tial V(r,f)= Vp(cosq r) coscot in the free-electron gas in
terms of matrix elements and energies of the exact
many-body wave functions. From the definition of the
dielectric function in terms of the system response, an
expression fcr the imaginary part of the reciprocal of
the longitudinal dielectric function is obtained.

47r'e'

ZIO'IZ e"'"I+ &I'
Es (g,Q7)) Dg i n

xs(E;—Eo+ r~). (5)
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be the Hartree longitudinal dielectric function of the
free-electron gas. If we approximate e(q, re) in the right
side of (6) by e~(q, co) the quantity in parentheses is

10-

Then

pq —— p'(r) g
—'&'dsr. (10)

I V,I',.„,= I U, I'(XIQ') 1+ f(r)e "'d'r, (11)

This result still describes physical eRects not present in
simple Hartree calculations.

The Hartree calculation (a la Ehrenreich and Cohen)
yields the same answer but with this parenthesis
replaced by

(9)

For low frequencies (&u((co~) or large wave vectors
q»(screening length) ', the two expressions are the
same. For small wave vectors and large frequencies,
there is a real physical difference between the Hartree
calculation, which includes static screening only, and
Eq. (6) [with (8)$ which contains dynamic screening
effects.

Ron and Tzoar calculated the optical absorption for a
plasma from Eq. (6). We can do the same using the
atomic potential (1).Define

FIG, 1.The phonon
disorder part of er(~l
calculated from Eqs.
(6), (8), and (11) as
a function of energy
for potassium. The
ordinate contains an
arbitrary multiplica-
tive factor.

~Q} i ) i I I I I

0 I 2 5 4 5 6 7
E{ev)

photon energy. The problem of connecting the actual
photoemission to the kinetic energies of the primary
electrons being well-known, only the distribution of
kinetic energy of primary electrons will be considered
here. Let E„(q) be the energy of a plasmon of wave
vector g. In the Hartree dielectric-function approxima-
tion, real plasmons extend from q= 0 to a critical q, .The
primary electron distribution calculation naturally
divides itself into two parts, to be treated separately.

where f(r) is the pair distribution function. The bracket
in (11) is, of course, the same factor which appears in
x-ray scattering, and can be directly measured.

For a solid, the bracket in (11) consists of two parts.
One part, due to lattice periodicity, exists for g= 27rG,

where G is a reciprocal lattice vector. The other part,
due to thermal (or structural) disorder is spread ap-
proximately uniformly through q space. For potassium,
the absorption shape of the present theory due to the
periodic lattice will be very nearly that calculated by
Butcher, "since even for the smallest reciprocal lattice
vector EP(2~G,or) is equal to unity within 25%, and
EP(2~G,&o) is small. Experimental data suggests that
this term alone cannot explain the bulk of the optical
absorption in potassium above 1 eV.

If the bracket in Eq. (11) is represented as a constant
for the disorder scattering, the shape of the optical
absorption is very like that of Ron and Tzoar. The
shape of es(&u) due to disorder scattering in this approxi-
mation is shown in Fig. (1) for potassium. For T»O~ii,
the thermal disorder part of the bracket in (11) is
proportional to temperature.

III. THE PHOTOELECTRON ENERGY
DISTMBUTION

The primary electrons responsible for photoemission
have kinetic energies (above the Fermi energy Es) be-
tween E and E Er, (or 0 if Er )E), where —E is the

A. E(E~(0) or E)E„(q,)

In this energy region, Im[e~(q, &e)$
' is due to the

excitation of electron-hole pairs. Precisely the same
processes occur in the present calculation in this energy
interval as in the ordinary Hartree calculation. The
relative @eights assigned to different excitations are,
however, greatly changed.

The difference between the present and the ordinary
calculation originates from the use of Eq. (8) instead
of Eq. (9). For a typical value of q(q=1.2k~) and
parameters appropriate to potassium, Eq. (9) has its
largest value at E= 2.9 eV. (See Fig. 2.) At this photon
energy, the kinetic energy of the electrons generated are
distributed uniformly between 0.9 and 2.9 eV above the
Fermi energy. (The Fermi energy of potassium is
2.05 eV.) Equation (8) on the other hand has its maxi-
mum at E=7.0 eV. At this photon energy, the kinetic
energy of the electrons generated are distributed be-
tween 6.0 and 7.0 eV. Said slightly differently, Eq. (9)
for this q excites electrons from states within 2 eV of
the Fermi energy, while Eq. (8) excites them from states
within only 1 eV of the Fermi energy.

Detailed calculations are given in Fig. 3. It is most
convenient to plot the energy of the state of origin of
the final electron, whose 6nal total energy is this plus
the photon energy. At low photon energies, the curve
approaches that to be expected for the ordinary Hartree
calculation, namely the parabolic free-electron density
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FIa. 2. A com-
parison between ex-
pression (8) (dy-
namic screening) and
expression (9) {static
screening) for

q = 1.2kf

in potassium.

If the lattice introduces some effective one-body
potential V(r), it can, in lowest order, scatter either the
electron or the hole, but not both. For plasmon wave
vectors such that

fi'/2m(ki;+q)'& E,(q) (13)

Sole scattering cannot conserve energy, so only electron
scattering is available. Electron scattering from pair
component of the plasmon takes place independently.
Restricting ourselves to g which satisfy (13), (q(0.35k&
for potassium), the probability of leaving a hole in state
k is then proportional to

I I l I I I I

I 2 5 4 5 6 7 8
E (eV)

of states. At high photon energies, a definite emphasis
on states near the Fermi surface is clearly observable, to
be expected from the qualitative considerations of the
previous paragraph.

B. E„(0)(E&E~(q,)
In this energy region, Im[ei(q, or)] ' is due to two

separate processes. One of these is the generation of
electron-hole pairs as in A, and can be treated in the
same fashion. The other process is the generation of rea, l

plasmons. The problem which remains is to calculate
the primary electrons which optical-absorption generat-
ing real (Hartree) plasmons will introduce.

A plasmon generated in the initial absorption process
will break up into quasiparticle excitations by two
mechanisms. First, if a more exact calculation of
properties of the electron gas is made, the real (Hartree)
plasmon is unstable against decay into four quasi-
particles. The lifetime for such decay is a function of
the plasmon wave vector, becoming in6nite in the limit

q
—+ 0. Such processes will produce electrons having an

energy distribution like those which have suffered a
major inelastic collision, as the total photon energy is
partitioned between two pairs of quasiparticles instead
of one pa, ir.

Second, if the crystal potential were included in
higher order, the plasmon could scatter against the
crystal potential and decay into an electron-hole pair.
This process takes place even for q=0 plasmons. Thus,
for any given size of crystal potential, eventually for
small enough q the crystal potential causes the plasmon
to decay.

The breakup of the plasmon by the lattice potential is
easily calculated in lowest order. The (Hartree) plasmon
creation operator can be taken as

5.5 eV
CO

OK'
I-
O
Ul

IJJ
O
O
CL

w0 20 I 20 I 2 0 I 2
KINETIC ENERGY (eV)

[1/(E.(V)+Es—E~+.)1'W(E~+s ~E.(C)
—E.). (14)

Here W(E&+, —+ E„(q) E&) is th—e probability per unit
time that an electron placed in state k+q but arbi-
trarily assigned an energy E~(q) —E& would be scattered
by the lattice into a final state of energy E„(q) Ei,. W, —
of course, depends on the lattice potential, but has a
form which depends only weakly on the form of the
lattice potential. For a potential with uniform Fourier
components (much like the screened potential of the
present problem) W will vary as [E„(q)—Ei,j'~', a
dependence weak enough to be neglected in the present
calculation.

Putting W=constant in (14), the probability of
leaving a hole in state k can be calculated from (12) by
calculating the normalizing factor in the probability
distribution. The electron then has the total energy
E.+E.(q)

The plasmons generated by photons of energy E must
have the same energy: i.e., E„(q)=E. By choosing E
only slightly above E~(0), g can be kept small, making
the lattice potential the dominant source of plasmon
decay into particles. For such an E, Eq. (13) would also
be satisfied. [In potassium (13) is satisfied from E„(0)
=3.7 to 3.9 eV.j

cA+~tcy

E.(C)+E~—E~+.

ski (kp,

[k+q[ &kp.

(12)

FlG. 3. The primary photoelectron kinetic-energy distribution
from that part of the optical absorption due to phonons {or dis-
order). Each curve is normalized to the same area. The energy zero
is chosen as Ephptp~ L:Fermi the minimum kinetic energy possible
above the Fermi energy for a given photon energy. In the Hartree
approximation, all curves would resemble a free-electron parabola.
The photon energies in electron volts are given in the upper left
comers.
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It is not inconsistent with the original spirit of the
calculation to order

~ V,
~

' to include damping due to the
lattice potential. This damping introduces no added
absorptions: It only ensures that the absorption states
are allowed to decay to the final products important in
photoemission. The entire photoemission electron dis-
tribution is still proportional only to

~
V, ~

. Calculated
photoemission electron distributions for this case are
also given in Fig. 3.

For photon energies a.nd disorder wave vectors above
the hole-scattering threshold, a small amount of hole
scattering will occur. Even for the worst energy,
8 = E~(q,), the low density and consequent electron-hole
asymmetry make the electron scattering about three
times more important than the hole scattering. (The
real plasmon contribution goes smoothly to zero at this
energy. ) Equation (14) is then a fair approximation at
all photon energies.

IV. DISCUSSION

The optical absorption of potassium is as yet poorly
understood. When this very simple metal is not well
understood, basic questions about the interpretations
given in more complicated systems arise. Photoemission
studies provide a good complement to optical-absorp-
tion studies, for even at a single photon energy informa-
tion can be obtained about the nature of the electronic
transitions. The calculation presented shows that the
primary photoelectron energy spectrum in simple
metals shows significant additional structure when
higher approximations than Hartree are used to cal-
culate the optical absorption, and absorption is due to
disorder.

Phillips4 has recently pointed out that there is some
experimental evidence in potassium for an unexpectedly
large number of photoelectrons originating near the
Fermi surface for some energies of excitation. He has
interpreted this in terms of an unspecified form of
"collective resonance. " An alternative explanation of
such a result is that the excess is just what would be
expected from the non-Hartree calculation of photo-
electrons due to disorder, since the critical range of
photon energies seems to be at and above the plasma
energy as in Fig. 3.

The present theory is clearly not quantitatively
applicable to Ag or Cu. A similar qualitative effect
would be expected, however, especially in silver which
has a strong plasmon'3 at 3.8 eP for 4=0. Phillips notes
that a large excess of photoelectrons from the Fermi
surface occurs for photons of energies near 3.8 eV.
Owing to band-structure differences copper does not
(at least at k =0) have a recognizable plasmon. "It does
not display the strong photoemission effect shown in
silver.

It is somewhat surprising to note in Fig. 3 that the

"P.N. Butcher, Proc. Phys. Soc. (I,ondon) A64, 765 (1951)."H. Ehrenreich and H. R. Phillip, Phys. Rev. 128, 1622 (1962).

free-electron parabola, well approximated at low photon
energies, is not returned to by 10.0 eV. The shape at
this photon energy is still dominated by small wave-
vector components of the potential, which are well
screened at low frequencies but unscreened at high
frequencies.

The calculated qualitative e6ect of corrections to the
Hartree-approximation optical properties on photo-
emission ought to exist (at least in simple metals like
potassium) if the ordinary free-electron ground state is
qualitatively correct. In potassium and perhaps sodium
the possibility of having the disorder contribution com-
pletely swamped by the lattice contribution is mini-
mized. The careful study of the temperature dependence
of the photoelectron energy distribution for photon
energies near and above the plasmon energy would be
most useful in separating disorder and periodic contri-
butions to look. for the predicted eGect.

If the ground state in potassium is free electron like,
the most major error in the present calculation is the
supposition that the crystal potential is small. Indeed,
the crystal potential is not small —only its effect on the
free-electron energy levels near the Fermi energy is
small. Errors due to the magnitude of the crystal
potential might introduce additional structure, but
there is no reason to expect them to eliminate the
qualitative effect calculated here. The use of the
Hartree dielectron function limits the quantitative
reliability of these calculations, but should not be in
qualitative error. Calculations of the optical properties
of potassium, if the crystal potential is not regarded as
small, are now being attempted.
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APPENDIX

Overhauser'" has calculated the spin-density wave
properties of the free-electron gas containing electron-
electron interactions but no lattice. In a free-electron
gas, electron-electron collisions conserve momentum
(and thus current), and therefore cannot result in a
real part of the electrical conductivity for uniform fields.

In Overhauser's calculation, there is a periodic poten-
tial which is effectively used as a lattice potential for
inducing electron band-to-band transitions. When the
periodic potential is due to the lattice, this calculation
is correct. When this potential is due to the electrons,
however, the effect of this potential is also electric-field
dependent, and the "backQow" must be calculated. For
a uniform electric field, it will precisely cancel the term
calculated by Overhauser.

'4 A. K. Overhauser, Phys. Rev. 128, 1437 (1962).
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An analogous cancellation is well-known in free-
electron spin resonance of alkali metals. In the presence
of a magnetic field, the electron gas is spin polarized. An
exchange Geld thus exists which alters the energy re-
quired to Qip the spin of a particular electron. This
exchange field is analagous to Overhauser's periodic
potential. If the spin-resonance frequency is calculated
without including back Qow, it is altered by the ex-
change field. In actual fact, since the total spin angular
momentum commutes with the Hamiltonian, exchange
does not alter the spin-resonance frequency, and
"backQow" precisely cancels the exchange correction to
the spin-resonance frequency. In both cases the cancel-
lation is a necessary consequence of the observables in
question, the current and spin, respectively, commuting
with the total Hamiltonian.

Under some circumstances, "at k=0" and "the limit

ir ~ 0" are not the same in the presence of long-range
interactions. In both Overhauser's case and the case of
the spin in an electron gas, the relevant excitation has
no charge-density Quctuation in the limit k —+0, so
"the limit k —+0" and "at k=0" are synonymous.
LOverhauser uses a 0 ~ 0 limiting process, but only to
show the relation between the power absorption and
es(~)].

This discussion does not bear on the correctness of the
spin-density wave ground state in potassium. %ere
potassium to have such a ground state, other mecha-
nisms (pinning of the spin-density wave or anomalous
slain effect) could result in optical absorption displaying
the spin-density wave. The Overhauser calculation,
however, of a one-parameter optical-absorption shape
based on a free-electron gas and the long-wavelength
limit seems to be incorrect.
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The zero-applied-6eld nuclear magnetic resonance of 6'Ni in high purity, well-annealed Nj metal has been
investigated at room temperature. The technique of rotary saturation is used to obtain a value for the
domain-wall enhancement factor g = 1600. Fast passage and saturation effects are observed and interpreted
according to theories developed by Portis for inhomogeneously broadened spin systems. This analysis leads
to a value for the longitudinal relaxation time T~=0.16 msec, and to an observed nuclear dispersion-to-
absorption ratio in the power absorbed of p0=0.5 at low rf levels. Fast-passage eGects are used to obtain a
tracing of the distribution of nuclear magnetic fields in the sample.

INTRODUCTION

ERO-applied-field nuclear magnetic resonance sig-
~~

& nals observed at low rf levels in the ferromagnetic
metals, Co,'' Ni, '' and Fe,' ' arise from nuclei in
the domain walls of the sample. Because of the motion
of the domain walls under the inQuence of the applied
rf magnetic field, the rf-field amplitude at the site of

*Supported in part by a grant from the National Science
Foundation and in part by University of Wisconsin research funds
provided by the Wisconsin Alumni Research Foundation.

t Present address: Department of Physics, Cornell University,
Ithaca, New York.
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a nucleus in the wall is enhanced by a factor 10' over
the applied field. The strength of the observed signal
is also enhanced. Because of a modulation of the in-
trinsic losses in the sample by the nuclear susceptibility,
the detection of the resonance with spectrometers sensi-
tive only to power absorbed leads to signals which are
mixtures of nuclear absorption and dispersion. Spin
echo experiments and other less direct techniques have
shown that these lines are inhomogeneously broad-
ened. ' ' Rapid-passage effects have been observed and
used to interpret some of the characteristics of the
resonances in Co' and I'e.s

This paper presents the results of an investigation of
the nuclear magnetic resonance of 6'Xi in pure, well-
annealed, unenriched Ni powder at room temperature.
The technique of rotary saturation" is used to Gnd
directly a value for the domain-wall enhancement
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