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We present arguments to show that the energy-momentum relation for a polaron is quadratic for small ,
but bends over and becomes horizontal when the energy approaches the optical-phonon energy above the
ground state. We present a calculation for zero temperature based on a thermodynamic Green’s-function
theory which is especially designed to give a reliable polaron energy-momentum relation.

I. INTRODUCTION

N 1950, Frohlich et al.! introduced the notion that
the interaction of an electron and the longitudinal
optical mode of an ionic crystal could be treated like a
particle-field interaction in much the same way as was
the electron-phonon interaction in metals. Starting
with the classical equations of motion of the polarization
field, they derived a quantized Hamiltonian for the
electron interacting with one mode of lattice vibration
which was assumed to have a frequency « independent
of wave vector q. The Hamiltonian is

H=—V2+> ,ata;+i(dna/ V)2
X2 (1/9) (a—gt—agerr, (1)

where ¢, and g, create and annihilate a phonon with
wave vector . We have taken 7w and (%/2mw)'/? to be
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F16. 1. Polaron energy-momentum plots according

to second-order perturbation theory.

1H. Frohlich, H. Pelzer, and S. Zienau, Phil. Mag. 41, 221
(1950).

the units of energy and length, respectively. The
dimensionless coupling constant is

a=e¢(m/20h?)'*((1/e,)— (1/<0)).

The electron position and mass are » and # ; the sample
volume is V; the static and high-frequency dielectric
constants are ¢ and e,,.

Once the problem was formulated in terms of this
Hamiltonian, the most natural approach was to treat
the interaction as a small perturbation. This constituted
a radical departure from earlier work? on the problem,
which was all in the spirit of what we now call the
strong-coupling theory.

The unperturbed energy-momentum relation for an
electron is E®(k)=F? and for the first correction to
this, second-order perturbation theory gives

E®(k)=k— (a/k) sin %k k<1
=k—(a/k)(x/2) Ek>1. 2

This contains the familiar results that

E®(0)=—a, ©)
and

m/m*= (1/1—a/6). )

In Fig. 1 we plot E® (k) for several values of a. Note
that dE®/3dk— —» as k—1 from below for any
value of o, and that for «>2 the minimum energy
occurs at k=1 rather than at £=0. It is also clear that
the fact that the mass becomes negative at a=6 is just
an extension of this cusp down to £=0. These predic-
tions of perturbation theory are very hard to believe
and it is the main purpose of this paper to investigate
the cause of these peculiar results, and to indicate what
we feel is the correct energy-momentum relation for a
polaron.

In Sec. IT we will give a qualitative discussion of
what the correct energy-momentum relation should be.
In Sec. ITI we will describe a Green’s-function theory

2L. D. Landau, Z. Phys. Sowjetunion 3, 664 (1933). For a
current review of the strong-coupling theory, see G. R. Allcock
in Polarons and Excitons, edited by C. G. Kuper and G. D.
Whitfield (Oliver and Boyd, Edinburgh, 1963).
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F1G. 2. Polaron energy-momentum plot according
to energy-crossing argument.

which has the qualitative features which we believe to
be correct.

II. ENERGY CROSSING AND THE TAMM-
DANCOFF APPROXIMATION

Schultz has given’ a simple heuristic argument which
indicates the form of E(k). Consider the exact eigen-
values E°(k) of the noninteracting Hamiltonian [the
first two terms in (1)7]. Here % is the total wave vector
of the eigenstate. Some of the eigenvalues are plotted
in Fig. 2(a). Below the line E@(k)=1 (the phonon
energy) there is only one state for each value of . It is
a zero-phonon state. Above E©@ (k)=1 there is a quasi-
continuum of states (i.e., the states become a continuum
in the limit V — ) for each value of k. Only a few of
these states are shown in the figure. Suppose we apply
a small perturbation which, like the third term in (1),
couples only states of the same total momentum.
Ordinary perturbation theory applies below the con-
tinuum, but in the region above the phonon energy
there is degeneracy. A perturbation which couples the
two degenerate states shown in 2(a) clearly leads to a
splitting similar to that shown in 2(b). Then, if the
remaining continuum states are added to the figure,
more crossing will result and we expect the final £(k)
to have the form shown in 2(c). Note that the con-
tinuum now begins at E=E(0)+1, since its low-lying
states are composed of a polaron plus a free phonon and

3T. D. Schultz, Solid State and Molecular Theory Group,
MIT Technical Report No. 9, 1956, (unpublished). Also, G.
Whitfield and R. D. Puff, Phys. Letters 10, 9 (1964).
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the free-phonon energy cannot be appreciably affected
by the addition of one electron to a macroscopic crystal.

Energy-crossing arguments usually involve only two
states, whereas the degeneracy here occurs between the
zero-phonon state and a continuum. Therefore, the
above argument is perhaps not completely convincing.
We can show, however, that the presence of the con-
tinuum does not alter the conclusion.

Consider the representation of the Hamiltonian (1)
in the unperturbed eigenstates. The submatrix which
involves only the zero- and one-phonon states can be
diagonalized exactly (we hold the volume finite so that
the matrix is discrete). The eigenvalues which lie
below 1 are given by

Erp(k) =R+ (dra/V)
X2 o 1/¢(Erp(k)—1— (k—q)?). (3)

This is called the Tamm-Dancoff one-quantum cutoff
approximation. It was originally applied to the polaron
problem by Frohlich, Pelzer, and Zienau.!

In the limit of large volume, (5) reduces to

Erp (k) =k— (a/k) tan—[k/(1— Erp(k))!/2];
for Erp<1 and k<ko, (6)

k=14 (r/2) (/ko).

Above Erp=1 the exact eigenvalues form a continuum
for V— . The integral which yields (6) does, how-
ever, have a principal value in the region Erp>1. The
corresponding continuation of Erp(k) into this region

which is
Erp(k)=Fk— (a/k) (x/2),

and which is shown as a dotted line in Fig. 3, can be
thought of as the energy-momentum relation of a quasi-
particle with finite lifetime. The solution (6) is an
example of a situation in which a degeneracy between
one state and a continuum leads to a bend-over in an
exact calculation.

Although the Tamm-Dancoff solution is an exact
diagonalization of the submatrix, approximating the
entire Hamiltonian (1) by this submatrix has serious
shortcomings. Therefore, neither the energy crossing

where

EP)

Fi6. 3. Polaron energy-momentum plot according to
Tamm-Dancoff one-quantum cutoff approximation.
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argument nor the bend-over in (6) have been taken
seriously. Two reasons for this are as follows:

(1) The Tamm-Dancoff approximation gives a self-
energy which is a higher variational upper bound than
the second-order perturbation-theory result, —a. There-
fore, the approximation has been thought to be a poor
one. However, we believe the bend-over to bé a reliable
feature, because the degenerate states which cause it are
treated exactly. The situation here is analogous to that
which occurs in the weak binding treatment of band
theory, where one considers a free electron perturbed
by a periodic potential. Near £2=0 one uses ordinary
perturbation theory, but a degeneracy appears when
the wave vector approaches the zone boundary. One
must then use degenerate perturbation theory, equiva-
lent to the Tamm-Dancoff approximation, and a bend-
over appears which is directly analogous to the one
discussed above. The analogy breaks down above the
bend-over.

(2) The second difficulty in the Tamm-Dancoff
theory is the fact that the bend-over and the beginning
of the continuum occur at E=1 instead of the antici-
pated E=E(0)+1. The reason for this lies simply in
the fact that the Tamm-Dancoff theory allows only one
phonon to be present. Hence, a state with one free
phonon can contain only a free electron, not a polaron.

In order to see how to correct this defect in the
Tamm-Dancoff theory, we first note that Eq. (5) is just
the same as second-order perturbation theory with the
exception that one of the terms in the energy denomi-
nator is the corrected value Erp(k) instead of k2. It is
then clear that in order to get a theory with singularities
at the right places both energies in the denominator
must be corrected. Such a theory is developed in the
next section.

III. GREEN’S-FUNCTION THEORIES

In this section we will discuss a series of weak-
coupling approximations which are arrived at through
the technique of thermodynamic Green’s functions,*
and which lead to what we regard to be a reasonable
form for the polaron energy-momentum relation.

(a) Definitions

Although everything in this paper is concerned
exclusively with one-electron states, we will use the
conventional formalism of second quantization in order
to discuss the Green’s-function approach.

Therefore we rewrite the Hamiltonian (1) treating
the electrons in second quantization.

H=Z[¢ k2CkTC@+Zq qudq
Fildma/ V123, (1/9) (a—g'—agdp—,, (1a)
4R. D. Puff and G. D. Whitfield, in Polarons and Excitons

edited by C. G. Kuper and G. D. Whitfield (Oliver and Boyd,
Edinburgh, 1963), p. 171.
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where C;f creates an electron with wave vector k and
pe=2_k Ci—q'Cy.

We define the one-particle electron Green’s function,

Gki—1)=—KTC.)Cil(t)); @)
and the phonon Green’s function
§ki—1)=—i(Tar(a:! (). 8)

T is the Wick time-ordering operator;
(4)=(Try—o(e#74)/Try_o(e*7)),

and Try_o means the trace over the no-electron states.
For boundary conditions we use the requirements
that
G(k,0—1)=G(k,—ip—1) ©
and

Gkit—1)=0 1<, (10)

Then using the equations of motion we have shown*

that

Ski—1) =g @—1t)=de* /(e b—1) >V

=—qei(=t) [(eb—1) t<¢/, (11)
and that
@(a/at)— )Gk, t—1t)=58(—1)
4 1 rt
(=) Z [ gt ge-w]
X (Tck—q(t)Pq(t2)CkT (l,» . (12)

This is the first of an infinite series of equations that
relate electron Green’s functions of different orders, and
that involve the phonons only through the known
function G°. In the sense that mixed (electron-phonon)
Green’s functions have been avoided, we have elimi-
nated the phonons from the problem, and replaced
their effect on the electron by a time-dependent poten-
tial which can be viewed as describing the electron
interacting with itself at previous time. We would like
to emphasize that Eq. (12) follows from the Hamil-
tonian 1(a) without further approximation. This exact
elimination of the phonons has been achieved previously
in the path-integral formalism.5

(b) Tamm-Dancoff

By writing out the equation of motion of the relevant
two-electron Green’s function,* one sees that the lowest
order approximation is given by setting

(TCi—g(Dpo(t)CiH ()

g_GO(k_ q,t—t2)G(th2— t) ’ (13)

5 R. P. Feynman, Phys. Rev. 97, 660 (1955).
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where
GOk t—t')=—ig—iF* =) >y

=0 =< (14)

is the solution to (12) when a=0.

Substituting (13) and (14) into (12), Fourier trans-
forming all functions of time, and performing the
integral on /;, we obtain in the 7'=0 limit,

G1(kw)=w—k—Zrp(kw). (15)

The Fourier transform of the Green’s function is
defined by

* dw
Gk~ t)=lim / Gtis)e .
+ — T

The self-energy Z (k,w) is given by

Zrp (kyw) =2, (4ma/V)(1/¢)G (k—qu—1). (16)
There is a quasiparticle with energy given by
w(k)=k*+ReZrp(k,w(k))
or
w(k)=k+ (4ra/V)®
XX 1/gk)—1—(k—q?). A7)

Comparing this with Eq. (5), we see that these are just
the solutions to the Tamm-Dancoff one-quantum
cutoff. So w(k)=Erp(k).

(c) Hartree-Fock Like Theory

The next reasonable approximation (which in the
many-body problem leads to the Hartree-Fock theory)
is to assume

<TC/c—q (l)Pq (12)Clct (tl»
=—G(k—q,t— )G (kt— 1), (18)

which leads to an integro-difference equation® for the
self-energy,

Zur(kw)=23, (4ra/V)(1/¢)G (k—quw—1)
= (4ma/V) X, (1/¢)
X (@—1— (k— q)*—Znr(k— qw—1))"1, (19)

and the quasiparticle energy now appears at
EHF(k) =k RezHF(k;EHF(k)) . (20)

Note that in Eq. (19) the second term in the energy
denominator is shifted by the self-energy. This is just
the correction that we suggested above would be
necessary to make the bend-overs take place at the
correct energy. In fact, we can show without solving the
integral equation (19), that dE/dk — Oas E— E(0)+n
(where =1, 2, - ), provided the solution to (19) is
reasonably well behaved. To show this we differentiate

6 This approximation has also been obtained by D. Pines, in
Polarons and Excitons, edited by C. G. Kuper and G. D. Whit-
field (Oliver and Boyd, Edinburgh, 1963).
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(20) with respect to & and get
OE/0k=(2k+ (9Z/0k))/(1— (8Z/9IE)).

Then, if we assume that for w=~FE(0) we can expand
Z(kw) in a power series in %k [the integrand in (19) is
singular near w=E(0)+1, not w=E(0)], we see that
9Z/0E — » whenever v — E(0)+#» but that 9=/dk
is finite. The assumption that we can expand ¥ near
w=E(0) is ad hoc; however, if we cannot make this
expansion, we see from Eq. (20) that E(%) would not
be quadratic near k=0, which would be very unusual.

The integral equation (19) is difficult to solve exactly.
In the next section we will find an approximate solution
to (19) with the correct qualitative behavior.

(d) Improved Tamm-Dancoff
If on the right of (19) we use the approximation that
2 (kyw)=V (w)+[v(w)— 1]k, (21)
we can then do the integral on ¢ and obtain
a v(w—1)k? 1/2
tan‘l( ) , (22)
ky(w—1) 1—w+V(w—1)
when 1—w+V (w—1)>0, and

EITD (k7w) =

™

[e3
Z1rp (kyw) = —— -,
ky(w—1) 2

when 1—w+ ¥ (0—1)<0.

Expanding both sides of (22) in powers of £ and
equating the first two coefficients gives V(w) and v (w)
as solutions of the difference equations,

V(@)= —(@/v o= DIV @@= D—et+17),
(@)= 1= (/3= V/[V (0= D=at-175).  (23)

Equation (23) can be solved numerically with com-
parative ease. We call Eq. (22) with the solutions of
(23) substituted in the right-hand side, the “improved
Tamm-Dancoff” (ITD). (Note: It is not just an exten-
sion to the two-quantum cutoff.) The quasiparticle
energy-momentum relation is then given as the solution
of

EITD (k) = k2+ RCEITD(k,EITD (k)) . (24)

One can show directly by differentiating (24) that
dE/dk — 0 as E— E(0)+1. Figure 4 shows plots of
Exrp(k) for several values of the coupling constant. We
feel that these constitute a reasonable prediction for
the actual energy-momentum relation.

As we have pointed out* previously, the ‘“Hartree-
Fock-like” theory gives a value of E(0) which is higher
than the value given by second-order perturbation
theory (—a), which has been shown’ to be an upper
bound to the correct self-energy. The improved Tamm-

7T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953),
and M. Gurari, Phil. Mag. 44, 329 (1953).
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E(k)

-2

Fi1c. 4. Polaron energy plots according to the
improved Tamm-Dancoff theory.

Dancoff approximation also gives self-energies above
—a as is shown in Fig. 4.

If one chooses to use this variational criterion to
determine the best theory, one is forced to the con-
clusion that all the theories we have discussed here are
worse than second-order perturbation theory. But for
the reasons discussed in part two, we feel that the
improved Tamm-Dancoff gives a better theory of the
energy-momentum relations. Moreover, in the limit of
small coupling constant, all of these theories give the
same result, and it is difficult to say at precisely what
value of coupling constant these theories break down.
For most purposes where the self-energy is not directly
used, but where the dynamics of the quasiparticles are
of primary interest, the theories described here are
probably most appropriate for coupling constants up
to 1 or 2.

IV. CONCLUSIONS

The principal conclusion of this paper is that the
energy-momentum relation of a polaron has a cusp at

G. WHITFIELD AND R.

PUFF

E(k)=E(0)+1 as shown in Fig. 4. Observing this effect
is difficult for several reasons that may not be im-
mediately apparent. One major difficulty with having
these bend-overs appear as a qualitative feature in some
experiment is the fact that at E(k)=E(0)+1 the onset
of spontaneous phonon emission occurs and this
phenomenon could easily be confused with the fluctua-
tion in the density of states caused by the bend-over.

Other difficulties divide roughly into two groups®:
those for weak coupling materials like InSb(a<),
and those for intermediate coupling materials like
AgCl and AgBr where a=2.

In the weak coupling materials the theory is quite
good, and the materials are well understood ; however,
the bend-overs are very small.

In the intermediate-coupling materials, the bend-
overs are quite large but the materials are not nearly
as well understood and we are working at the limit of
the range of validity of the theory.

The bend-overs take place at the optical-phonon
frequency above the ground state. These states are in
general occupied at room temperature, since k712 %w.
But at these temperatures the states are broadened
(according to perturbation theory) by AE=cafiwit
(where 7 is the average phonon number) and this
broadening would in general obscure the bend-over
region. At low temperatures the broadening of the
quasiparticle energies (due to acoustic-phonon scatter-
ing, etc.) would usually be smaller than the bend-over
region, but at these temperatures the states of the bend-
over region are not normally occupied. (Hot electron
experiments have been performed by Masumi® on AgCl
at 7.6°K, but most of the electrons in these experiments
were not hot enough to reach the bend-over region.)

We are now applying the ITD approximation to
specific experiments in order to find out where these
effects will most easily be observed.
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