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Spin-Lattice Relaxation in the E('E) State of O' Ions in Corundum
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A theoretical study of the spin-lattice relaxation in the excited E('El state of Cr'+ in Al&03 is presented.
The two-step resonant relaxation process involving the 2A state is calculated. The appropriate orbit-lattice
parameter appearing in the calculation is obtained from static strain measurements. The theoretical results
are in very good agreement with experiment. The normal direct-process relaxation time in the E level,
involving exchange of phonons whose energy is equal to the Zeeman splitting of E, is shown to be con-
siderably longer than the radiative lifetime of Ji for an external magnetic field parallel to the c axis. This
time can be shortened considerably by a magnetic-field component perpendicular to the c axis. The theory
presented is applicable to the corresponding g('B) states of V'+ and Mn4+ in Al203 and with slight modi-
fication to the E state of these d' ions in other crystal hosts.

I. INTRODUCTION

'HE spin-lattice relaxation time in the excited
E('E) state of Cr'+ and V'+ has been the subject

of several recent experimental studies. ' ' In contrast
with epr and relaxation studies in ground states, where
conventional microwave-resonance techniques apply,
the study of the excited states generally involves the
use of more sensitive optical double-resonance tech-
niques because of the low populations in these states.
However, the theoretical treatment of spin-lattice
relaxation in the excited states is in principle no different
from that for ground states if the frequency separation
between the states being considered is less than the
Debye cut-off frequency vD. We may expect, then, that
the Wailer —Kronig —Van Vleck mechanism' of spin-
lattice relaxation via modulation of the crystalline field

by lattice vibrations (the orbit-lattice interaction) will

be applicable to the relaxation in excited states such as
the 'E manifold in ruby.

Detailed comparison of Van Vleck's theory with
experiment is usually made difFicult by the fact that
there appear in the orbit-lattice interaction a number
of constants whose magnitudes are not at all easy to
compute or estimate. The most important of these
parameters are those which relate the change in the local
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crystalline potential to the ligand displacements. In
previous theoretical treatments, use has been made of
Van Vleck's estimates of these constants, which are
based on a simple point-charge model of the crystalline
field.

It was generally recognized that these point-charge
calculations were inadequate and could at best yield
only order-of-magnitude results. More recently, steps
have been taken to overcome this difhculty through an
independent determination of these constants by
static-strain experiments. This is accomplished by
measuring the shift of those levels between which
relaxation is being considered with externally applied
static stress. ' ' This procedure is valid as long as the
phonons involved in the relaxation are of sufficiently
long wavelength so that the phonon-produced strain is
"macroscopic, " and therefore may be related to an
externally applied static strain. Note that it is not
assumed that the local strain at the paramagnetic
center is the same as the bulk strain of the crystal, but
that the local strain is the same whether produced by
long-wavelength phonons or static strain.

By a fortunate set of circumstances, the calculation
of the transition probabilities necessary for the evalua-
tion of the relaxation times in the 'E state of ruby
requires, to first order, only a single constant in the
orbit-lattice interaction. In turn, this single constant
can be determined from the relative shift of the R1 and
R2 levels of ruby with externally applied strain, as will

be shown in Sec. II.
It will be seen that our calculation, based on this

single parameter, gives very good agreement with the
experimentally observed two-step "resonant" relaxation
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Appl. Phys. Letters 2, 81 (1963).
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process in the E('E) state both as to magnitude and
temperature dependence. It is the agreement with
regard to magnitude that is really the significant result,
since any interaction which is linear in the thermal
strain will produce the proper temperature dependence.

In Sec. III, we will consider the various elements
that have been neglected in our calculation, such as
odd-parity components of the crystal field, configuration
mixing, and noncubic vibrations of the paramagnetic
complex. It will be shown that their neglect should not
materially affect our result.

In Sec. IV we will consider what is normally called
the direct relaxation process between the Zeeman com-
ponents of E('E), involving phonons whose energy is
equal to the difference in energy between the Zeeman
components of E. At low temperatures, where it be-
comes competitive with the resonant relaxation process,
it will be shown to be sufficiently long so as to be masked
by the optical radiative lifetime of the 'E state.

II. RESONANT RELAXATION PROCESS

A. Basic Relaxation Process

The energy-level diagram of Cr'+ in A1~03 is shown
in Fig. 1, after Sugano and Tanabe. ' "The (cubic field)
excited 'E state is split by the combined action of the
trigonal crystalline field and spin-orbit coupling into
two Kramers doublets denoted by 2A and E, separated
by approximately 29 cm '. In a magnetic field para, llel
to the g axis, the remaining degeneracy of the doublets
is lifted. Experiments' ' on the spin-la, ttice relaxation
between the E+ and E levels in the presence of such a
magnetic field clearly show a resonant relaxation
process. In this process, ""the ion first makes a real
transition from E+ to 2A (or 2A+) with the accom-
panying absorption of a phonon with energy equal to
the energy difference of the E+ and 2A or 2A+ states.
The process is completed by a transition from 2A
(or 2A+) to E with the emission of an energy-
conserving phonon. Of course the reverse process, in
which the ion goes from E to E+ by this two-step
process, is also considered. This resonant relaxation
process may also be considered as a special case of direct
processes in a multilevel system. "We therefore have to
calculate relaxa, tion rates for the direct process between
2A and E, due to the orbit-lattice interaction.

Following the development of Blume and Orbach"
and Schawlow, Piksis, and Sugano, " the orbit-lattice
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interaction may be written as

Here V(r)C(I', m) is an orbital operator which trans-
forms as the m component of the F representation of
the point group a.t the ion site and e(r,m) is a strain
which transforms in a similar fashion. V(I')C(r, m) may
be regarded. as the change in energy of the ion due to
a change in the local crystalline field which results from
a strain e(I',m). When e is the dynamic strain produced
by the thermal phonons, 3Cp. L. will produce phonon-
induced transitions between the states of the ion. The
transition rate from 2A to E with emission of a phonon
will then be given by first-order time-dependent
perturbation theory as

g=2 /'A P ~(E~ V(l')C(I', m) ~2A) ~'

where pz= density of lattice-oscillator states at energy
E= (E~~—Eg), and a= occupation number of phonons
of energy E.

For phonons of wave vector h, polarization p, velocity
vI, „, and K=A~, the expression for p~ is

ps Vcr'dQ/(8~'hag, ~') ——.

We make the approximation that the local symmetry
about the Cr'+ ion is nearly cubic, i.e., that the six
oxygen ions nearest to the Cr'+ form a, regular octa-
hedron. As was shown by Va,n Vleck, ' the only even
vibrations of such a cluster which need be considered
are the E and T~ vibrations. We will restrict ourselves

FREE ION SPLITTING IN AXIAL FIELD EXTERNAL
LEVELS CUBIC F IELD + SPIN -ORBIT MAGNETIC

COUPL I NG FIE LD

Fto. 1. Energy-level diagram of Cr'+ ion in Al&O& (after Tanabe
and Sugano). A similar diagram with appropriate change in scale
holds for V'+ and Mn4+. The relaxation between E+ and E is
considered in this paper.
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FIG. 2. Fxcited energy levels of Cr'+ in a cubic crystal 6eld.
The couplings between the various states are P',p=spin-orbit;
Ur=trigonal field; Uo=Couloinb interaction. LAfter Clogston,
Phys. Rev. 118, 1229 (1960).]

only to the t&' configuration in the remainder of this
section and postpone treatment of admixture of t~'e to
Sec. III. Matrix elements like ('E

l
E l'E), while allowed

by symmetry selection rules, vanish in a pure ts' con-
figurationis since the reduced matrix element
('E,ts'i

l El i'E, ts')=0. Clearly, by symmetry selection
rules, matrix elements ('El T, l'E) vanish, since EXE
=Ai+As+E does not contain Ts. Therefore, we must
admix other states into the 'E manifold of the t2' con-
figuration to effect coupling with the lattice vibrations.
The only remaining doublet states of t&' are 'Tj and 'T~.
By symmetry, the E vibrations cannot connect the 'T2
or 'T» states with 'E. Hence, since we wish to consider
matrix elements no higher than first order in admixture
parameters, only the T2 vibrations are of interest.
While symmetry allows coupling of 'I to the close lying
Ti (see Fig. 2) via Ts vibrations, the vanishing of the

reduced matrix elementis ('E,ts'l
l Tel i'Ti, tss) eliminates

this interaction. In view of this, oe/y the T2 level meed

be considered in calculating the actual wave functions
for the 'E levels in the presence of spin-orbit coupling
and axial crystalline field.

B. Wave Functions and Matrix Elements

We now wish to consider the 'E wave functions as
modified by admixtures of the 'Ts(t&') by spin-orbit
coupling and trigonal field. We then use these to deter-
mine the matrix elements of the T2 vibration within
this modified 'E manifold. We draw heavily from the

l
(4')'Eu+) = —cL (u+ iti) /K2]

l
(ts')'Eu )= c[—(u iti)—/u2],

(4a)

where u and v transform like s' —is (x'+y') and V3/2(x'
—y') respectively, and

1(t,')'T,x+) ~ (c'/W3) (~ys+~'sx+xy)

l
(ts')'T, xs) —+ (c'/K3) (xy+ys+sx)

i
(tss)'Tsx ) —& (c'/V3) (oi'ys+coxs+xy),

(4b)

where the arrow is to be interpreted as "transforms
like" and o&= e xp2 iir/3 cand . c' are normalization con-
stants. Using the matrix elements of spin-orbit coupling
and trigonal field as given in Appendixes AI and AII of
Ref. 9, the modified 'E wave functions (which will be
denoted by a prime) are given by

(V6)&
ll2~+')= Iu++l)+I + llx+s)

k(Q6)a ~ )

I x ——,'),

2A ')= lu ——,')+ ix y-', )
VS~

(+6)E~
+ +

(+6)A Z )
(3)

IE+') = lu-, +l)+

(Q6) IC

i
x —,'),

E(+6)z

(+6)X)
IE-') = iu+ —l)—

l
X+

k(Q6)a

l
xo+'i)

v3Z

work of Tanabe, Sugano, and Kamimura9 ""and use
their phase conventions and notations.

The unmodified wave functions of the E state are
designated

l u+, —rs) and
l u, +—',) and of the 2A state,

u, ——',) and lu+, +-', ); those of 'Ts are x~,&-', ),
x~,+-', ), and lxs, &sr). The wave functions u+, —-', ),
x+,——',), etc. are the simple product functions

l
(t, ')'Eu, ) l

S=-', , m, = —-', )

i
(ts')'T, x ) iS=-'„M,= ——',),

etc. , respectively. The orbital wave functions are
defined by

"Q. Tanabe and H. Kamimura, $. phys. Soc. Japan $$, 394 We will collectively refer to this set of states as 'E'. In
(196g) Eq. (5) 1 is the one-electron spin-orbit parameter
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TABLE I. Clebsch-Goxdan coeKcients fox coupling E to T2
by Tp vibrations (taken from Ref. 16).

(»+I T»pT»p) =1&3
(»+ I T»-T»-) = —I/v3'

(»~ ~
T»+Tpxp) =1/V3

(T»+~T»» )=—1/v2
(Tppp+

~
T»+»p. )= 1/v2

defined by
2—(x+,l I ".

I x+, l&,

E the trigonal field parameter by

E= (x~ I
ap„,

l x~&, (6b)

IE,m) and ITs,m') must have the same spin states
since Ko L does not involve spin.

By the Wigner-Eckart theorem,

where (I') is the dimension of the r representation.
Since the C's were defined so that their reduced

matrix elements are unity, we have

(&)~I~0.L. I
Tp, rip'&= (~&) 'V(T2)

xp (Epipl T,IpT, np'&e „, (8)

where the Clebsch-Gordan coefficients are to be found
in Table VIII of Tanabe and Kamimura. "A listing of
these coefFicients is to be found in Table I. Using these
coupling coefficients and the wave functions in Eq. (5),
we find

(&+'
I
3'-o.L I

2A+'& = (K2/3) (f/A) V (Ts)e, (9a)

(++'I3lo.L l2A~'&= —(2E/A)V(Tp)e+. (9b)

The relationship between (p~ pp p ) and the usual
elements of the strain tensor which transform like
Tp (p v ep e,), is given by Eq. (4b) where (x+,xp, x )
(e+,ep, e ), (xy,ya, sx) ~ (e.„,e„.,e..), and c'= 1.

In Eqs. (9), the quantities f', 6, and E a,re reasons, bly
well known from experimental data while the matrix
element of ep may be expressed (as we shall see below)
in terms of known quantities, i.e., the longitudinal and
transverse sound velocities and the density of the
crystal. We are thus left with the determination of the

and 5 is the energy separation between 'E and 'T2.
Using Eq. (5) for 2A' and E' and considering only the
Ts vibration in Ko L LEq. (1)), we find that in
(E'IBCo L I

2A') we must evaluate matrix elements of
the type

(F.,pip lBCp. L, I Tp, m'&= V(Tp)

Xp (E,dipl C(T,,p) I
Tp, m'&p „. (6c)

reduced matrix element V(Ts). This constant is propor-
tional to the magnitude of the change in potential at
a Cr'+ site in the crystal which is induced by the
oscillating ligands. Early calculations of the relaxation
times in paramagnetic ions generally used a point-
charge model. The change in electric potential due to
arbitrary distortion of the surrounding complex was
computed using a point-charge model. In carrying this
calculation through there was the difficulty of evaluat-
ing the radial integrals and including the effects of
covalency (now recognized to be of central importance
in crystal-field ca,lculations in transition ions). Some
improvements of this technique which avoided the
necessity of calculating radial integrals (and partly
included covalency) were discussed by Orbach" and
Kiel, '~ but the basic difFiculties remained.

C. Calculation of Relaxation Using Strain Data

Recently these difficulties have been overcome by
determining these constants from static-strain experi-
ments. We will now indicate how the constant V(T,) is
determined in our case from the static-strain data on
the E. lines of ruby. The only difference in 3Co & as
given in Eq. (1) for a static strain as compared to a,

dynamic strain is the time variation of e in the latter
case. All other quantities, and in particular V(Ts), are
the same in both cases.

The first-order change in the spacing of the 2A' and
E' states produced by a static strain is given by

&&= (2Ag'I ~O.L I
2A~'& —(Ey'I KO. L. IE~'&. (10)

Here also for the static case, only strains of symmetry
type T& will be effective in 'E for identical reasons to
those presented above for considering only the T2
vibrations in the dynamic case. Again using Table I
we find

AE= ,' (fjA) V (Tp) ep. — (11)

But ~0 has exactly the symmetry of a strain produced
by a stress T;; applied along the L111)direction of an
octahedron. Labeling the

I 111) direction s' and with
x',y' perpendicular to this axis we have

ep ——(v3)
—'(p.„+e,.+ e..)

= (v3) 'I:p*" p(e* *+—"')) (12).
To the extent of our approximation that the octahedron
of oxygen ions surrounding the Cr'+ ion in ruby is

regular, this will coincide with the strain produced by
a stress T, , along the c axis. This strain is related to
the stress T. .. through the compliance elements $33
and S&3 by

where the approximately-equal sign refers to the cubic
approximation. Substituting the above value of eo into

"A. Kiel, in Paramagnetic Resoeanc~ {Academic Press Inc. ,
New York, 1963), Vol. II, p. 525.
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Eq. (11), we have

ze2~ g+=3.2)&107 sec '. (19)

values into Eq. (18) we find, on neglecting n comps, red
to 1)

(l/6) v (T )= (3'/2)BEE/T, ;(s,,—s„). (14)

Note that not only have we determined the reduced
matrix element V(T2) in terms of the static-strain data
on the R lines and the quantities t and 6, which are
fairly accurately known, but that as far as the "spin
flip" matrix elements, Eq. (9a), are concerned, even l
and 6 do not appear, i.e.,

(E+'I &o.L. I
2A+') = (v'2)

X( / -"")L /( 33—S13)]6 . (15)

The probability of a resonance transition between
E and E+ is given by

w(E ~2A )w(2A ~E+)
w(E ~E~)=

2o(2A —&E )+w(2A —+Ei)

w (E +2A—+)w (2A+ —+ E+)
(20)

w(2A„—+E )+w(2A, —+E+)

The dynamic strain e is given in terms of phonon
creation and annihilation operators by"

1 (cftt; cf2t, t' pt

6;j=
2 (Bx, cfo".; (8Mco

and the relaxation time in the E state by

Ti !2o(E ~——E+)+2o(E+~E )]—'.
However, from Eqs. (9a) and (9b), we note tha, t

23'2A Ee+/23'2A+~E~ 18(1~/i )

(21)

(22)
X Q (a*2„+a, e„)(e„, , ,k,+en, ,k,)e'" ". (16)'

Here e;j is the ij component of strain associated with
phonons of wave vector k and polarization vector e„,.

M is the crystal mass and a is the phonon angular
frequency. The squared matrix elements of the strain
are then

I(n, ,„+1l.*sin, ,n) I

= (~/m~)
X (n+1)fe„,k, +e~, k, ~]2, ,(17)

where n is the phonon occupation number (e""f3'—1) '.
[e~;k;+e„,k,]2 must be averaged over all directions of
propagation and polarization. This average has been
done by Van Vleck for a cubic crystal. In the spirit of
our cubic approximation, we use this average. Finally,
using results of Eqs. (3), (15), and (17) in Eq. (2) and
performing the indicated averaging, we obtain

27 AE 1
ZVgg ~g+=—

4 T, , S33—Sg;

53 tr 1 3—
I

—+ I n+1], (18)
1352rpPt' kv t3 2v t3

where p=mass density of the crystal; ~& and vt, are the
velocities of the longitudinal and transverse sound
waves, respectively; 5=splitting between 2A and E
( 29 cm ' for ruby). From the strain data on the R
lines of ruby, Schawlow" finds (AE//T, , )=5.5X10 "
cm '/(dyn/cm'); from Huntington's tables" of elastic
constants, (S»—5») =0.232X10 " cm'/dyn; p=4
g/cm'; 2tt 10' cm/sec; n, vt/V3. Substituting these

'3 A. Abragam, PrinciPles of 1Vuclear Magnetism (Oxford Uni-
versity Press, New York, 1961),p. 402 B."A. L. Schawlow, in Advances in Quantum Electronics, edited by
J. R. Singer (Columbia University Press, New York, 1961),p. 50.

' H. B. Huntington, in Advances in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1956), Vol. VII, p. 213.

Using the recently determined values" of E= 233 cm—'
and (=170 cm ', we see that the spin-flip transition
zv2&, z, is approximately sixty times slower than the
nonspin-Rip transition @2~, g,. Therefore, neglecting
2o(2A+ —+Ep) compared to 2o(2A+~E ) and using
the fact that w(2A —+E )/w(E —&2A )~e"" etc.
we find

Ti !42o(2A ~——E+)] 'eet'r— (23)

Thus w(2A+ —+ E+) can be determined experimentally
from the coefficient that appears in front of the ex-
ponential factor in the relaxation time. The experi-
mental result for Cr'+ in A1203 was found to be'
m»z z+= 6X10 sec '. This is in very good agreement
with the value 3.2&(10' sec ' calculated above.

From the experimental value w2A—, E, and (22) we
estimate that the much faster nonspin-Rip rate m2~, g,
=3&(10' sec ', or that the lifetime of the 2A state
against phonon emission would be about 7=3)&10 "
sec. This would give a lifetime determined linewidth of
Au=1/22rr=0. 017 cm '. This is six times larger than
that estimated by McCumber and Sturge from the
temperature variation and shift of the E line separation
in ruby with temperature. "Experiments are under way
to measure this quantity directly by magnetic resonance
in the 2A state.

D. V'+ and Mn4+

The theory presented above is of course equally
applicable to the isoelectronic V'+ and Mn4+ in A1203.
The separation 8 between 2A and E for these ions is
12.3 cm ' and 80 cm ', respectively. "An interesting
test of the above theory would be a comparison of the
experimentally determined coefficient in front of the

"R.N. Macfarlane, J. Chem. Phys. 39, 3118 (1963).
2' D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682

(1963).
"M. D. Sturge, Phys. Rev. 130, 639 (1963); S. Geschwind,

P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. cfood, Phys.
Rev. 126, 1684 (1962).
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exponential in the resonant relaxation process, i.e, ,
(4wsz ~z+) ', for these ions. Referring to Eq. (18) we
see that zvs~ g+ (AE/T;, )'8'. The 8' factor is an
expression of the frequency dependence of the direct
process in the case where b))kT, i.e., when 5))kT the
direct process involves only spontaneous emission of
phonons. We may therefore anticipate that in corundum
(assuming a Debye spectrum as has been done)

wsg F+(Cr'+) (AE/T ~ )' Cr'+ 5(Cr'+)
0 (24)

/lsd ~a+(v +) (AE/T I i)s vs+ $(vs+)

with a parallel expression for Mn +. Preliminary results
on V'+ indicate that such a relation is reasonably well

obeyed. '4

Any disagreement between the experimental results
and Eq. (24) might be taken as a measure of the
departure of the phonon spectrum from the assumed
Debye spectrum. It will be especially interesting to
test Eq. (24) for Mn4+ since here 8=80 crn ' and is
therefore quite high up towards the Debye, acoustic
limit of 300 cm '. In addition, the density-of-states
curve at 80 cm ' will also reAect the inRuence of the
optical modes.

IIL JUSTIFICATION OF THE ONE-PARAMETER
MODEL

A. Con6guration Mixing

In computing the relaxation effects presented in
Sec. II we made a number of simplifying assumptions.
Among these were the neglect of the Coulomb inter-
action (i.e., the assumption of pure ts' states), the
ignoring of odd-parity states and the odd-vibration
induced relaxation, and the use of the cubic model. In
this section we shall consider these details in turn and
show that our previous results are essentially correct.
When the Coulomb interaction is included, one finds
that the t2' and t2'e configurations are mixed. In Fig. 2

we have depicted all the relevant states of the t2' and
t2'e manifolds and the couplings between them, as given

by Clogston. "
As a result of these modifications due to the Coulomb

interaction we must reconsider some of the interactions
which vanished in the pure t2' case. The amount of
admixture of the t~'e states by the Coulomb interaction
will be of the order of 8/(10Dg) 0.1, where 8 is the
usual Racah parameter ( 700 cm ') and IODq is the
crystal field strength 10' cm—'.

The E state will now have a form approximately
given by

'E"=nl a(Iss)'E+b(4'e)'E+c(4'e)'E)
+&La'(4')'Ti+ b'(4'e)'Ti+ c'(4'e)'T t$

+pl a"(Is')'Ts+0" (ts'e)'Ts+c" (ts'e)'Tsg, (25)

"S.Chinn, G. F. Imbusch, G. E. Devlin, and S. Geschwind (to
be published).

ss A. M. Clogston, Phys. Rev. 118, 1229 (1960).

vanishes by symmetry. The important matrices
occurring in the relaxation process are then,

J: «~a"((I, )'El V(T,)l(4)'T, ) (26a)

II: nabab'((Is')'E
I V(Ts) I

(Is'e)'Ti)

+ f~"((I ")'El V(T.) I
(4')'T.)

+&&&&"((4')'EI V(Ts) I
(4'&)'Ts)

+«v~" ((& 's)'E
I V(Ts) I

(Is')'T.), (26b)

where V(Ts) = V(Ts)C(Ts,m), as before.
The term I is that which was used in Sec. II to com-

pute the relaxation rates, here slightly modified because
of the renormalization due to the Coulomb interaction.
The terms II are individually much smaller than I since
two small parameters (e.g. , Pb, yc") occur in II to only
one in I. Altogether they may be expected to mal~e a
small contribution since the matrix elements containing
(tsse)sTt are imaginary so that the square of these terms
is of second order (i.e., no cross terms). Of the remaining
two terms in II, nape" ((ts')'E

I
V(Ts) I

(ts'e)'Ts) will

clearly dominate since the 'T& suffers much stronger
configuration mixing than the 'E (Ref. 26). Calculation
of the corresponding cross term shows it to be smaller
than I by a factor of about 2c"/a" 0.1, which we

neglect in the following.
Sugano and Peter' have calculated the effect of

configuration mixing on the splitting of the R~ and R2
lines of ruby. They find that the consideration of
Coulomb mixing reduces the R~—R2 splitting by about
30%. This is the outside limit on error introduced in

the calculation of Sec. II due to the assumption of pure
t2' configuration.

B. Odd Vibrations and Noncubic Site Symmetry

Since the Cr'+ ion sits at a noncentrosymmetric site,
there are present odd components of crystal field which
mix in odd-parity states of the type I (Is,'I»)'E„) into

"M. D. Sturge (private communication) has computed the
vectors of the 8 state, including con6guration mixing, using the
program of S. Sugano and M. Peter, Phys. Rev. 122, 381 (1961).
His exact results justify the estimates we make of the constants
in Eq. (25)."S. Sugano and M. Peter, Phys. Rev. 122, 381 (1961).

where again the admixtures of the 'T~ and 'T2 states
into 2E result from spin-orbit coupling and trigonal
field.

The coefficients a and the coefficient n are of order
unity while all the other coefTicients (b,c,P,&) are about
0.1."Note that now the 'Tt(Is') states are mixed into
'E as a result of the configuration mixing. The discussion
of Sec. IIA which led to our considering only the T2
vibrations remains valid even in the present case. This
is so because a t2'e state cannot couple to a t2' state via
a V(E) interaction since the single-electron matrix
element

(el v(E) I&,)
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the even-parity
i (t2, ')'E,

& state. One should examine
whether odd vibrations of the octahedron can connect
'E to 'Eg and therefore play a role in the relaxation.
However, E,XE,=Ai +A~~+E, and none of these
vibrations are normal modes of the octahedron, '8 i.e.,
the only odd vibrations are T~„and T~„. There are,
therefore, no contributions from the odd vibrations to
the relaxation.

%e have analyzed the vibrational modes of the
oxygen octahedron which surrounds the paramagnetic
impurity as if the site symmetry were perfectly cubic.
Actually the local octahedron is severely distorted and
the site symmetry is C3. Our single constant V(T2) will
in reality be decomposed into two independent con-
stants V(E) and V(A i) of the point group C3. However,
the percentage difference between V(E) and V(Ai) will
be of the order of the strength of the trigonal field
compared to the cubic field, i.e., V„;~/10Dg. In
corundum V&„, 10' cm ' and 10Dq 10' cm ' so that
our approximation of cubic symmetry for the analysis
of the relaxation would seem to be a very good one.

0+= &I+&+b

&-= —f'I+)+a I
—),

and the matrix element of e becomes

(27a,)

(27b)

8+I~II-)=~f((+i~i+&—(—I~i —
&) (2g)

The last statement follows from application of the
time conjugation operator. Therefore, an electric
potential can couple the states of a Kramers doublet
directly only when the magnetic field mixes other
Kramers doublets into the states under consideration.
This situation is of course quite different from the
resonant process considered earlier where the phonons
couple the two different doublets.

In a parallel magnetic field, there is no mixing of the
2A' and E' states, i.e., (2A'iL, +2S,iE')=0. This is so,
since, as seen earlier, there are no matrix elements of L in
the pure E state and in addition ((t23)'E

i
L

i
(t2')'T2& = 0

(see table on p. 399 in Ref. 16).However, if we consider

'SL. D. Landau and E. M. Lifshitz, in Quantum Meclzanics,
Eon-Relativistic Theory (Addison-Wesley Publishing Company,
Inc. , Reading, Massachusetts, 1958), p. 366.

IV. THE DIRECT PROCESS

An immediate consequence of Kramers theorem is
the fact that any interaction, m, which is invariant under
time reversal cannot couple Kramers conjugate states.
It is also true that even in an arbitrary magnetic field,
s will not couple the states of an isolated Kramers
doublet (by Kramers doublet we mean time-reversed
states for a system with an odd number of electrons).
This may be seen as follows: In a magnetic Geld, the
Kramers conjugate states i+) and

i
—) are mixed so

that the proper states of the doublet can be written as

configuration mixing, then there will be an admixing
of 2A" into E"by an external field parallel to the c axis
via the matrix element ((t2')'Ei L, i

(t23)'Ti). In accord
with the notation of Eq. (25), the coefficient of ad-
mixture will be of order [P'(AH/8)] where pH is the
Zeeman energy ( 1 cm '), 8 is the separation of 2A
and E ( 29 cm ' for Cr'+). The calculation of Sturge"
shows J3 0.15. This will give rise to a direct relaxation
rate between E+" and E "which, in analogy to Eq. (2),
can be written

W g„" g (direct) = 2~/h
i
(2A

i
BCo.L. i E) i

'
X I (&+1I ~

I ~& I
(~P'I H/~)'X'px (29)

where now the density-of-states factor pz and n are to
be evaluated at an energy equal to +II instead of 5 as
before. A numerical evaluation shows that Tj is in the
range of

Ti (1.0/T) sec (deg K) '. (30)

e(E+') = iE+') (PH sin8/5) i
2A—'),

e(E ') =
i
E+') (PH sin9/6)

i
2A+—'&,

(31)

where iE '), i2A+'), etc. , are given in (5). The elec-
tronic part of the matrix element of the orbit-lattice
interaction between these two states is then

= —(PH sin8/8) (4E/6) V(Tg,)~+i, (32)

where configuration interaction is neglected. Calculation
of the phonon matrix elements will finally give for the

"A. Kiel, in Advances in Quantum Electronics, edited by
J. R. Singer (Columbia University Press, New Vork, 1961),p. 417.

This is far too long to observe in the presence of the
much faster radiative lifetime of E in ruby of 3.5 msec.

There are a number of additional terms which may
be mixed by 1., but these are all smaller than L, by
factors like (5/d, )'. Such terms were considered by Kiel
in an earlier publication, " but he missed the time-
reversal cancellation by an improper application of the
time conjugation operator. In essence, Eq. (6) in Kiel s
paper should be multiplied by (pH/6)' so that the Ti
of 3.5 msec that he calculates will now be of the order
of seconds.

However, the situation for the direct process is quite
different if the magnetic field has a component perpen-
dicular to the c axis of the crystal. In this case there are
matrix elements of the operator II&5 between the 'E
part of the E state and the 'E part of the 2A. state. This
admixture will be of order PHi/5, and the direct process
may then be sufficiently rapid to be observable. To
calculate this rate we first give the first-order effect of
the perpendicular field on the wave functions (1).
Denoting the perturbed states by 0'(E+) and 4(E ), —
and setting II11=IIcosa, II&=II sin0, where 0 is the
angle between the field and the c axis, we find
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direct-process relaxation time

8E' g„'O'H'
cos'emir�'H(1

3

)TI 15~' kvP 2e '15pA, 'P

/ gi MPH cosg)
X cothl —

I
(33)

2&T i
The field at 45' to the c axis large enough for a resonance
at 35 kMc/sec is of the order of 13 kG. The hyperbolic
cotangent is essentially unity for this frequency at 1'K.
Substituting the appropriate constants, we find, at this
temperature and frequency, T1——40 msec. It is clear
that increasing the frequency of measurement from 35

to 70 kMc/sec would reduce this time to 1.25 msec at
1 K, since T&~ JI '. Further, any contributions to the
matrix elements from configuration mixing would most
likely tend to increase the relaxation rate. It seems just
barely possible, then, that the direct relaxation process
can be made to give a relaxation time shorter than the
4 msec optical lifetime of the E states of ruby. Experi-
Inents are underway to determine this.
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Line Shapes of Resonant, Nonlinear, Paramagnetic Susceptibilities
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Line shapes for both the absolute value and the real and imaginary components of the nonlinear, para-
magnetic susceptibility P~&(2') of a ruby crystal have been measured as a function of the magnetic field
and crystal orientation at room temperature and "resonant" conditions, where the X-band driving fre-
quency coincides with or is very close to the resonance frequencies of an equidistant or nearly equidistant
paramagnetic three-level system. Though all measured line shapes were in good qualitative agreement with
theoretical line-shape expressions, derived under the assumption of homogeneously broadened, Lorentzian-
shaped, single-quantum resonances, a quantitative comparison between theory and experiment exhibited
systematic discrepancies, such as too slowly decaying wings for the theoretical curves and too large theoreti-
cal amplitudes at "partly resonant" conditions for nearly equidistant three-level schemes. Line-shape meas-
urements for single-quantum resonances of the linear susceptibility contradicted the Lorentzian line-shape
assumption, but could satisfactorily be matched by a Gauss-type line shape. Although it was possible to fit
the measured single-quantum resonance line shapes also by the convolution of a narrow, Lorentzian line
shape with a proper combination of macroscopic inhomogeneous line-broadening eRects such as Gaussian
distributions of crystal t,"-axis orientations and crystal strains, the equivalent procedure for the nonlinear
susceptibility resonances did not remove the discrepancy between theory and experiment. Since the approach
towards thermal equilibrium within tightly coupled spin systems in solids has, in general, to be described by
nonexponential relaxation processes, the line-shape expressions for the nonlinear susceptibility P&1,(2')
were phenomenologically generalized and formulated in terms of non-Lorentzian-shaped, homogeneous,
single-quantum resonances. By using these generalized line-shape expressions, it was possible to achieve a
satisfactory quantitative agreement with all experimental results for both the line shapes of single-quantum,
linear-susceptibility resonances as well as for the line shapes of the absolute value and the real and imaginary
components of the nonlinear-susceptibility resonances.

I. INTRODUCTION

'HE excessive driving-power requirements, neces-

sary for the observation of frequency-mixing or
harmonic-generation eGects due to nonlinear magnetic
or electric (quantum) susceptibilities at nonresonant
conditions, can be considerably reduced if one or several
of the mixing frequencies are close to the resonance fre-

quencies of the mixing medium. In particular, the
nonlinear-susceptibility-frequency mixing eGect can be
observed at relatively low-power levels, if all mixing

frequencies coincide or are very close to the quantum-
mechanical resonances of a three-energy-level system.
For this case the excitation frequencies will predomi-
nantly generate a nonlinear polarization component,
oscillating with the sum or difference frequency, which
coincides with the third transition frequency, provided
all possible transitions within the three-level system are
quantum-mechanically allowed. The special case of
harmonic generation by means of the "resonant" non-
linear susceptibility of an equidistant paramagnetic
three-level scheme in a ruby crystal at room tempera-


