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I-Ray Scattering from an Electron Gas~
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We show that the x-ray scattering from an electron gas in the large-momentum-transfer regime (4)& z,~ )( E,A,
is a direct measure of the one-dimensional momentum distribution of the particles (including corre ations).
If the recoiling electron's momentum is measured in coincidence with the scattered x ray, t en one can (in
principle) measure the complete three-dimensional momentum distribution function.

and k=ki —ks. (2)

We use units in which h=c=1. Here rtt=e'/nz is the
classical electron radius, e~ and e~ are the polarization
vectors of the incoming and outgoing photon beams,
respectively, and a~ is the annihilation operator for an
electron in a state of momentum p. The symbol ( )
represents for zero temperature the ground-state
expectation value and for 6nite temperature the usual
statistical average, and

(])—eiHttr e iBt—(3)

For zero temperature, the ground state of the inter-
acting electron gas is completely specided by the
momentum distribution e„.

I,= (a,ta, ). (4)

If we assume a noninteracting electron gas e~ is of
course unity for P&Pt (the Fermi momentum) and is
equal to zero for p)Pr. In an interacting electron
system collisions will produce a smearing of the distribu-
tion function.

Luttinger has shown' that even in the interacting
system there is still a discontinuity in the distribution
function at p=Pt. The exact magnitude of the dis-
continuity is unknown. However, for real metals it is
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A

I. CALCULATION

S UPPOSE we consider the incoherent scattering of
x rays from an electron gas (see Fig. 1). If the

frequency of the incoming x-ray beam is much higher
than the plasma frequency, i.e., ~~&)~„and Eg&&ko~
(mc', then the differential scattering cross section per
unit volume of plasma is given by'

d0 +" df
=re'(et es)'P Q e-'"t

do)dQ s s' „(2s)
X(&st(~)&s+a(f)&s+at&s ), (1)

where

expected to be of order unity. In addition, it is known'
that a tail will develop on the distribution function.
The tail is algebraic in character with a falloff in
momentum space for large values of p which goes at
least as fast as (Pt/p)s 'In any. case, it is safe to assume
that Ns is only finite for values of p which are of the
order of I'p. Everything we will prove about the exact
scattering amplitude will be correct only to order
(Pr/Je). We will assume that N~t, =O. This introduces
an error at most of order (Ps/k)s. Errors of order
(Ps/k)' will be introduced when at a later stage we
neglect the energy of the particles in the Fermi sea
relative to their recoil energy.

In Eq. (1) the operator as operates directly (to the
right) on the ground state of the system. The operator
an't operates directly (to the left) on the ground state of
the system. This implies that both p and p' are of the
order of magnitude of I'p. Sy our assumption on the
size of k, ~p+k(&&Pp and (p'+kj&&Pp. We will
assume in rewriting the correlation function in Eq. (1)
th t

as+t, (f)= asst, exp —ie,+t,t, (~)

i.e., that to a very good approximation the fast particle
behaves like a free particle. Here es+a—= (p+k)'/2m.

In using Eq. (5) we have neglected the interaction
between the fast particle (of momentum y+k) and the
remaining particles in the medium. Interaction effects
will, crudely speaking, introduce an imaginary part into
the energy in Eq. (5) (lifetime effects), and produce a

Fn. 1. Diagrammatic description of the
incoherent photon scattering.

' See Ref. 2 and also E. Daniel and S. H. Vosko, Phys. Rev. 120,
204& (&960).' This arises from the requirement that the average kinetic
energy should be 6nite. In Ref. 3 it is shown that to the lowest
order in a perturbation expansion of the distribution function
tt(p); t (Pr/p)' for p»Pt.
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shift in the energy ep+), (self-energy effects). In order to
estimate the error introduced by this approximation
we have to evaluate the effects of collisions on a fast
particle of momentum k' (k'—=

~
p+k~))E) ).

In real metals the plasma frequency ~~, the Fermi en-

ergy er, and the average potential energy (P.E.)= e'/ap

(ap is the interparticle radius) are of the same order.
Using a simple calculation one finds that the time
between collisions t—1/p)„(k/k), )'. This indicates that
the effect of collision on the spreading of the energy is

ImE), —(ko)„)(Pp/k')',

where E&. is the renormalized energy of an electron
with momentum k'. A simple Hartree-Fock calculation
shows that collision corrections introduce a shift in the
energy of the order of

6(ReE), )—(hp)„)'/e), . (7)

In addition to the self-energy e6ects considered here,
one must also include the scattering of the fast electron
from the "hole" in the Fermi sea. This eGect produces
corrections of the same order of magnitude as those
taking into account the calculations of the ImEq . This,
crudely speaking, means that the electron-electron
mean free path is of the same order as the electron-hole
mean free path. We therefore conclude that our assump-
tion that the recoil electron is not affected by collisions
is a good approximation. Errors in the energy which
decrease as k' increases may be neglected; only errors
which are proportional to k' can spoil the conclusions
reached here.

The fact that a high-energy particle behaves accu-
rately like a free particle is a strict consequence of the
Coglomh interaction. The conclusions reached here can-
not be simply generalized to other laws of forces,
particularly hard spheres. For hard spheres the collision
time is inversely proportional to the momentum so that
the ImE~. is proportional to k'.

Using Eq. (5) we may write

(apt(t)ay+i, (/)ap+), tap )—exp —icy„),t

&&( t(1) & + ') (g)

The operator a~+i, operating on the ground state of the
interacting system creates, with probability one, an
electron of momentum y'+k since (by our assumption
on the magnitude of k), the state y'+k is unoccupied.
The operator a,+& must annihilate with unit probability
this high-energy particle so that the matrix element
vanishes unless y'= p. We finally obtain

Substituting Eq. (9) into Eq. (1) we obtain the cross
section

do' +~ dt
=rp'(ei ep)' g

do)dQ y — 2%

X (apt (t)ay)expi(p) —ep+),)t. (10)

do rp'(ei ep)' k' p k~
8 p) ———— ~wpdy, (12)

dGDdQ 2m m3(2s.)'

which is the desired result.
The procedure we have used here is exactly equiva-

lent to the procedure used in evaluating the brompton
scattering from bound electrons when the recoil energy
is much larger than the binding energy. ' One simply
neglects all binding energies. Physically, our approxi-
mation rests on the following argument. The wave-
length of the photon is so small (large k) that it interacts
with an individual electron and ejects it from the Fermi
sphere instantaneously (large recoil energy). The rest
of the system, i.e., the remaining electrons and the hole
are left to evolve by themselves via their total Hamil-
tonian (including correlations). This approximation is
known in the literature as the "impulse approximation. "'

We wish to point out here that our result Eq. (12)
can be obtained from Eq. (10) in a more formal way
even for finite temperature, the only difference being
that n, will be the distribution function for finite
temperature. Our starting point is Eq. (10) where ( )
now means the usual thermal average.

Using the spectral analysis method one may easily
show that

rp (cl'c2)
dvdQ

where

dp) 5(G)—6&+k+p) +)(i)

1
Imllfp(o)'), (13)

s e~"'+1

M, (si) =

Mp(~) =M, (s,~~+ig),
P (2t+1)s i

du e"*)M,(u); si= —, (15)

Mp(u) = (ap'(u)ap),

(u) Su(H gN)H e v, (H p—N)——

The function Im3Ip(p)') is finite for those values of
(M'+p) which correspond to the "dressed single-par-
ticle" excitation energies of the system. ~ We have
assumed throughout that we can neglect the energy
((p'+u) relative to the recoil energy e~+), so that the
argument of the delta function in Eq. (9) is independent

5 J.W. Dnmond, Rev. Mod. Phys. S, 1 (1933).
e G. F. Chew, Phys. Rev. 89, 196 (1950).
~ For a free electron gas ImM&(op') =xh(~' —~z+p).

Neglecting the time dependence of (up1(t)up) intro-
duces an error of the order p'/2m rels, tive to k'/2m. To
be consistent then we write

ey~),
——(k'/2m)+ (p k/m)

and obtain
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of co'. The integral over co' is easily performed, since

1 dc'

(ee"'+1)
ImMy(~') =—my(T) . (18)

Equation (9) can now be generalized for finite tem-
peratures by replacing I, by N, (T). Here, the quantity
P = 1/EiiT and ti is the chemical potential.

To put Eq. (9) in a more convenient form let us
define the direction of the momentum transfer It as the
s axis. Then the cross section takes the form

l.O

0.8—

~+ 0.6—

b~ 0.4-

0,2—

K

~REcotL = M ev

Ee= 40 ev

EF~ 28V

d~ m
=ro'(ei e2)' —~$f(p, )j„,=(„ /, ~/9 ) //g (19)

dMdQ k )
where

f(p, )= eyd—p,dp„/(2ir)' (20)

is the "one-dimensional distribution function. " If we

measure the direction of the recoiling electron, then it
is easily shown that

AodQpI, dQ, I 27r2
(21)

II. DISCUSSION

Experimentally, it seems feasible to make a measure-
ment of the kind considered here. For a 10-kV x ray,
the recoiling electron will have an energy of the order
of 400 eV for scattering in the backward direction. In
general the recoil energy as a, function of the scattering
angle is given by

I'.,«»~= f(h~i)'/mc'j sin'(0/2) . (23)

Typical Fermi energies for free electron-like metals are
of the order of 5 eV so that we are indeed in the high-
momentum-transfer regime. Since the cross section is
of order 10 " cm' per unit solid angle and there are
roughly 10"scatters per unit volume, one would expect
one part in 10' of the incident beam to be scattered
per cc of sample into a unit solid angle.

Scattering from the bound electrons, if the experi-
ment were done in say an alkali metal, would produce
background. The elastic scattering from bound electrons
would not interfere with the highly inelastic free-
electron scattering. The inelastic scattering from bound
electrons, i.e., the ionization of the few outside electrons
with the resulting scattering of the x rays will, in
general, overlap with the incoherent scattering spec-

where p is uniquely determined from the energy
conservation condition:

co= k'/2m+p It/m (22)

since the direction of p+k is fixed by the measurement
of the recoiling electron.

'0 I

10
I
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FIG. 2. The differential scattering cross section for free and
bound electrons with a Fermi energy of 2 eV and a binding energy
of 40 eV.

trum from the free electrons. However, one must, in
scattering from bound electrons, supply the ionization
energy plus recoil energy to the bound electrons. For
potassium (K), this ionization energy is approximately
40 eV. For aluminum, it is approximately 75 eV. We
arrange things experimentally so that the high-energy
side (least energy loss, smallest cu) of the free-electron
Compton line (&u; ) occurs at the smaller value of co

than the binding energy (Ee). This implies that there
is a maximum recoil energy allowed for a fixed value
of E~ and E~, i.e.,

E„„„i&Ee+2Ep+$(EI/+2Er)' Ee2ji/'. (24)—

Correlation effects will produce a tail on the scattering
in the region ~&co;„.They will also change the magni-
tude of the discontinuity in the slope of the curve at
co=co;„and modify slightly the behavior of the cross
section in the region or)co; . The bound electrons for
the case E//) ~;„will rot ir/terfere with a measurement
of the most. interesting correlation e8ects: the existence
of a, tail and the change in the magnitude of the dis-
continuity at the "Fermi surface. "

In Fig. 2 we have plotted the shape of the scattering
cross section for a set of parameters pertinent to potas-
sium. We have assumed that the electrons in the conduc-
tion band. are free (noninteracting) with a Fermi energy
of 2 eV, and that there is a single bound electron per
atom having a hydrogenic wave function with a binding
energy of 40 eV. The cross section is normalized in units
of (3/4e)(do/dQ)Th(1/kVr), where (do/dQ)rq is the
single-electron Thomson cross section and e is the num-
ber of electrons per unit volume. In Appendix A we
brieIIIy outline the "approximate" calculation of the
bound-electron piece. In the actual case we of course
expect to see a tail in the region from 0&or&co;„, a
change in the slope discontinuity and a modification of
the line shape in the region u&m

Figure 3 is a similar plot for a series of parameters
pertinent to Al (another free electron-like metal). The
Fermi energy was taken to be 6 eV, and the binding
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We will calculate the cross section for the incoherent
scattering from a bound electron. It is approximately
given by

( do do)
& I&ale'" *I+&I'~(e+E~—~)

kd~dQ dQ/Tg ~

0.2—

0 1

20 40 60 80 100 &20 140 160
h~ (ev)

FiG. 3. The differential scattering cross section for free and
bound electrons with a Fermi energy of 6 eV and a binding energy
of 75 eV.

energy of the lowest bound electron was taken to be
75 eV.

In an actual experiment, core effects (the exclusion of
the free electron from the central core) will produce
high-momentum components in the wave function.
When the noninteracting Fermi surface does not touch
the zone boundary, then it is possible to show that
these core eRects do not interfere with the tail produced
by correlation effects. When the noninteracting Fermi
surface does overlap the zone boundaries, then core
effects are mixed up with correlation eRects. For the
case of Al (or any multivalent free electron-like metal)
the existence of a tail will not unambiguously determine
the existence of correlation effects. We expect' that core
eRects in Al are approximately equal to or smaller than
the eRects of correlations so that it may still be possible
to sort out the two eRects.

It seems reasonable that an experiment can be done
which would supply useful information about the
interacting electron momentum distribution function.
Positron annihilation data' give similar information.
However, such data are complicated by electron-
positron correlation effects occurring prior to their
annihilation. If one assumes that the electron and the
positron are uncorrelated (which is not true) then and
only then will angular correlation measurement of the
annihilation radiation lead to a measurement of the
momentum distribution function.
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Here e~ and.
I q) are the energy and wave function,

respectively, of the recoiling electron, k is the momen-
tum transfer to system in the scattering process, and

IC) the ground-state wave function of the bound
electron. If we assume that the 6nal-state wave function
is a plane wave then the cross section is given in terms
of 4 „, the Fourier transform of IC),

do ) (do 2 I
4"I'~(e~+ +Ee—~) (A2)

(du&dQ J e EdQ

For simplicity, we sha, ll assume that IC) is hydro-
genic, i.e.,

I y) (1/(4~)1/z)(2/aztz)e rta—(A3)

where a is the "Bohr radius" of the bound electron. We
obtain for C.

C =8+zr(l5t')/(P+K')' (A4)

where I=a '. The cross section from the bound electron
is given after single integration by

(
do tdo~ 8 t l6

d dQ kdBJT~3wkqri)

X
L((2zzz(a&+Ee))'~' —q}'+P]'

(AS)
L((2zzz((a+E&))'"+q}'+P]'

for values of ~+Ezz&0; where V~ l/rzz Simp——le ca.lcu-
lations show that near the threshold, ~+Ee——0, our
formula for the cross section reduces to

(
do (do) 16 1 P

(2rm (oo+E&))1/z (A6)
d~dQ e EdQjTgzr Ezz (l'+q')4

Equation (A6) was used in calculating Figs. 2 and 3.
Pote added irz proof The main error m. ade in do-

ing this calculation is "neglecting" the time depend-
ence of (a„t(t)a~). Actually, Eq. (12) would follow
exactly from Eq. (10) if we had assumed that a~t(t)
=exp(ip'/2rrz)a„~(0). Although this is not correct, it
is abnost certainly approximately correct. A measure
of the correctness is given for p near Pr by the ratio
zzz*/rrz for quasiparticles, which experimentally is about
1.25 for potassium.


