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Broadening of Impurity Bands in Heavily Doped Semiconductors
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The shapes of deep-lying bands of impurity states broadened by fluctuations in the local Coulomb po-
tential are calculated for the case of randomly distributed ions in a semiconductor and are shown to deter-
mine the shapes of the spectral lines emitted by electrons or holes captured in these bands. The distribution
function for the local potential is described in terms of its Laplace transform, and expressions for its 6rst few
moments, E,((L~-E)')„, etc. , are calculated for screened Coulomb potentials. An approximate form is given
for this function and is shown to be reasonably accurate for materials having a high degree of compensation
or a large screening length. From the results of this analysis it is shown that the shapes of impurity emission
lines can be used to aid in the identification of the nature of the states and transitions involved. In
particular, the width of a line is determined principally by the product of the ion density and the screening
length in the luminescent region, while the sense of its skewness depends on the signs of the domination
and of the carrier which is captured. Numerical examples are given for GaAs diodes containing approxi-
mately 10's ious/cm'.

1. INTRODUCTION

HE importance of Quctuations in local potential
in perturbing the energies of band states of im-

pure semiconductors has been discussed by Kane' and
by Bonch-Bruevich. ' The same Quctuations convert
the well-defined energies of deep trapping centers into
broad bands of states and contribute to the breadth
of the low-energy emission peaks seen in luminescence' 4

and absorption' in material containing such centers.
This related problem has not, to our knowledge, been
treated quantitatively, although the analysis by Hop-
field et al. ' of their pair spectra is based on similar
physical principles.

In Sec. 2 of this paper we calculate the potential
Quctuations produced by randomly distributed ions
and determine the shape of the resulting energy bands.
Our approach makes use of the generating function of
the energy-density function P(E) from which the mo-

ments E, ((E—E)'), , etc. , of the band of states are
easily obtained. In Sec. 3 we use the fact that the gen-
erating function is the Laplace transform of the density
function to obtain an approximate expression for the
density function itself. This approximate function,
having a Gaussian form, is the same as that obtained
by Kane' and applied by him to tunnel-diode char-
acteristics. These results are applied to emission spectra
of luminescence in Sec. 4. In Sec. 5 we give numerical
examples appropriate for use with GaAs p-e junctions
and indicate the validity for these cases of the Gaussian
approximation.

' E. 0. Kane, Phys. Rev. 131, 79 (1963).' V. L. Bonch-Bruevich, Fiz. Tverd. Tela 4, 2660 (1962)
)English transL: Soviet Phys. —Solid State 4, 1953 (1963)g.

3M. I. Nathan, G. Burns, S. E. Slum, and J. C. Marinace,
Phys. Rev. 132, 1482 (1963).

T. N. Morgan, M. Pilkuhn, and H. Rupprecht, Phys. Rev.
138, A1551 (1965).

'W. J. Turner (to be published).' J. J. Hop6eld, D. G. Thomas, and M. Gershenzon, Phys.
Rev. Letters 10, 162 (1963).

A

2. POTENTIAL FLUCTUATIONS

The electrostatic potential at a given point in an
impure crystal divers from that at a corresponding
point in a pure crystal by the total Coulomb potential
produced at the point by all the ions in the crystal.
(We shall neglect potentials produced by local strains
as being of secondary importance. ) Hence the local
potential at a point depends upon the con6guration of
ions around that point and Quctuates throughout the
crystal about its mean value. The probability P(E)dE,
of finding the local electronic potential energy within
a range dE about E is the sum of the probabilities of
all ionic configurations which generate a potential
energy in that range.

To obtain exp1icit expressions for these probability-
density functions we assume that ions of one type are
distributed randomly throughout the crystal with an
average density, 3l, per unit volume or probability, p,
per site: p= E/1V„where X, is the density of available
ionic sites in the crystal. Thus, in a given region denoted
by the index, i, containing g; ionic sites, the probability
of finding exact1y e, ions is

(g')J', (~;)=p"'(1—p)" "'I
&e,) '

where (s;.) is the binomial coefficient expressing the
number of ways in which g; sites may be occupied by
exactly e, ions. This probability P, (n;) may be seen
to be the coeS.cient of s"' in the expansion of its gen-
erating function'

E'(s) = (»+I)"=2&*(&')s"',

where q=1—p. We note that the identity F;(1)=1
assures us that the sum of all E;(e,) is unity. The use
of such generating functions provides a powerful tool

~ See, for example, W. Feller, An Introdgction to Probability
Theory and its A pp/ications (John Wiley 8z Sons, Inc. , New York,
1957), 2nd ed. , Vol. I, especially Chap. VI, VII (Table I), and XI.

343



T. N. MORGAN

for manipulating the related probability functions. In
particular, in combining two regions i and j, the gen-
erating function for the combined probabilities, F,+;(44),
is the product of the two functions F,(s) and F,(s),

F,+;(s)=F,(s)F;(s), (3)

and the procedure may be extended to any number of
regions. Thus the problem of forming convolutions is
greatly simplified. Although a generating function may
not provide an explicit form for the probability func-
tion, it does provide easy access to its moments. The
following expressions for the moments can be written
immedia, tely from (2):

shall neglect terms in p'. In addition we must limit the
range of integration to exclude a small sphere near
r= 0 where no sites are located. Thus by letting r range
from ro to ~ with ro chosen to be about half the lattice
constant ao we can correctly account for the missing
site and at the same time eliminate the divergences
associated with the tail of the distribution. In any
experiment where structure in the tail is important
(as in the pair spectra discussed by Hopfield et aV)
the discrete nature of the ion sites and their number
must be specifically considered.

For small p we can expand the logarithm in (7) and
neglect terms in g,p'= 31p to obtain

n= (d/ds)F (s), s= 1

(r4'), = (d/ds)Ps(d/ds)F(s) j, s= 1

(n"),= Ps(d/ds) 7"F(s), s = 1.
(4) G(s) =exp 44rlV r'(s "&"'—1)dr

TO

(E)s~dE. (8)

These functions are easily modified to describe the
probability of finding a particular energy. If each ion
(assumed to have a unit positive charge) in the region
i contributes to the potential energy of an electron at
the point in question an energy —v; (independent of
the positions of all other ions), the total energy con-
tributed by m; ions is E;= —ep;, and the desired gen-
erating function is obtained from (2) by replacing s by
s—"'. Thus

G, (s) = (ps
—"'+q)g'=Q P;(44;)s

—"'"'=P P(E)sz, (5)
ni

where the last sum contains terms for only those ener-
gies which can result from one or more arrangements
of the ions on the available sites.

With this formalism we can now write down the
complete generating function for the energy proba-
bility density at a point in the crystal (chosen as the
origin of our coordinate system) and can evaluate its
moments. If we choose small regions so that the v; may
be considered constant in each, then each configuration
of ions contributes an energy E= —+, 44,w, and the
desired generating function is

G(s)=g(ps "'+q) '=exp(P g; ln(ps "'+0)j, (6)

where the sum extends over the entire crystal. As the
potential energy v; at the origin is a function only of r,
the distance of the ion from the origin, the regions can
be chosen to be spherical shells of thickness dr with
m, = v(r) and g;=4~xV, r'dr, and the sum can be replaced
by an integral

The first moment obtained from this function is

E=G'(1)= —44' r2e(r)dr,

which will be absorbed in a shift of the origin in the
following calculations. The next two moments taken
about the mean are

and

((E—E)') = (E') E'=47rX —r' (4r)dr (10)
rO

((E—E)'), = (E'). —3E(E'). +2E'

r'v'(r) dr. (11)

Higher moments are found to be somewhat more
complex.

If several species of ions are present, di6ering in
charge Z and density E„the potential function of each
is multiplied by Z and the integrals are multiplied by
1V, and surnrned over z. Thus the factor 1V in Kqs. (9),
(10), and (11) is replaced by g, 1V,Z, P, X,Z', and
g, 1lr,Z', respectively, and we find that ions of opposite
sign add constructively in the even moments but tend
to cancel in the odd moments.

The second and third moments are generally ade-
quate to describe the shape of one of these distribu-
tions, as they specify its width and skewness. For
screened Coulomb potentials, with screening length,
X, and dielectric constant K, n(r) = (e'/Kr) exp( —r/X)
and the second moment becomes

G(s) =exp 47rX, r' In(ps "&"'+1—p)dr (7)
0'= ((E—E)') = (4ze4/K') P 1V,Z' exp (—2r/X) dr

Up to this point the treatment has been exact. In
(7) we shall make the assumption, which is nearly
always justified, that p is small compared to 1, and

= (24re'/K')X P E,Z' exp( —2ro/X) . (12)
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The third moment is

&(E—E)')-
=—(4zre'/E') P E,Z' (dr/r) exp( —3r/X)

from Eq. (9) is

1
P(E)=

I

&2+iI

p+ $00

=—(4rre'/E') P E,Z'[—Ei(—3re/X)), (13) X exp 4xE
Jg—XOQ Pp

r'(e"' —1—vz) dr+Et dt. (16)

where the exponential integral' is nearly logarithmic in
rs/X.

The significance of these results and of those of Sec. 3
in understanding deep energy levels in impure solids is
that the fluctuations in potential energy occurring be-
tween the different sites of deep impurity centers in a
crystal produce identical Quctuations in the energies of
the highly localized states associated with these centers.
If impurity atoms are distributed at random, their
electronic energy levels are displaced by an energy E
with the probability P(E) discussed above, and the
moments given in (12) and (13) are the moments of the
resulting bands of states. This conclusion is strictly true
only for highly localized (deep) centers but can be used
with reservations under less restrictive assumptions. '

y(t)=exp 4~iV r'(e"' 1)dr—
P(E)e ~'dE (14)

3. THE PROBABILITY-DENSITY FUNCTION P(E)

Equation (8) completely determines the probability-
density function P(E), since the generating function is
an integral transform of this function. To obtain a
more familiar form for this transform we substitute
s= exp( —t) and write the generating function as

1~
P(E)= —

I
exp[o'(zz' —r')/2

+Ep+z(~'p+E)r jdr, (17)

Equation (16) with hz=0 is the same integral obtained
by Rane' [his Eq. (36)j from a slightly different
though, as we see, physically equivalent model. The
cutoff radius ro enters here as a natural consequence of
the crystal lattice structure and for our purposes can
be quite small. Rane was concerned with band states
which could not be localized arbitrarily, so that a
larger value of rp was appropriate. The ions lying near
the origin affect only the tail of the distribution
(e'/Ere=0. 5 eV in GaAs), and are unimportant in
describing the center of the distribution.

To obtain an approximate expression in closed form
for P(E) we shall make use of the expansion of in'(z)
in powers of v and keep only the term in v'—equivalent
to specifying the second moment, "Eq. (10). This ap-
proximation will be best in compensated materials (as
near a graded P njun-ction) where ions of both signs
are present and the third moment (11) is small. In
uncompensated materials, though the skewness is lost
and the tails are not accurately described, the width
can be specified with reasonable accuracy in many
cases. Thus, keeping only the first nonvanishing term
in the r integrand in (16) and writing the variance as

((E—E)'), =o', we obtain

Thus P(i) is the Laplace transform of the function
P (E), and the inverse transform can be written
immediately, '

(1 ~
"+"

P(E)=
i i

@(r,)e"dz.
&2~i/ „;„

The value of this integral is independent of the param-
eter p which may be chosen for convenience or set
equal to zero [though in certain cases zz must be chosen
to avoid singularities in p(t)j. In our applications of
this result it will be convenient to measure E from its
mean value E. We see from (14) that to shift the origin
in energy space by E we must multiply p(t) by exp(Et).
The result of this operation with the value of E taken

E. Jahnke and F. Fmde, Tables of FNnctions (Dover Publica-
tions, Inc. , New York, 1945).

P R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc. , New York, 1962), Vol. II, p. 535
B. Their presentation also discusses the validity of (15) if
P(E) =0, E&0.

where the variable of integration has been written
t=p, +ir. This integral is most easily evaluated if we
eliminate the imaginary exponent by choosing zz = —E/o.
to obtain the result,

P(E)= (2zr) '"0 ' exp( —E'/2o') . (18)

This is the norma, l density function (Gaussian) and
is the same result obtained by Kane. ' It is a convenient
though frequently inaccurate function for describing
the shapes of the bands of impurity states occurring in

impure semiconductors. For strongly skewed distribu-
tions a more meaningful function of this type can often
be constructed if an effective value of ~' is chosen
giving a better fit of (18) to the true band shape around
its maximum E'&4o-. We describe in the following

"An expansion involving higher moments and Hermite poly-
nomials of argument (1' E)/o can be use—d, though to little
advantage because of the large size of the higher moments; see
H. Margenau and G. M. Murphy, The Mathematics of Physics
and Chemistry (D. Van Nostrand, Inc. , Princeton, New Jersey,
1943), Sec. 12.3 and reference to the work of F. Zernike.
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paragraph a simple method for testing the accuracy of
(18) and at the same time estimating an effective value
of a.

Integration of (18) over energy from —~ to E
converts it into the normal distribution function~
C (E/0), whi. ch varies monotonically from zero to one
as E increases from —~ to +~. As 4(2.3)=0.99,
all but 1% of the states in the band described by (18)
lie below E=2.30., and the value of (E')„computed
from this range is

2.3o

E'P (E)dE
2 .30'

P (E)dE=0.93a'.

with
e'Z/ER, exp( —R,/X) = 2.30-,qq. (20)

This correction is only approximate because of the
energy contributions from outside the region, but it
generally gives a more realistic estimate of the band
width than does (12), and also provides a test of the
accuracy of the symmetrized function (18). In applica-
tions where the skewness of the band or the shape of
the low- or high-energy tail is important, however, we
shall make use of the third or higher moments discussed
above in Sec. 2. It is significant to note that the true
density function (16) normally decreases less rapidly
in the tail (on the side which corresponds to small r)
than does the approximate function (18).

We now proceed to apply this information to an
analysis of emission spectra from deep centers in
heavily doped semiconductors.

4. THE SHAPE OF EMISSION LINES

Using the expressions developed in the preceding
sections for the shape of the bands of impurity states,
we can draw some conclusions about the shape of the
optical emission lines produced when free electrons
(or holes) are captured on impurities. If the electrons
are captured from a narrow range of states, say near
the Fermi level, at a rate which is uniform over the

Thus if the contribution to the value of 0' from the
energy range E&2.30- is significantly greater than the
7% expected for a Gaussian, the function (18) gives a
poor description of the true band shape. In this case
an effective value of o' for use in (18) can be computed
from the true distribution if only energies below ap-
proximately this limit are used (with the result in-
creased by 7% in compensation). To achieve this, ap-
proximately, we increase the value of ro in (12) to
exclude from the integral all lattice sites which, if
occupied by an ion, would contribute an energy of
more than about 2.30-. (The probability of ffnding two
ions in this range of r is normally very small. ) Thus
we choose for 0' in (18) the value

0 ff' ——1.07 (2'3re'/E')X P X Z' exp( —2R,/X), (19)

entire band, the emission line will have the same shape
as the impurity band. In reality the carriers originate
in a range of states which also depend upon the local
potential, and the capture rate may not be uniform
over the band. For these reasons we cannot unambigu-
ously determine the line shapes without undertaking
an extensive analysis of the nature of the band states
and capture processes in these impure materials. Rather
than attempt such an analysis we shall be content with
results of a qualitative or semiquantitative nature.

We shall base our discussion on the assertion that,
except in certain special cases which we consider below,
the spectral emission lines have nearly the same shape
as the impurity bands and provide a means of meas-
uring the approximate width and skewness of the
latter. Support for this assertion comes from the ease
with which electrons and light holes near the Fermi
level in the common semiconductors can tunnel through
the potential barriers raised by the local energy Quctu-
ations, and from the fact that even an exponentially
varying capture rate has little effect on the shape of a
nearly Gaussian emission line. This latter result is a
consequence of the fact that the product of a Gaussian
function and an exponential is a displaced Gaussian
having the same width,

exp (yx) exp (—x'/20')
= exp(y'0'/2) exp) —(g—yo')'/20'j. (21)

As a final test of this assertion we can compare the
observed and computed line shapes from copper-doped
GaAs. "

The results of Secs. 2 and 3 can now be used to predict
or interpret the low-temperature emission spectra from
radiative capture on impurity centers. (The additional
modifications in shape which occur at high tempera-
tures will not be considered in this paper. ) In particular,
a wide line is expected from a region having a high
charge density and a large screening length, while a
region in which these quantities are small will emit a
narrow line. The sense of the skewness of a line depends
not only on the third moment, (13), but also on the
sign of the carrier which is captured. Thus in m-type
material where the bands are skewed toward low
electron energies (P, 1V,Z') 0), holes when captured
emit lines skewed toward low energies, while electrons

"In Ref. 4 it is shown that capture of an electron on a singly
charged copper acceptor occurs principally on the n side of the
junction and produces an emission line near 1.0 eV. From our
analysis we expect this center to produce a band of states having
a width at half-maximum of about 70 meV and causing emission
of a line skewed toward high photon energies. The observed line,
number 4 at 1.06 eV, has a width of 75 meV and a tail extending
toward high energy as predicted. Similarly, capture of an electron
on a neutral copper acceptor occurs principally within the space-
charge region and produces a broad, nearly symmetrical line.
The width of this line is estimated to be 170 meV while the ob-
served line, number 3 at 1.29 eV, has a width of 148 meV and is
slightly skewed toward low energy. Thus, the assertion that the
energy-band shapes determine the emission-line shapes appears
justified.
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band can be quite important for the correct interpre-
tation of Hall data in heavily doped materials, as a
shift of the Fermi level toward the band edge can
permit thermally activated carrier densities to persist
to quite low temperatures. 4 At low temperature, where
Et is given by (24), the activation energy deduced from
Hall or resistivity measurements of the free-carrier
density is measured from the energy E~ rather than
from the center of the band. This fact accounts for the
range of activation energies frequently observed for a
single impurity species in impure materials, ' since the
measured activation energy depends upon the value of
0- as well as upon the amount of compensation in the
sample. A similar change (reduction) in the activation
energy is produced by tailing of the band edges. These
band tails can also produce changes in emission line
shape, although the decreased tunneling probability
expected for states deep in the tail tends to reduce
their importance. Though these band tail effects cannot
be ignored, their calculation is beyond the scope of this
paper. '4

A further modification of the line shape produced by
partial filling of a band results from the screening
action of the trapped charges, and will be discussed
brieRy. "For convenience, we consider the specific case
of electrons released from shallow donors and trapped
on deep acceptor states. If the density of acceptors is
higher than the density of donors, only the low-energy
states in the acceptor band will be filled. Thus the
acceptor centers lying near the positive donor ions are
preferentially occupied, and the trapped electrons and
ionized donors effectively screen each others' poten-
tials. The screening length expected from a degenerate
distribution of charges depends upon the density of
states at the Fermi level, rt'(Et):

)t*=2L) X„/()t.+X„)7+L(X„'+),')/() „+)„)s7to. (22)

Thus the width alone may be sufficient to locate the
source, so that skewed lines may be identified with the
capture of electrons or holes without ambiguity.

Modifications in both skewness and linewidth can re-
result if the transition involves a partially occupied band
of states. In this case P(E) is multiplied by the Fermi
factor, and a simple Gaussian band gives a line shape
(assuming a unity degeneracy ratio) of approximately

P(E)f(E)= (2rr) '"o '

(E—Et)
I+ exp' I

(23a)&frfXexp (—E'/2o')

for capture of holes and

P(E)L&—f(E)7=(2~) '"o '

/'Et Ei-
f+exp]

72 i (23b)Xexp (—E'/2o')

emit lines skewed toward high energies. The opposite
is true in p-type material.

In the interpretation of electroluminescent spectra
from p-tt junctions, these differences can become quite
useful in determining the nature of the transitions and
the location in the device of the source of the radiation.
The width of emission lines from a diode can vary
appreciably according to the locus of the source of the
radiation. In the rt an-d P-type material near the junc-
tion the screening lengths differ according to the square
roots of the effective masses —in GaAs, X =3K„ for
the s~me carrier density —while in the junction region
the effective-screening length P* is increased by ap-
proximately half the junction width, "

)—'= (4s-e'/E) rt'(Et) . (25)
for capture of electrons. The position of the Fermi level
Ey at low temperature depends only on 0. and the frac-
tion rt/N; of states occupied. This fraction equals the
integral of P(E) over energy from —oo to Et,"

rt/N, = -,'f1+ erf(Et/No) 7. (24)

The temperature dependence of Ey is Inore complex,
though some information about the temperature de-
pendence of the position of the emission peak from a
partially filled band can be found by differentiation of
(23).

Proper consideration of this dependence of the Fermi
energy on the value of tt (and T) for a partially filled

"This effective screening length is chosen to give the same
value of 0-' in (12) as that found at the midplane of the junction.
It has been obtained from the solution of the appropriate bound-
ary-value problem (for a charge located on the midplane of the
junction) by integration of V'(r) over all space. We give the
6rst two terms in the expansion of the integral in powers of zv/X,
valid for w/X«1. If w/X»1, Xe=w/2. T. N. Morgan (to be
published)."H. B. Dwight, Tables of Integrals and Other Mathematical
Data (The Macmillan Company, New York, 1947), p. 129.

tt = (3/4srNr)"', (27)

'4 A manuscript describing an analysis of the band tails using
Laplace transforms is in preparation."A similar screening problem in the high-temperature (non-
degenerate) limit has been discussed by W. W. Harvey, Phys.
Rev. 123, 1666 (1961).

'6 For a summary of Debye-Huckel theory see S. Glasstone,
Thermodynamics for Chemists (D. Van Nostrand Inc. , Princeton,
New Jersey, 1947), Chap. XVII, especially Eq. (40.3).

If the charges cannot move freely throughout the
volume of the crystal, their effective screening is re-
duced by their inability to get close to the ions. An
estimate of their effective-screening length V can be
made from Debye-Huckel electrolyte theory, " where
the screening of mobile ions depends upon the distance
of closest approach a of two ions

(26)

In the present problem the distance a is not uniquely
defined but can be taken with reasonable accuracy to
be the mean distance between ions
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TAal, z I. Moments computed for GaAs crystals containign
various concentrations of shallow donors E~ and shallow ac-
ceptors X~. The entries in the last column are cutoB radii (20)
(in units of the screening length) for the ions; see text.

ND B
(10» cm 3) (10» em-g) (meV) (mev)

((jp Q)3) 1/3

(mev) (mev) R ~1j)
1.0
0

1.1
1.0
1.0

0
1.0
1.0
1.1
1.0

—33.4
3.3—702
0.7

0

19.0
9.6

29.7
15.4
46.8

-30.0
22—14.3
10.8
0

13.1
0.8

25.3
4.2

47.2

0.49
2.7
0.27
1.50
0.07

((E—E)'), = —1. 9&&21 04r4

)&L—Ei(—1.56X10 '42" s)](meV)2. (30c)

where Ãz is the total density of centers, donors plus
acceptors. With this assumption the effective-screening
length becomes

Zs' —(Ic//Prrssl& (Er)])1/2+ (3/47r+T) 2 (28)

As 22'(E~) depends on o. (both explicitly and through E~)

22'(E~) = (1V/(22r)'"o) exp( —Ers/2a2), (29)

a simultaneous solution of (28) and (12) is needed to
determine tT. If free carriers are also present, their
effect can be added in the usual way,

1/X2= 1/his+ 1/X22.

S. NUMERICAL EXAMPLES FOR GaAs

To show the importance of the effects discussed
above we choose GaAs as a typical and popular semi-
conductor and calculate the moments aud band shapes
for material doped in the 10"/cm' range. We use the
parameters K=12.5, m„=0.072 m, m„=0.68 m, and
ro= 2.5&10 cm. Hence for degenerate carriers X„=4.8
&(10 r4 'I' cm and X„=1.54&(10—'p '~' cm.

In uncompensated r4-type material (8= 1), the first
three moments, (9), (12), and (13), are

E= —(42rrM9. '/E) (1+re/li) exp( —rs/X) (30a)
= —3.34&10 "e'"meV

as (r,/1~)'«1,
o'=8.34&&10 "X22 exp( —10 'r4"')

=4.00X10 "r4"'exp( —10 422"')(meV)' (30b)

The values of these expressions for m= 10' cm ' are
listed in the first horizontal line of Table I, as are the
values of o.,ir and the ratio R~r/X given by (19) and
(20). Comparison of the three moments shows that the
distribution is moderately asymmetric. The approxi-
mate agreement between 0 and o-,~g confirms this and
indicates that the symmetric function (18) represents
the probability in the middle-energy region fairly well.

For uncompensated p-type material with p=10"
cm ' the calculated quantities are given in the second
line of the table. The small value of P „causes the dis-
tribution to be highly asymmetric, as a relatively
small number of nearby ions makes a large contribution
to the fluctuations. This is reflected in the unreasonably
small value of the effective standard deviation tT,gf and
in the large value of the cut-off radius R 1=2.7A.. It
indicates that the symmetrized distribution (18) is a
poor approximation for this case.

In compensated r4 and p material, listed in the third
and fourth lines of the table, the cancellation of the
effects of the positive and negative ions in the odd
moments and the larger values of cT produce more
symmetric distributions which are better fitted by
(18). In spite of this, the value of o.,tr calculated for
the p-type material is a factor of 4 below the true
value of 0-, and the symmetric approximation gives
only a poor indication of the true shape of the bands.

Finally, in the space-charge region of a p-r4 junction
of width vv=1.8&10 ' cm, the complete cancellation
in the odd moments (for singly charged ions) gives an
essentially symmetric distribution (neglecting asym-
metries in screening on the 22 and p sides) which the
Gaussian approximation describes quite accurately. The
values of o- and O,g~ calculated for this case, with screen-
ing provided by 10"/crn' electrons and holes at the
edges of the space-charge region, are entered in the
final line of Table I. (X*=1.36&& 10 ' cm. ) The effec-
tive standard deviation is seen to be little different
from the true value, and the value calculated from
(14) for the fourth moment exceeds that of a Gaussian
3o' by only 2.5%%u~.

These examples serve to illustrate the experimental
circumstances under which various approximations may
be used and to point out their limitations. Extensions
of the results to other densities and materials are
easily made.


