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Incoherent Scattering of Light from Anisotroyic Degenerate Plasmas
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The diRerential scattering cross section for monochromatic radiation incident on an anisotropic degenerate
plasma is calculated. The charge carriers are assumed to have ellipsoidal energy surfaces such that relatively
undamped plasma acoustic modes exist. The line shape of the scattered radiation depends strongly on the
existence of degeneracy and on the nature of the anisotropy. The scattering for small values of energy (co)

and momentum (q) transferred to the plasma is dominated by the excitation of plasma acoustic modes. The
spectrum of the scattered radiation exhibits a dip for values of co/g = Vr. Numerical calculations of the dif-
ferential scattering cross section for a typical set of parameters are presented. The eRects of an externally
imposed electron drift are included.

10 4 cm, i.e., of the order of (in general somewhat
smaller than) the typical Debye lengths. By changing
the angle of scattering it should. be possible to see both
collective and single-particle oscillations in these labora-
tory plasmas. To date, most of the experiments which
have been reported are all in the single-particle high-
momentum transfer regime, although there have been a
few preliminary experiments reported which do exhibit
collective e6ects. ' The laser is apparently an ideal tool
for studying the incoherent scattering of light from
laboratory plasmas. Its wavelength is in the correct
region and its narrow spectral width should enable one
to resolve the relatively small shifts in energy which are
associated with the incoherent scattering, typically of
the order of 1 part in 104.

There have appeared many theoretical analyses' 4' of
the scattering of light from nondegenerate isotropic
classical plasmas. The purpose of the present paper is to
analyze the scattering of laser light in the region around
1 eV from degenerate semiconducting plasmas (i.e., the
electrons in the conduction band of a doped semi-
conductor). We will take into account within the frame-
work of a simple ellipsoidal model both the degeneracy
and mass anisotropy of such plasmas.

It is reasonable to take for typical semiconducting
plasmas the long-wavelength collective limit (see earlier
discussion). In order to qualitatively understand the
kind of scattering cross section we will obtain in a more
detailed analysis let us consider the case of an isotropic
degenerate plasma. The many-valleyed anisotropic
semiconducting plasma will behave like a multiple-
component isotropic plasma. In our simple model the
anisotropy will in effect introduce a spread of mass
values for the carriers.

I. INTRODUCTION

'T is well known that inelastic scattering of electro-
' - magnetic radiation from a plasma can provide useful
information about the excitation spectrum of the
medium. If the material is almost transparent to the
radiation, the differential scattering cross section asa
function of momentum (q) and energy transfer (cu) is a,

direct measure of the density-density correlation func-
tion for the system. ' %hen the momentum transfer to
the system corresponds to wavelengths which are large
compared with typical screening lengths (Xs) in the
plasma, the line shape of the scattered radiation depends
on the collective excitations of the plasma. In the
opposite limit, when the momentum-transfer wave-
lengths are short compared to typical screening lengths,
the single-particle excitation spectrum is reAected in the
line shape of the scattered radiation.

Typical screening lengths (Debye screening for a
nondegenerate plasma, Fermi-Thomas screening for a
degenerate plasma) vary over a wide range. For an iono-
spheric plasma with a density v=10' cm ' and a tem-
perature AT=0.1 eV, the Debye length P &=XD=gD )
is of the order of 100 cm. For a laboratory discharge
with density +=10' —1P' cm ', and for temperature
AT=10 eV, the Debye length is X& 10—'—10 ' cm.
For a degenerate semiconducting plasma with a Fermi
energy of 30 meV (millielectron volts) and an effective
mass of a few tenths of a free-electron mass the
Fermi-Thomas screening length is of the order of
(As=AFT=—qpr ')10 r cm.

Experiments using high-power radar beams in the
megacycle range have been carried out in the iono-
sphere. ' Since the wavelength of the electromagnetic
(E.M.) radiation is considerably larger than the Debye
length for the plasma, the scattering was from the
"collective" modes. Recently, there have been a
number of experiments reported on the scattering of
laser light (her=1 eV) from laboratory discharges. The
wavelength of the laser light at 1 eV is approximately

' E. E. Salpeter, Phys. Rev. 120, 1528 (1960).
' K. W. Bowlers, Phys. Rev. Letters 1, 454 (1958);V. C. Pineo,

L..G. Craft, and H. W. Briscol, J. Geophys. Res. 65, 2629 (1960).

A

3 S. A. Ramsden and W. E. R. Davies, Phys. Rev. Letters 13,
277 (1964);G. Fiocco and E.Thompson, ibid. 10, 89 (1963);L. A.
Farrow and S. J. Buchsbaum, Bull. Am. Phys. Soc. 10, No. 2, 226
(1965); E. Gerry, ibid. 226 (1965); D. R. Sigman, J. F. Holt,
and M. L. Pool, ibid. 226 (1965); R. M. Patrick and E.T. Gerry,
ibid 226 (1965). .' J. P. Dougherty and D. T. Farley, Proc. Roy. Soc. (London)
A259, 79 (1960);A. Ron, J.Dawson, and C. Oberman, Phys. Rev.
132, 479 (1963); D. C. Dubois and V. Gilinski, ibid 133, A1308.
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'M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 776
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In the long-wavelength region (for an isotropic
system) the spectrum and magnitude of the scattering
cross section depends critically on the number of species
of charge carriers in the plasma. For a single-component
plasma (at long wavelengths) the scattered radiation lies
almost entirely in the so-called plasma line. This simply
means that the monochromatic incident frequency is
shifted by a fixed amount ip„= (4mee'/sn*es)'i', and
broadened into a Lorentzian by short-range collisional
eRects. The cross-sectional area under this line is of
order o.p[as~pa

(g/HAFT)'re',

where re= e'/mc' is the
classical radius of the electron. All cross sections are
normalized per particle per unit volume per unit solid
angle. The area under the free-particle-like Doppler-
broadened Thompson scattering which occurs for much
smaller values of the frequency shift (oi/qVi =1 where
Vi; is the Fermi velocity) is smaller than that under the
plasma line by a factor (q/qF T)'. The reason that almost
all of the scattering cross section is in the plasma line
results from the fact that plasma oscillations at fre-
quencies co co„are the only longitudinal collective
modes for a one-component plasma.

For a two-component isotropic plasma the differ-
ential scattering cross section is completely changed.
There are now two types of collective longitudinal
oscillations. There is a plasma oscillation-like mode
having a frequency which is approximately given by the
density and mass of the lighter carrier. There is also a
sound-like mode with or=qVq, where Vq is the sound
velocity and is of the order of (somewhat larger than)
the characteristic velocities (thermal, or Fermi) of the
heavy carriers. Dynamically the sound modes comes
from a static screening of the heavy carriers by the
light ones. The force between heavy carriers then
is effectively short-range (no longer 1/r, but like

exp( —qi Tr)/r) and long-wavelength density fluctua-
tions can be excited with only a small expenditure of en-

ergy. The plasma oscillations require a finite energy (fre-
quency) to excite even at infinitely long wavelengths.

In the differential scattering cross section, the sound
modes show up as a line (possibly broad) for small
values of the frequency shift ~= q V8 where co(&cv„. This
is the so-called central line. The area under this central
line is easily shown to be of order ro', i.e., large compared
to the area under the plasma line. It has been shown'
for a nondegenerate plasma, that when the tempera-
tures of the two species are equal the acoustic mode has
a short lifetime and is not well defined. In this case the
acoustic mode will not show up as a sharp peak in the
"central line. "For a degenerate anisotropic plasma, on
the other hand, this conclusion is no longer valid. In
fact, for reasonably small values of the anisotropy ratio
(mass ra, tio) we will show that there is a well-defined
acoustic mode and that these acoustic modes in the long-
wavelength limit dominate the scattering from this
kind of a degenerate plasma.

In Sec. II we present the model and formally calculate

the differential scattering cross section for light for an
arbitrary number of ellipsoidal carriers. The formula is
evaluated within the framework of the random-phase
or self-consistent field approximation. In Sec. III the
differential scattering cross section for a single ellipsoidal
carrier is discussed in some detail. In Sec. IV we give a
discussion of the scattering cross section for two
ellipsoidal carriers. The effect of carrier drift on the
scattering cross section is also discussed. In Sec. V we
present a numerical calculation of the differential scat-
tering cross section for the two-ellipsoid case. Ke also
discuss the kinds of experimental parameters one should
have in order to observe this scattering.

II. THE MODEL

For the purpose of this paper we will assume that the
"plasma" is made up of a set of (Ã) separate ellipsoids
of revolution. The Hamiltonian that describes such a
system is

where

+— d'xd'x'p(x) p(x'), (1)
2 ix—x'[

p(x) = P 4'it(x)@i(x) . (2)

'E. I. Blount, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1962), Vol. 13,
p. 805.

~T. H. Geballe, in Semiconductors, edited by N. B. Hannay
(Reinhold Publishing Company, New York, 1960), p. 320.

P. M. Platzman and N. Tzoar, Phys. Rev. 136, Ai j. {l964).

The operators %i(x) are the usual second-quantized
field. operators for the 1th particle and p;, ") are the
effective inverse mass tensors for the charge carriers
measured in terms of the free-electron mass m. The
effect of the periodic lattice is retained only insofar as
it manifests itself in the effective mass tensor p,;,('&. For
energy and momentum transfers small compared to
interband energies and reciprocal lattice vectors respec-
tively, there will always exist an effective one-band
Hamiltonian of the form given in Eq. (1).' The energy-
momentum relation of the particles will not necessarily
be quadratic. However, a quadratic anisotropic energy
surface is a reasonably good model for the conduction
band of some lightly doped semiconductors. ~ In addi-
tion, the ellipsoidal model will, in a concrete manner,
incorporate the essential features of anisotropy into the
differential scattering cross section.

The coupling to the electromagnetic field is obtained
by replacing V'; by (7';—%A;) in the usual way. It has
been shown (see D. G. and Ref. 8) that for a wide range
of parameters, namely, Er«ho~, &&mc' (where c0, is the
external frequency of the light, E~ the Fermi energy,
and rn a typical mass of one of the carriers) that one can
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Fn. 1. Diagrammati-
cal representation of
the incoherent scattering
process. The shaded re-
gion is the plasma; the
wiggly lines represent
the photons.

r2do 1

do&dQ= (2zr) (1—e—t)") o&,l

drop the terms linear in the vector potential and con-
sider only the coupling of the incoming and outgoing
ra,diation via the e'A, A;tz, ;('&/2mc' in. the Harniltonian.
This essentially nonrelativistic approxima, tion leads in a,

straightforward way to the following expression for the
difterential scattering cross section for a photon of wave
vector ki, frequency o&» and polarization ei to be scat-
tered into a state with wave vector ks, frequency o&s, and
polarization es (see Fig. 1):

to that used by D. G. although it differs from it in
certain details. We present a more complete deriva, tion
of Eq. (3) in Appendix I.

In order to explicitly evaluate the cross section we
must obtain an expression for the Fourier transform of
the modihed density-density retarded commutator.

P(~) = dte'-'(Lp, (t),p, (0)]).

The relation of the retarded commutator to an analytic
continuation of the time-ordered temperature-depend-
ent density-density propagator

G(~)= ((2'p. (g)P-.(0)))

is given in Ref. 9. The basic rules for the perturbation
expansion of G (I) and its diagrammatical representation
are given in Ref. 10. To lowest order in e',"we find

where

)(Re dte'"i(Lp (t),p (0)]), (3)
0

where

GO=0)y —
G02

&

q=ki —ks,
P= 1/k&)T,

C'Q'Q~~'~~
G(-+')= -,'Q+-

er (q&(t&)

C =4zre'/q',

sr=1—2 C"Q'.

(10)

(O)=Tr(et)("+sr H&O) (4)

and the square bracket inside the average is the com-
mutator of P, (t) and p, (0). The operator P,(0) is a
slightly modified (modified to include polarization
factor) density operator, i.e.,

where

p, (0)= P q,'(x)e (x)) '&er' «d'q,

n'=eg. p('~ e2.

(5)

(6)

For the isotropic case the angular factors 0.' are inde-
pendent of / and so may be taken out of p~ and placed
in front of Eq. (6). The operator p, (t) is related in the
usual way to P, (0)

p~ (t) —eiHip~ (())e
—iHt

Equation (3) for the cross section was arrived at by
using the Golden rule to calculate the transition rate.
The coupling to the electromagnetic field was treated
in lowest order (i.e., Born approximation) and the
initial state of the system was averaged over an equilib-
rium thermal ensemble. This approach is very similar

ro=e' m

is the classical electron radius. We will use units in
which h=c=1.

The angular bracket means the usual thermal
ensemble average, i.e.,

V is the total volume of the system and

Q'(q, ~) = fs+«/s fs—«/s
(13)

(2zr)' e,+«/, ('&—es «/s&' —
a&
—ze

The quantities f „&'& are given by

with
f (l) —P/&(ay&&& s)+1]—1—

e "'=y. p('& p/2m.

(14)

(15)

s A. Ron and ¹ Tzoar, Phys. Rev. 131, 12 (1963).' J.M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
"For the case of a degenerate semiconducting plasma the

expansion is to lowest order in (ko„/Ei)'. For a high-temperature
nondegenerate plasma the expansion is nd, ', where ng is the num-
ber of particles in a Debye sphere.

"A. J. Glick and R. A. Ferrell, Ann. Phys. (N. Y.) 11, 339
{1960).

Equation (10) differs from what one would obtain for
a set of spherical carriers only insofar as we have an
effective inverse mass tensor p&". Replacing p~') by
8;;X('& will reduce Eq. (14) to the usual expressions for
spherical carriers. The inverse ma, ss tensor appears in
Eq. (14) in two places, in the polarization factor, i.e.,
the unscreened response to an external field, and in the
screening properties of the medium, i.e., into Q. Q) for
an ellipsoidal energy surface may be obtained from the
well-known expressions Lsee Ref. 12, Eqs. (10)—(11)]
where e=et+zes= 1—(4&re'/q')Q(q, o&) for a spherical
energy surface.

Call the matrix which diagonalizes the reciprocal
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Fzo. 2. Plot of the central line for scattering from a single degenerate isotropic carrier. The differential scattering cross section is
normalized per unit volume per unit solid angle and the factor ros(qVr/Er) (q/qrT)' has been divided out in (a) kT&qVip and in
(b) kT)qUr.

mass tensor A... i.e.,

(16)

where the quantities ), are the eigenvalues of the
reciprocal mass tensor. It is then easy to show that

S is a scaling operation, i.e., the vector q =—A. q has its
components scaled with the eigenvalues of the effective
mass tensor. More precisely, q"=—SA. g is de6ned by
components as

qg
—

q~ (yt)1/&

q„"=q„'(Xs)'i'

q,
"=q,

' (x,,)'i'.

We obtain an effective q vector by first rotating to
principal axis and then scaling back to a, sphere. The
extra factor 1/(XthsXs)"' is merely a volume factor
which comes into a redefinition of the carrier density.

The faunal expression for the differential sca.ttering
cross section per unit volume is

do fp 1

doidQ z (1—e—e")

where Q, is obtained from the spherical Q by a principal
axis transformation and a scaling operation.

GI. SINGLE CARRIER

For a single ellipsoidal carrier Eq. (19) reduces to

ImQi (q,oi)

Here, the effect of the anisotropy is trivial. The over-all
coefficient in front of Eq. (20) has been modified by an

effective mass factor (an effective mass as determined
by the incoming and outgoing polarization directions).
The screening effect in the denominator has also been
modified by a different effective mass factor (an
effective mass as determined in this case by the direction
of the momentum transferred in the scattering relative
to the principal axis of the ellipse).

Let us examine Eq. (20) in more detail. In an
analysis of the spectrum for a fixed q there are two
frequency regions to consider. " In the low-frequency
region where or/qVp(1, the plasma statically screens
any density fluctuations and the dielectric function is
approximately given by

where

er =1+qF&'/q',

qs T'- ——oiy'/Vp'.

(21)

(22)

"In this discussion we assume that q/2qip«1.

The mass which comes into qF T is the mass in the direc-
tion of the momentum transfer q. For q(HAFT the
central line is plotted in Fig. 2(a) for kT(((qV~). In
this case the scattering cross section starts out pro-
portional to co and is of the order of a typical Thompson
cross section times a, screening factor (q/qFr)' and a
factor (qUi/E~). The factor (qV~/Ei&) takes into
account the degeneracy and the Fermi statistics.
Crudely, it tells us the fraction of electrons which
are participating in the scattering. The straight-line
portion of the curve is simply related to the derivative
of the one-dimensional Fermi distribution function

ufo 1—(V/Vs) j. When Es))kT)qUp the cross sec-
tion in the central region is quite different Lsee Fig.
2(b)j. Under these conditions the cross section starts
out independent of ~ and is similar to the classical high-
temperature central line except for its sharp cutoff at
oi/qVi ——1. $1t is to be pointed out that quantities of
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order k T/E) and q Vs/kt' were neglected in the
numerical evaluation of Fig. 2 (b).) The classical
central line is Gaussian in shape with a tail determined
by kT.

In the high-frequency region with pp/qV)))1 and

q((qp T,

1—M /M (23)

It is well known' ' 4 that there will be a resonance in the
scattering cross section when co=co„, the plasma reso-
nance. In this approximation (lowest order in e2) there
is no width to the plasma line. The width will be pro-
duced by collisions with other species or with the lattice.
The area, under plasma line is to a good approximation
independent of the exact collisional mechanism and of
the order of, '4

(do/dQ)n). . .—(q/qF T)2rp2.

IV. TWO ELLIPSOIDS

(24)

Now consider the case of two identical ellipsoids at
right angles to one another (see Fig. 3). This model
would be a reasonable one for describing the conduction
band of silicon which has four equivalent ellipsoids in a
plane. The pair of ellipsoids at opposite faces of the
zone are identical while the pair on adjoining faces have
their axes approximately rotated through ninety de-
grees. The two ellipses located in the plane at right
angles to the one under consideration introduce no
real complications into a calculation of the scattering
cross section. For certain orientations of the scattering
plane and specific choices of the incoming and outgoing
polarizations of the light, these "extra ellipsoids" just
produce a numerical factor in front of the total cross
section. We will only consider the case of two ellipsoids
as shown in Fig. 2.

In order to simplify the discussion, we discuss the
central line (p)/qV) &1) in the limit q -+ 0 since this is
where all the intensity is. To lowest order in q Eq. (19)
may be written as

FxG. 3. Drawing of the Fermi surface for the carriers which
are doing the incoherent scattering.

d~ rp'(n) —n2)'
I Q1I

' ImQ2+ I Q2 I

' ™Q,—

~(1 &'") —— IQ+Q I'

Q) in the limit q/qg&(1 is

(27)

where
Q =—:(/~. )L'g(U)+k(U)&,

g(U())) =~U(&)8(U(&) 1)

(28)

(29)

k(U')=I U"'»I(U' —1)/(U'+1)I+2]. (30)

line has an area proportional to (q/qFT)'rp'. The
quantities 0.~ and 0.2 are a direct measure of the response
and subsequent reradiation of the charged carriers in the
two ellipsoids.

When the two 0.'s are equal we have effectively a
single carrier with somewhat modi6ed screening proper-
ties and the area under the central line will be of the
same order as for a single carrier, i.e., extremely small.
When 0.~/o. 2, we have in effect two carriers as for the
electron-ion plasma in the nondegenerate case and there
is a central line, whose area is of order 1."

It is possible to have a resonance in the scattering
due to the excitation of a sound-like mode in this
"two-carrier" system. This resonance arises from a
vanishing or near vanishing of the denominator in
Eq. (25). Equation (25) may be rewritten to read

2 p ((21 (22) ( Q1Q2
ImI

d(ddQ pr(1 —e t'") &Q1+Q2J
(25) 8(2:) is the unit step function and

U'= (p)/q'Vs) (31)
We notice that in the neighborhood of the central line
the cross section is of order rp2(a1 —(22)2 rather than of
order (q/qFT)'rp2 as it was for the single-carrier case.
The integrated area under the central line using Eq. (24)
is easily shown to be of order

g r/dfl ((21 (22)2r()2 (26)

If o.~ is equal to cv2, which obtains for certain definite
polarization directions, it is necessary to go to higher
order in q' in the expansion of the dielectric constant in
Eq. (19).It is easy to show in this case that the central

'4 A. Ron, J. Dawson, and C. Oberrnan, Phys. Rev. 132, 497
(1963).

q(') =qP.1 cos28+X2 sin28)')2

q( ) = qL)(2 cos'8+X) sin'8 J)2

(32a)

(32b)

The angle 0 is the angle the q vector makes in the x--y

"The fact that an anisotropic Fermi surface might give an
enhanced central line scattering was 6rst brought to the attention
of the author by P. A. Q"ol5.

The quantity V& is defined by —,'m V&'= Ep and q&'~ is the
effective q relative to the axis of the ellisoid as defined
(in general) in Eq. (18). For the special case under
consideration, two ellipses at right angles (see Fig. 3),
and a q in the x—y plane,
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plane relative to the x axis. The mass tensor for the
ellipse labeled as (1) in Fig. 2 is

400

. =O'X. o.
,0 0

(33)

For Xs/)&.t) 1 it is possible to have the Re(Qt+Qs) =0.
In the extreme case of )ts&))&.t, Qs is approximated by a
constant (i.e., static screening). The value of U "& which
gives a root of Re(Qr+Qs) =0 is determined from the
equation

~(U )=--U l l(U'-1)/(U" +1)1=4 (34)

200

0=0

The function i&(Uo&) is sketched in Fig. 4. There are
two roots of Eq. (34), one for U"&(1 and one for

6.0 0
0 0.0I 0.02

flCOf Ep

0.05 0.04

5.0—

4-0

FIG. 5. Plot of the differential scattering cross section per unit
volume per unit solid angle per particle normalized to the Thomson
cross section ro'. The Fermi energy is axed at 30 meV; there is no
drift present and the two eigenvalues of the ellipsoidal mass tensor
are 1 and 5.

2.0

light carriers is large compared to that of the heavy
carriers. "The ratio of temperatures must be of order
ten to one in order that there be a well-de6ned peak
in the scattering cross section. '

1.0-

007 0.8 0.9 1.0
U

1.3

EBect of Drifts

It is well known that small drifts in the plasma can
produce large changes in the cross section in the
neighborhood of the acoustic line. ' An electric field

Fzo. 4. Plot of the function b(U&'&).

U('~) 1. Both roots are sound-like, i.e.,

o&/g~ V F (35)

400

Vo 0
Vo 0
Vp ~0.2

~P 3

The hrst root will not show up as a resonance in the
scattering cross section since Im(Qt+Qs) is large for
this root. For the root with U&'&)1 the ImQ& =0, i.e.,
there is no damping of the mode due to the heavy
carriers. The ImQs will be small since ImQs U& and
U"&«1, i.e., there is only a small amount of Landau
damping due to the light carriers since the "mode" is
traveling at a velocity which is much smaller than the
Fermi velocity of the "light carrier. " The behavior of
the mode in this degenerate Q.M. case is quite, different
from the classical high-temperature case. For the
classical case there is no sharp cutoff of the Landau
damping due to the slow carriers, simply a gradual
exponential decrease as the mode velocity becomes
larger than the thermal velocity of the heavier carriers.
Because of this the sound-like mode in the nondegener-
gtc case is not well dc6ncd unless the temperature of the

200—
dc'

Xp=5
1

,' i I

I

l 1

0.01 0.02
%4Pf Ep

0.03

"3, D. Fried and R. W, Gould, Phys. Fluids 4, 139 (1961).

FIG. 6. The same plot as in Fig. 5 except that the drift velocity VD
of the heavy mass carrier is varied from curve to curve.



I N C 0 H E R E N T S C A T T E IC I N G OF LIGHT

'l400

1200—

1000—

800—

600—

400—

200—

0
0 0.01

Vp~ 0.35

I e

0.02
fly)/ Ep

0.03 0.04

carriers, then ImQs ——0 and the expression for the cross
section diverges. As long as one considers only the lowest
order terms in the expressions for Qr and Qs, i.e., the
simple bubble diagram, it is possible to show that the
net eRect of taking a drifted Fermi distribution for the
carriers is to shift the frequency oi by q Vi)t or q VDs,
depending on which Q, one is calculating. The statistical
weighting factor 1/(1 —e ~") also has its frequency
shifted by an amount which is determined by which
ImQ, it is multiplying in Eq. (27). The net effect of
drift is to change the scattering cross section to

da ro 1
I Q2I ImQi

doidQ s L1—e ~&"-s»i] IQ,+.Q, I

IQilImQ,
(3&)

L1—e" ""3IQ+Q I'

where Qt and Qs are calculated using the appropriate

Fn. 7. Plot of the diBerential scattering cross section
for a value of VD near the instability.

(v—qVD2= 0, (36)

where VD~ is the "eRective" drift velocity of the light

applied to the plasma will drift the light carriers up to
velocities which are of the order of the sound-mode
velocities. The wave can then extract energy from these
drifting carriers. Mathematically what happens is that
the drift causes a shifting of the effective frequency co

which goes into the expression for Qs. (The drift effect
in Qt is smaller than in Qs. ) When

I500

IOO 0

500

0
0

&g = l0

0.0l 0.02
%co/EF

Vp= 0

0.05 0.04

FxG. 9. The same plot as in Fig. 5 except for a change in the
eigenvalues of the reciprocal mass tensor. The light mass direction
is now 0.1 free-electron masses. The Fermi energy is 30 meV.

shifted frequency. The simple modif cation is not
correct to higher order in e', i.e., when one includes the
effect of short-range collisions. The drifted distribution,
with the two eRective sets of carriers drifting at two
different velocities is not an equilibrium situation. Col-
lisions between the two sets of carriers will tend to
destroy the nonequilibrium distribution.

f
0 0.08 0.16

I

0.24
Vp j'Vp

t

0.32 0.40

Fro. 8. Plot of total cross section as a function of Vn/V».

V. RESULTS OF NUMERICAL CALCULATIONS
AND CONCLUSIONS

Consider the scattering to take place in the plane of
the two ellipsoids. We will assume that the polarizations
of the incoming and outgoing beams are also in the
scattering plane (see Fig. 1). In Figs. 5—12, we have
plotted the differential scattering cross section per
particle per unit volume, per unit solid angle in units
of ro'. The scattering cross section was evaluated for a
fixed Fermi energy E»=30 meV, temperature k,T/L&'»

=0.1 scattering angle 8,=s and q/2qF 0006—— .
In evaluating these curves, the finite temperature was
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effect of these two mechanisms is a smearing of all
resonances given approximately by

A(v/&v=,' (k T/Er )+ (1/air) . (40)

ln Figs. 5 and 9 the drift velocity of the carriers has
been set equal to zero. In Figs. 6—7 and 10-11,the drift
velocity is varied from curve to curve. In Figs. 9 and 12,
we have plotted the total cross section as a function of
the drift velocity, where VD is defined in terms of the
applied dc electric field and the phenomenological
collision time r, i.e.,

Vg) =eEr/m—,.

In the first set of figures, Figs. 5—8, the mass anisotropy,
i.e., the ratio of the long to short axis of the ellipse is

FIG. 10. Plot of the differential scattering cross section for a
number of values of the drift velocity of the heavy carriers.

60

included in the statistical factor in front of the scatter-
ing cross section Lsee Eq. (37)j; however, it was not
included in the evaluation of the Q;. The temperature
(kT) is small compared to Es but is in fact large com-
pared to Ace. This finite temperature, if it had been in-
cluded in the evaluation of Q;, would produce a smearing
of all resonances which appear in Figs. 5—7 and 9—11
of order

(A&a/o~) „n——,
' (kT/E p) . (3g)

In addition, short-range collisions with impurities will

produce an additional smearing which has not been
included in the present analysis.

4e

42

36

30

24

(aoi/&u) „ii;„,„,—(1/air), (39)
18

where r is a phenomenological relaxation time. The net
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15000— Fro. 12. Plot of the totai cross section as a function of Un/Uy.
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FIG. 11. Plot of the differential scattering cross section for a
value of the drift velocity near the instability.

taken to be five to one (the order of the mass anisotropy
in silicon). In the second set of figures, Figs. 9—10, the
mass anisotropy is taken to be ten to one( the order of
the mass anisotropy in germanium).

All the plots of the differential scattering cross section
show a well-defined peak at a value of cv/q Vr (of
the heavy carriers). Approximately half the total area
in the central line is in this peak. This peak is clearly
due to the excitation of "plasma acoustic" modes. Even
for the relatively small mass anisotropy of five to one
which was used in Figs. 5—8 this acoustic peak is, unlike
the nondegenerate case, well defined. The sharpness of
the peak is a direct result of the sharp Fermi surface and
to the discontinuous onset of Landau damping as dis-
cussed in Sec. IV. Increased mass anisotropy (Figs.
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9—12) of ten to one sharpens up the peak. In addition,
as the anisotropy is increased (if the heavy mass is held
Gxed) the total cross section goes up. This increase is
simply due to the fact that the light mass carriers are
doing most of the scattering so that the mass which
comes into the Thompson cross section is small and
the scattering increases.

Drift, even when it is as small as 0.01—0.05 of the
Fermi velocity of the heavy carriers, produces signi6-
cant changes in the peak cross section, in the position
of the peak and in the total cross section. Of course, the
larger the anisotropy the more eRective the drift is
since one is trying to drift the light carriers up to the
velocity of the wave. With a ten to one mass anisotropy,
a drift of 0.03Vz, or approximately 3X105 cmjsec for
a Fermi energy of 30 meV, produces a 20% change in
peak cross section and a frequency shift of a few per-
cent. Drift velocities of the order of a few times 10'
may be reached experimentally. Electric fields produc-
ing drifts of that order could be used to modulate the
inelastically scattered light intensity. Such a modula-
tion scheme would be advantageous from an experi-
mental point of view, in order to suppress unwanted
background.

In all of the 6gures for the differential scattering
cross section we note a sharp, extremely narrow, dip in
the cross section in the neighborhood of the acoustic-
mode resonance. It occurs at a frequency somewhat less
than the acoustic-mode frequencies. The dip (which in
our approximation will always be infinitely narrow) is
due to the discontinuous behavior (see Fig. 3) of the
function 8(U&'&) the Fermi velocity of the slow carrier.
For a fixed q the position of the dip will determine the
value of the Fermi velocity in the direction of p.

The incoherent scattering of laser light from the
electrons in the conduction band of a degenerate semi-
conductor can provide interesting information about
the collective properties of the plasma and about the
shape of the Fermi surface. The magnitudes of the
cross sections are such that under suitable conditions
an experiment is a definite possibility. Experimentally
one should pick a semiconductor which has the follow-
ing characteristics:

(a) It must be transparent to the laser light being
used.

(b) It should have a relatively high mass anisotropy
(the more the better). This anisotropy makes the
acoustic mode well defined.

(c) It should. have a light mass carrier (the lighter the
better). The presence of a light mass carrier increases
the total scattering cross section.

(d) The carriers should have a high mobility. A high
mobility will allow one, by the use of external fields, to
produce drifts in the carriers of the order of the phase

velocity of the acoustic mode. This drift will enhance
the cross section and furnish a means for modulating
the signal.

APPENDIX

In units in which k and c are equal to 1, the cross
section per unit volume for the scattering of photons
of wave vector and frequency k&, or&, respectively, to
photons of wave vector and frequency k2 and co~ is

da.

=I —lro'& Kl(fl p. l~)I'~(~f F+~) (A1)
dMdQ (&a)i) 4 f

where p, is defined in Eq. (5) of the text. The bar over
the erst summation sign indicates an average over an
ensemble at a temperature keT= 1/P. Th—e matrix
element of p, is taken between exact states of the
many body system and a&—= lor2 —coil. In arriving at
Eq. (A1) the vector potential A of the E. M. Geld is
normalized so that there is a unit probability per cubic
centimeter of finding a photon, i.e.,

2~)'"
A (x)=P —

l

[age'"'*+ ante —"')eg.
M )

(A2)

Now write

b(Er E,+o)) = — dte""+ & '" (A3)
(2~)

Since

(fl p".I~)e*'" "=(flp. (t) It),
it follows that (A1) may be written as

(A4)

da1(M2 '+
dCOdQ (27/) E(di

dte'"(p, (t)p, (0)). (A5)

We can now convert the correlation function to a com-
rnutator by noting that

since

Therefore,

(P, (0)p, (t))=e "(p,(t)p, (0)),

Ef—E —Go

(A6)

de' 1 t'Mg 1
2tp

d(odQ 2~'E(oi [1—e
—~"]

dte'"'

X([P,(t),P,(0)]). (A7)
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