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Simultaneous Diffraction of X Rays and. the Borrmann Effect*
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The Borrmann effect (the anomalous transmission of x rays through thick perfect crystals) has been used
as the primary diffraction in a study of simultaneous diBraction. The major part of the work is an analysis
of multiple di6raction using the dynamical theory of x-ray diffraction. In the analysis we have utilized the
concept of normal modes in describing the propagation of the x-ray wave field. We have determined these
modes when the Bragg condition is exactly and simultaneously satisfied for all the diffracting planes. The
particular configuration studied was one in which only three noncoplanar waves have appreciable amplitudes.
We have shown that at least one of the proper modes of any three-field case of the type considered is a non-
absorbing mode of propagation (i.e., having nodes of the electric Geld at the atomic planes). This indicates
that the primary anomalous transmission will persist with little or no change in intensity when a third
reciprocal lattice point enters the Ewald sphere. In particular, when the third reciprocal lattice point is of
the same family as the primary, simultaneous anomalous transmission is predicted. For this case, a relatively
small change in the primary rejected beam and a twofold enhancement of the forward beam is calculated
which are seen to be due to a superposition of two degenerate Borrmann eGects having a common forward
diffraction direction. Experimental results using polarized and unpolarized incident radiation are presented
and discussed.

I. INTRODUCTION can be exhibited separately for each set of these planes,
then together we might expect simultaneous anomalous
transmission. An explanation of such multiple diffrac-
tion requires the use of the dynamical theory. The very
general principles of the dynamical theory of x-ray
diffraction were formulated by Ewald and Laue and
they deal with any number of diffractions. All the
factors affecting intensity such as crystal structure,
temperature, the polarization of the incident x-ray
beam, and others, have been determined only for that
case when one set of planes diffracts. It is understood
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FIG. 1. (a) Anomalous transmission. I—incident x-ray beam,
8—Bragg angle, T—anomalous transmitted beam, R—anomalous
refiected beam. (b). Simultaneous anomalous transmission. I—In-
cident x-ray beam, 8&82—Bragg angles for atomic planes P&P2,
T1T2—anomalous transmitted beams, R1R2—anomalous reflected
beams.

HE anomalous transmission of x rays through
perfect or almost perfect crystals (also called the

Borrmann effect) was discovered some twenty years
ago. Crystal plates which are thick enough to absorb
all of the incident x-ray radiation will transmit the
diffracted x rays when the beam is incident at or close
to a Bragg angle. In addition, a characteristic feature
of the effect is that two beams appear on the far side of
the crystal plate (Fig. 1(a)j. That this anomalous
transmission is possible is due to the fact that the usual
absorption is considerably diminished by a system of
standing waves which are set up in the crystal, some of
which have nodes in the atomic planes. A considerable
number of experimental investigations exploring anoma-
lous transmission have been reported in the literature
wherein the results are necessarily explained in terms
of the dynamical theory of x-ray diffraction. ' '

In this study we have undertaken an experimental
and theoretical investigation of situations in which
more than one set of atomic planes are in position to
transmit anomalously. Figure 1(b) shows one case
when two sets of atomic planes are in position for the
diffraction of the same incident beam (shown as
coplanar, for convenience). If anomalous transmission
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why this detailed theory was not readily. extended to
multiple diffraction. In any case when one set of atomic
planes causes diffraction, the incident beam together
with the rejected form a single plane which serves as a
reference plane to specify, by parallel and perpen-
dicular components, the electric intensity vector. In
addition, it is reasonably simple to obtain the equations
of the dispersion sheets from which practically all the
properties of the wavefields can be obtained. None of
this is in general true for multiple diffraction. When
there are more than one set of diffracting planes it is
very difficult to deal with the equations of the dispersion
sheets. We handled this latter difficulty by considering
the instance when all the atomic planes involved in the
simultaneous diffraction are inclined exactly at Bragg
angles, i.e., we used only the diameter points of the
dispersion sheets. We also realized that the proper
solution of the problem requires the evaluation of the
normal modes of propagation of the electromagnetic
waves which are propagated through the crystal.
Having obtained the modes of propagation (for the
diameter points of the dispersion sheets) we were able
to predict which of the modes would be anomalously
trarismitted through thick perfect crystals.

Fio. 2. Dispersion curves in singIe diffraction. Point Q is the
center of the sphere of reflection or the intersection of circles
drawn from reciprocal points 0 and JI. In the scale of this figure
these circles appear as straight lines (0 is of the order of one mile
from Q).

2. THEORY

2.1. General Theory

The general dynamical theory of x-ray diffraction
developed. by Ewald' and Laue has been subsequently
discussed by many authors. ' ' With a plane monochro-
matic x-ray wave incident, the solutions of Maxwell's
equations inside a crystal are assumed to consist of a
superposition of plane waves, and thus the electric-
displacement-field vector D will be of the form

(2.1)

where k„is the wave vector directed towards the eth re-
ciprocal lattice point. The directions of the electric vec-
tors are transverse to the respective directions of prop-
agation, and for every wave vector lr„the corresponding
electric vector 9 will be described completely by its
components D„and D„along the axes specified by
two unit transverse vectors e„andm„.

The condition of the self-consistency of the wave
fields inside the crystal is expressed by the equations'

&nDn = 2 Pn rP+r (&n'&r)+Dr (&n'—~r)) p

x.D„=Q'y„„tD;(~ —e,)+D, (m .~,)), (2.2)

6 P. P. Ewald, Ann. Physik 49, 117 (1916); 49, 1 (1916); 54,
519 (1917).

M. von Laue, Ergeb. Exalt. Naturw. , 133 (1931).

where x„is defined by the relation

k'x„=k„'—k'(1 —(po), (2 3)

a,nd has the geometric meaning indicated in Fig. 2'; ir, is
the vacuum value of the wave vector and p is the
Fourier component of the polarizability and is given by

—g P f& 2rrim r, —

or

i.e., p is proportional to the geometrical structure
factor.

Out of the infinite number of component waves, when

q reciprocal lattice points are close to the Ewald sphere,
only q wave components will have appreciable ampli-
tudes; in such a case in Eqs. (2.2) v=1, 2, , q.
Usually q=2, and this corresponds to ordinary single
diffraction. In this paper we will extend the theory to
multiple diffraction, i.e., to the case when q is greater
than two.

The condition that the homogeneous equations (2.2)
have nontrivial solutions yields a determinantal
equation in the x„swhich is the familiar dispersion
surface in reciprocal space. When q reciprocal lattice
points are on the Ewald sphere, the order of the equa-
tion is 2q, and it then represents 2q dispersion sheets.
For any one point on one of the 2q dispersion sheets
there will be q wave vectors extending towards the
corresponding q reciprocal lattice points. Transverse to
each wave vector there will be an electric vector ampli-
tude having a unique or proper direction. For such a

8 This x„is proportional to the ('s in Refs. 2, 3, 5.
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point on a dispersion sheet, all wave vectors starting
from that point, together with the amplitude directions
and their relative magnitudes, constitute a mode of
propagation. We may say that, in this sense, each wave
point represents a mode of propagation.

In order to determine the amplitudes of the electric
vectors in terms of the incident amplitude, and eventu-
ally to determine the intensities, we have to resort to
the boundary conditions. In the region of x-ray wave-
lengths the boundaries of the crystal do not aRect the
electric and magnetic vectors and they both vary con-
tinuously across the surface. For the wave vectors,
however, the continuity of phase requires that the
tangential components of the wave vectors be con-
tinuous across the boundary. This condition allows the
normal to the crystal surface together with the direction
of incidence to select the active wavepoints on the
dispersion sheets.

From the above considerations it follows that the
conditions on amplitudes of the electric displacement
vectors are: for the direction of incidence,

(b)

(c)

DH

Dp

Dp

2g

p D (ai —D (o (2.4a)

and for the diffracted beams, separately, (4)

2g

Q D„i&=0 m=1, 2, , q. (2 4b)

p p
appreciable. The modes determined were those belong-
ing to the diameter points of the dispersion sheets, i.e.,
for the instance when Bragg's law is obeyed exactly.
We have reproduced these modes in Fig. 3. In this
figure the directions of incidence and diffraction are
given by the wave vectors kz and k~, respectively.

In any given Laue diffraction, when unpolarized
radiation is incident, all four of these modes are excited
and propagate; however, each has very different
absorption properties. For example, it is well known
that in the Borrmann eGect for thick crystal plates
(td) 10) either the first or the second mode of Fig. 3,
depending on the sign of the structure factor, survives
the transmission. (For a thorough discussion of most of
the above points see, for example, Ref. 5.)

We shall compute in the three-Geld case the modes of
propagation for the diameter points in the same way
as we have computed them for the two-field case.

I =const Q PD„&&j'.
+=1

This intensity is the result of space and time averaging
of the Poynting vectors.

In order to employ Eqs. (2.4a) and (2.4b) it is
necessary to know all the vector amplitudes, and these
will be determined once all the modes of propagation
are known. It is thus apparent that the basic problem
in multiple diGraction is the determination of the modes
of propagation.

2.2. Two Fields

When two reciprocal lattice points lie near the Ewald
sphere the amplitude of waves traveling in the two
associated directions will be appreciable. We refer to
it as the two-field case. Its theory has been worked out
in great detail by several authors and is well known.

Elsewhere'" we have worked out the modes of
propagation for two fields as an illustration of the

E. J. Saccocio and A. Zajac, Acta Cryst. 18, 478 (1965)."E.J. Saccocio, Ph. D. thesis, Polytechnic Institute of Brooklyn,
1964 (unpublished).

2.3. The Three-Field Solution

The simplest case of simultaneous diffraction occurs
when three reciprocal lattice points are close to the
Ewald sphere. We will denote the three points by 0, II,

FIG. 3. Two-Geld modes of propagation. The modes shown

+on Laue and Kato4 have shown that after the . Correspond to the four symmetry points of the dispersion sheets.
The plane of incidence is represented. as the xy plane.airrracted waves have departed a few Peedet7osleg

periods from the boundary, the intensity in any direc-
tion of diffraction k is computed from method em lo ed here where three am litudes are
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Pro. 4. Three-6eld geometry. %'ave vectors ko, kH, and kP make
equal angles with one another. Reciprocal points on Kwald sphere
are 000, 220, and 202. Unit vectorse andm form mutually orthog-
onal set with respective wave vector.

and P and refer to this type of simultaneous diGraction
as the three-field case. Because we wish to consider the
possibility of simultaneous anomalous transmission, the

choice of both the primary (H) and the secondary (P)
diffraction is limited to those exhibiting the effect of
anomalous transmission separately. The reAections
which we actually consider correspond to H= 220 and
P=202 in a germanium crystal. This is therefore a
rather special case where OHP forms an equilateral
triangle in reciprocal space. The geometry is shown in
Fig. 4. The unit vectors mo and ~K lie in the QOH plane
and the vector ~p is parallel to this plane. It will be
recalled that each pair of unit vectors specify axes along
which components of the respective vector amplitudes
are taken, while the specification of their directions is
arbitrary and is chosen according to the convenience
of manipulation.

a. The Field Equations and the Secular Equation

For any three reciprocal lattice points 0, H, P, the
general set of equations (2.2) reduces to the following

six equations:

—&oao'= + 0
—&oao = o + 0

&HDH =AH (4rH
' 4ro)DO + IjbH (4PH

' %0)DO

&HDH =QH (7cH' &0)DO' + pH ('AH' 'F0)Do

&PDP =O'P(&P' Jo)ao +4P(+P"'~o)Do

&PDP =4P(&P'4PO)DO + QP(RP "440)D0

+ QH (4ro'4PH)DH + @H (4r0 +H)D'H

+ AH(&0'&H)DH' + 4H(&0'&H)DH'

+ 0 + 0

+ 0 + 0

+4P H(&P'~H)+H + fP-H(&P'~H)DH

+ O'P H(&P'4rH)DH -+ @P H(r4P'44H)D-H

+ @P(o0 4')DP + O'P(4PO 44P)DP

+ @P(440' 4PP)DP + 4P (440' +P)DP

+ yH —P (+H' +P)DP + @H—P (+K' +P)DP

+ yH-P (&H' +P)DP + yH-P (&H' &P)DP

+ 0 + 0

+ 0 + 0
(2.5)

In the present case H= 220 and P= 202 in germanium, therefore

and
4K=4K,' 4K P= 4P Kj 4P 4-P— (2.6)

4p=4K; 4K p= —4K; 4K ——l4KI ~

The various dot products appearing in (2.5) are

ep'eg —eII'mo —eo'mp = eII'ep =0
4rp mo = sin8 sing

4rp ~K ———sin8 sing = —y4

4rg 4rp —4rK 4rp —cos)

ep mo = mp mII = cos8

%0' JtII = COS28

where 8 and g are the angles shown in Fig. 4. Also, it can be shown readily that, in terms of y,

(2.7)

(&+2m) (~—v)'7'—
2(&+v)

2v'
Y3 ) 272 i+7 '

&+v

The general three-field secular equation corresponding to Eqs. (2.5) is

go
0

yK(~K ~O)
O'K (44K'4r0)

yp(~p ~o)
~ ('.)

0
SQ

4 K(KK.~O)

4K (&K ' &0)
@p(4rp ~o)
yp(~p ~o)

O'K (4r 0 ' &K)

O'K (&0 ' 4PK)

&H

0
4p K(4rp. ~K)
4' p K('44 p '4rK)—

O'K (&0 ' &K)
III(440 ~K)

0
XQ

gP K(~P ~K)
yP K(~P ~K)

yp(~o ~p)
4 p(~o. ~p)

yK P(~K ~P)
4K p(~K 4rp)

Xp
0

Pp(~o ~p)
4p(~o ~p)

yK P(~K.~P)
4K P(~K.~P)

0

(2.8)



SI MULTANEOUS DIFF RACTION AN D BORRMANN EFFECT A 259

—xp 0 1 0
0 —xo 0 y y4
1 0 —xII 0
0 y 0 —xII y4
73 74 73 74 xI'
0 y2 0 —y2 0

72

=0. (2.9)
72

0

Using relations (2.6) and (2.7), and writing the param-
eter x in units of

I
pH I, and factoring out

I &HI,
" the

secular equation reduces to

Fze. 5. The unique mode
of propagation.

Dp

/

kp
/

We assume that the surface of the crystal is cut
parallel to the plane of the reciprocal triangle OIIP
shown in Fig. 4." Such a choice of the surface of the
crystal plate allows a unidirectional incident beam to
select simultaneously the diameter points on all the
dispersion sheets. The diffractions are then perfectly
symmetrical and all diffracting atomic planes, including
the difference (H P) plane—s, are normal to the crystal
surface.

Assuming then that the normal is in the correct
position to excite the diameter points, one determines
the corresponding values by simply setting xo, x~, and
xp equal in Eq. (2.9) and solving. To gain more insight
and perhaps some additional information, a less
straightforward procedure is of advantage. In an
experimental arrangement involving simultaneous dif-
fraction, one usually maintains a given diffraction at
its peak and rotates the crystal so that other diffractions
may take place. From the point of view of the dispersion
sheets this is translated to mean that xo and xII are
kept equal, while x& is left to vary in accordance with
its permitted values. Therefore, in Eq. (2.9) we set
xp ——xII ——x and leave x~ as it is. The secular equation
now can be written

(X—1)I Xp(X+y) —2yss]

X ((x+1)Lxp(x—y) —2y4'$ —2ys'(x —y) ) =0. (2.10)

It is obvious from (2.10) that x=+ 1 is a solution, but
most important, it is independent of xg. The signi6-
cance of this, as we shall see below, is that the third
field, or more loosely, the additional reciprocal lattice
point, cannot affect this diameter point. It is important
to note that the factor (x—1) in Eq. (2.10) will
always appear from the secular equation (2.8) for any
three-field situation as long as gP ——&gH P a condition
necessary for three 6elds in most crystal space groups.
Further, from Eq. (2.10) as xP —+ ~ it can be seen that
in this limit, since three 6elds reduce to two, the
diameter values must become the four of the two-Geld
case, namely, x= &1 and x= &p; and in fact they do.
We see that we have a two-field solution as at least one
of the solutions in the three-field case.

To determine the diameter values in the three-Geld
case we now set xP equal to x in Eq. (2.10), and solving

"That is, so= ([ga(/~err()xo= (prrt&o' etc., then drop the
prime in Eq. (2.9).

"This configuration is considered throughout the entire paper.

xs, s ———(1+y),
x4s =+1"

(2.11)

The multiplicity of the second and third eigenvalues
indicates the existence of degeneracies and, except for
the unique value x&, precludes a straightforward
analysis of the modes of propagation.

b. The Modes of Propagation

For any value x, given by Eq. (2.11) satisfying the
characteristic equation (2.9), the number of inde-
pendent homogeneous equations Lgiven by Eqs. (2.5)j,
is (N —nt), where N is the total number of homogeneous
equations and m is the multiplicity of the root. For the
unique eigenvalue x, of the set (2.11) we obtain from
Eqs. (2.5) five independent equations which are suffi-
cient to solve for the five unknown ratios. These
equations written in units of I/HI are:

xtDo'+DH'+ V sD—p'= 0,
xiDO~+YDH +74DP +72DP

Do' —xiDH —ysDp' —0, (2.12)—
%DO xiDH +"AD p VsDp

V&o VsDH —xiD p 0. — ——

From these we obtain the ratios:

Dp DII Dp
—=0, (2.13)

Do (1+2')~ DH (1+2') ~ Dp'

and
IDpl = IDHI = IDol.

This mode is represented in Fig. S. The 6gure is a three-
dimensional representation: Q is the center of the Ewald
sphere, and from Q originate the three wave vectors ko,
kH, and kp, which terminate at the reciprocal lattice
points 0, H, and P on the surface of the sphere. Every
pair of these wave vectors defines a plane and the three

"The eigenvalues evaluated here are specifically for the II=220
and 8=202 simultaneous reQections. It can be shown that these
eigenvalues are independent of the choice of equivalent sets of
reciprocal lattice points such as II=220, P'=202, or II=220,
E=202.

what has become a characteristic equation, we obtain
the eigenvalues,

xi= —(1—2y),
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DI =0, D m 0

(2.15)

This mode is shown in Fig. 6(a). It should be noticed

P
i&

k

Dp p(, &
kn~m- k r(OH

FIG. 6. Triply de-
generate modes of
propagation. Note
that the third ampli-
tude is zero in each.

resulting planes are inclined at equal angles (P) to each
other Lthe angle P is given by cosP=y/(1+&)]. The
electric vectors Dp, 9~, D~ bisect these angles and are
respectively perpendicular to the wave vectors
ko, kJI, k~.

As a matter of interest, it will be noticed that the
plane of vibration for each vector is parallel to a respec-
tive difference (atomic) plane; e.g. , Dp lies in a plane
parallel to (H 0) pla—ne.

Ke will next investigate the triply degenerate mode,
i.e., the one corresponding to the last eigenvalue from
the set given by (2.11).In this case the set (2.5) yields
three independent homogeneous equations only. It
becomes necessary therefore to resort to a perturbation
to remove the existing degeneracy. The perturbation
consists in allowing the reciprocal lattice point I' to
move away from the Kwald sphere, while keeping 0
and Bfixed on the sphere. This is equivalent to rotating
the crystal about the diffraction vector H. We have
seen above that, with respect to the dispersion sheets,
this means that the two parameters xo and xII remain
equal, while x~ takes on its allowed value going to
in6nity as I' leaves the sphere completely. Of course, we
have already seen this perturbed characteristic equa-
tion, namely,

(x—1)$x~(x+y) —2yPj
X{(x+1)$xz(x—y) —2y 'j—2y, '(x—y)) = 0. (2.14)

However, now it takes on a somewhat different hue in
the light of this treatment. We note that the eigenvalue
x= 1 not only remains unchanged but is now unique and
is independent of x~. This means that x= 1 continues to
be a solution regardless of the position of the reciprocal
lattice point I' with respect to the Ewald sphere. The
associated mode of propagation can therefore be deter-
mined uniquely from the set (2.5) and is not influenced

by the presence of the third field. It turns out that in
this case

Do~/Do'=0, D ~/D ~=0

SPERSIPN
SHEET

r0~
AMETER PplNT

Fro. 7. Representation of the perturbation along the
dispersion sheet off diameter point.

that it is identical to one of the two field modes. This
could have been predicted since the eigenvalue is
exactly the same as in the two-field case.

So far, only one mode corresponding to the triple
root x=1 has been determined. Additional perturba-
tions would be required to remove the remaining
ambiguities, but are not actually necessary to carry
through if we take advantage of the symmetry of the
three reciprocal lattice points. That is, if we permute
the indices 0, II, I' in the perturbation, we can obtain
the results. These modes are of the same kind as the
one already obtained, except possibly for the phase of
the electric vectors. Since the sign of p~ is the same as
that of p~, the phases of the (O,H) and (O,I') modes
are identical. Figure 6(b) gives the second mode.
However, &Ir p is the negative of &Iq, and this requires
the phase shown in Fig. 6(c).

In the case of the doubly degenerate mode, which
corresponds to the second eigenvalue of the set given
by Eqs. (2.11),another type of perturbation is required.
In the perturbation npplied before, 0 and II were held
on the Ewald sphere and I' wns moved away from it.
The secular equation (2.14) resulted. If we substitute
in the square bracket of Eq. (2.14), x= —(1+&),equate
this bracket to zero and solve for x~, we obtain
xp= —(1+y). A similar procedure applied to the curly
brackets again yields x& ———(1+y). The degeneracy
thus remains.

As shown in Fig. 7 the new perturbation will consist
in moving away from those points on the dispersion
sheets where xo nnd xII nre equal, nnd keeping xI equnl
to its diameter value. Thus we let

xo=x+5, xIr ——x—8, xg =x, (2.16)

where 5 will be kept so small that second-order terms in
6 can be neglected. The independent equations from
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the set (2.5) now become

—(x+"o)Do +Da +vS'I'=o,
—(x+o)Do +vDa +v4DI +y2Dr =0,

Do (x —5)Da—' y3D&— 0, ——(2.17)

yDo —(x o)Da—+y4DI y,Dp—0, ——

V&o +V4Do v3Da—+V4Da »z"—=0,
where x has the value —(1+y). [Equations (2.17) are
also independent for the eigenvalue —(1—2y) but not
for x=1.j From Eqs. (2.17) we obtain the following
ratios of the components of the electric displacement
vectors which describe this mode:

d.l4
P

(2)
Do

(6)
Dp

5)

(2)
P

DH

DIi'

—= tanto,
2 (1+2y) '*

—(1—v) ——=0
2(1+2')' Dr'

(2.18)

D($
0

D(2)
H

IDaI =
I Dot,

2(1+2')- i
IDol.

~+v

This mode is shown in Fig. 8 (a) and corresponds to the
diameter point and also its immediate vicinity.

Since in our case the reciprocal points P and II are
indistinguishable, the remaining mode will be similar
to that shown in Fig. 8(a) but the roles of H and I' will

be interchanged; this mode is shown in Fig. 8(b).
The modes shown in Figs. 8(a) and 8(b) are unusual

in the sense that they could not have been predicted by
intuition, or from arguments of symmetry.

FIG. 8. Doubly degenerate modes
of propagation. (a) The dashed
parallel lines are perpendicular to
the "plane of incidence" lined in.
The angle by which Do or D& de-
viates from the perpendicular is in-
dicated by co. The vector Dp lies
on the bisector of the angle be-
tween planes, transverse to k~ (not
shown). (b) The same mode as in,

Fig. 8(a) with role of P and H
interchanged.

P
/N

t

~H)

(b)

Do

c. The Boledary CoeditiorIs

Having thus determined the modes of propagation,
we are now in a position to use the boundary conditions
to calculate the vector amplitudes 0„in terms of an

FEG. 9. Modes of propagation superposed. Wave vectors are
represented perpendicular to plane of diagram. True projection of
angles between amplitudes. Superscripts are as follows: (1),
unique mode; (2), (3), doubly degenerate mode; (4), (5), (6),
triply degenerate mode. Input directions at ko of polarization
along x and y.

input amplitude Do&", and thus the corresponding
intensities.

It is to be realized at this point that those wave
vectors originating from the 2q dispersion sheets (six in
the present case) and terminating at the same reciprocal
lattice point, all have slightly different magnitudes and
directions (except in cases of degeneracy when they are
identical). These vectors will be said to compose a
beam. In applying the boundary conditions, the small
difIerences in the directions of the wave vectors in a
beam are neglected and the electric vector amplitudes
from each mode belonging to the same beam are super-
imposed. In Fig. 9 each beam (simply labeled k„etc.)
is assumed to be perpendicular to the plane of the
paper. Such a construction is desirable since we shall
be adding vector amplitudes belonging to the same
beam. The numerical superscripts (n) attached to the
amplitudes have been assigned according to the
following scheme:

(1), the unique mode,

(2), (3), the doubly degenerate mode,

(4), (5), (6), the triply degenerate mode.

The angle a& has been defined in Eq. (2.18) and P is the
angle between planes formed by pairs of wave vectors.

Unpolarized incident radiation consists of two com-
ponents unrelated in phase, and linearly polarized at
right angles to each other. The x and y directions shown
in Fig. 9 at ko are the assumed directions of polarization
of each component. All the electric vectors belonging to
the beam lto will be resolved along the x and y directions
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indicated at kg. Since for each direction of diffraction
(krr and kp) the sum of the amplitudes must be zero at
the boundary independently of the assumed input
directions of polarization, we arbitrarily chose the
convenient x and y directions indicated at II and P'

in Fig. 9 and resolved along them all the corresponding
amplitudes. Two separate evaluations are necessary:
one for an incident beam linearly polarized along y, and
subsequently a second for an incident beam polarized
along the x direction.

The incident amplitudes will be denoted by Do,"'
and Do„(').The boundary conditions given by Eqs.
(2.4a) and (2.4b), written in a manner applicable to the
case of an incident beam linearly polarized along
direction, are, for the incident beam

and for the diffracted beams.

(2.20)PD (~) —0 gD (~& —Q

m= II,P.

For brevity we will introduce the following symbols:

A = sin(P/2 —&d),

8=cos(P/2 —co),

C= sin(P/2),

D= cos(P/2). (2.21)

Q Dg (~)=Q P Dg (~)=Dg (o

the y Applying the boundary conditions expressed by
Eqs. (2.19) and (2.20) for the incident and diffracted

(2.19) beams we obtain:

ko. x component:

y component:

kp.. x component:

y component:

kII. x component:

y component:

0 PD (2) + &&lDg 3) DDg 4

D &i& + gDg& )

0— gD (3) + DDp(5)

+ ADg&3&

+ DDp(&&)

Q=D &i) +QDp&» —D &'&

0= —IlD & &+ DD~&'& —DD~&"

Q=DII ' + &Du"' —DJI"'

DDO(5) (a)

+ CL)g(4) + CDg(5) (b)

(c)
—CDp"' + CDp&" (d)

(e)
—CDH &4& —CDIRT"&. (f)

(2.22)

D~0) —Dp(] ) —D00) (2.23)

and from (2.18), in which n= 2, 3,

DII( )=Dp( ) ' Dp( )=ADO(~)
7

and

where

D (3)=bD (3). (') =Do(')

-2(1+2')- l

5+v
(2.24)

which may also be shown to be equal to 2A de6ned in
Eq. (2.21).

TABLE I. Magnitudes of vector amplitudes.

The relative magnitudes of the vector amplitudes
Dg, DJI, and Dp are known from the modal results, as
follows:

From the last line of Eqs. (2.13) we have for the
unique mode (n= 1)

From Eq. (2.15) we also have

Dir('&=Dg&" Dp&'&=Dg&'& Dp&'&=D~&'& (2.25)

Substitution of Eqs. (2.23), (2.24), and (2.25) into
Eqs. (2.22) yields six equations in six unknowns [five
Dg's plus DII "&j.The solution of these equations com-
pletes the 6rst half of the task. The entire procedure is
then repeated using the x components of the input
amplitude. The results for the unknowns are contained
in the following table with the incident amplitudes
Do (') and Do„("taken as unity.

The particular case which we are considering is that
of the 220 and 202 reQections from germanium with
copper characteristic radiation (1.542). For this case ~,
defined by the first of relations (2.18), is 6' 30'. Evaluat-
ing the various amplitudes in Table I, and utilizing the
relations (2.23), (2.24), and (2.25), yields Tables II
and III. (The minus signs in Table III indicate a
reversal of those directions shown in Fig. 9.) In addition
to the amplitudes, these tables also contain the squares

TABLE II. incident beam polarized along y.

Bao('):
IIaof2):
eao(»:
IIDO(4):
mao(»:
@a&«).

g input

0
6ca(A a+Bc)—6CD (A D+BC)

3 (AD+BC) (3AD+BC)—3 (AD+BC) (3AD+BC)
3(Aa+Bc) (3Aa —Bc)

y input

—6D(AD+BC)~—6D2(AD+BC)2—6D2 (AD+BC)—6Ba(A a+Bc)—6Ba(Aa+Bc}
0

1 0.333 0.111 0.333 O. 111
2 0.323 0.086 0.323 0.105
3 0,323 0.297
4 0.344 0.139 0.344 0.118
5 0.344 0 0
6 0 0 0 0

0.333 0.111
0.297 0.105
0.323

0 0
0.344 0,118

0 0

0.333
0.296

~ ~

0.257
0.118

0
Z = 1.004

Dp& & [Dg& &] D~& & [Dii& &]2 Dp& & [Dp&~&]2 Z [Dq& &]
a

a H = —18D(AD+BC)2.
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of the amplitudes, and the sums of the squares. Where
the curly brackets appear, the bracketed amplitudes
have first been vector-added and then squared since
these amplitudes belong to degenerate modes.

1 0 0
2 —0.209 0.138
3 0.209
4 —0.373 0.394
5 0.373J
6 0 0

0 0—0.209$ 0.116
0.192—0.373 0.116
0—0.152

0 0—0.192 0.116
0.209
0

0.373 0.116—0.152

0
0.370

~ ~ ~

0.510
0.116

~ ~ ~

Z =0.996

'4 For a more thorough analysis and explanation of this and
subsequent items pertinent to the two-Geld case see Ref. 5.

d. Comparisol of Three wi-th Two Field-Interlsities

In the ordinary situation of single diffraction,
assuming an unpolarized incident radiation, each of the
four modes of propagation receives an equal share of
the incident intensity. Since there are two amplitudes
per mode, each amplitude represents 12.5% of the total
intensity. "This is true independently of which diffrac-
tion is considered. In a three-field diffraction this is not
so and the distribution of intensities depends on the
third reciprocal lattice point. For the specific case above,
from Tables II and III, the distribution of intensity
among the beams becomes 43.4% for the ko beam and
28.3% for each of the two remaining beams k~ and ko.
In either the two- or the three-field case these intensity
values are those at the entrance surface of the crystal,
and since in general each mode of propagation has very
different absorption coeKcients, the exit intensities are
not simply proportionate. In two-field diffraction, of
the two sigma modes (a and b of Fig. 3) one has nodes
of the electric field in the atomic planes, while the other
has its antinodes in these planes, resulting in, respec-
tively, an anornalously low and high absorption. For
the remaining so called ~ modes, because neither has
true nulls, the absorption is such that in thick crystals
(wherein the Borrmann effect is considered) neither
survives a transmission. Thus, in an anomalous trans-
mission at most 25% of the incident intensity will

survive with half in each of the two directions.
In the three-field case above, the triply degenerate

mode (Fig. 6) is the identical, anomalously low-absorb-
ing two-field mode, containing only two nonzero
amplitudes, i.e., the third amplitude is zero in each.
These three therefore will transmit anomalously. Con-
sidering the modes 4, 5, and 6 of Tables II and III, we
find that in such a multi-Borrmann effect the anoma-
lously transmitted intensity is 50.05%, with unequal
shares of 11.7% for each reflected-diffracted beam and
26.65% for the forward-diffracted beams. From the
experimental point of view this means that in monitor-
ing the two beams (forward and reQected) in an anoma-
lous transmission, when the third reciprocal lattice

TABLE III. Incident beam polarized along x.

a Do" LDo"]' Do" EDa' ')' Dz' ' EDz' 'g'Z PD,"]'

(?02)

/
/

/
/
/

/
/

0 H (220)

(220)
~-
I

I

(b)
I
I

0

(4oo)

I

(
I

I

I

I-i (22o)

(224) (404)

/
/

/
/

/
(022) $ $(422)

. (c) /
/

/
/-~ (22O)

0 H

(cI)

(422)

/ y

/
/

/
I

~(220)

FIG. 10. Possible three-, four-, and six-Geld configurations.

point is brought onto the Ewald sphere, only a, small
change is expected in the reflected beam (from 12.5%
to 11.7%) while a large increase (from 12.5% to
26.7%) should take place in the forward beam.

In the Tables II and III, the incident beam intensity
is normalized to unity for each direction of polarization,
and it can be seen directly what differences there would
be in polarized experiments conforming to these direc-
tions. It is evident here that the simple splitting of
polarization directions in ordinary two-field diffraction
cannot be expected in multiple diffraction.

3. EXPERIMENTS

All of our experiments were of the anomalous trans-
mission type and were performed with an artificially
grown germanium crystal of good quality (about 1000
dislocations per cm'). The crystal was in the form of a
circular plate, 2 cm in diameter and about 0.5 mm
thick. In observing an ordinary Borrmann effect only
one of the four modes of propagation survives such a
crystal, whereas, in a three-field transmission we have
seen that at least one of six will, and in our special case,
due to the degeneracy, three survive. Thus anomalous
transmission provides us with means of studying a
lesser number of modes and thereby a more simplified
propagation. The 220 planes provide the strongest
anomalous transmission and for this reason were taken
as the primary diffracting planes, which were perpen-
dicular to the large face of the crystal. An axis of
rotation was made coincident with the normal to these
planes in order to effect the necessary conditions for
multiple diffraction. That is, the crystal could be
rotated about the primary reciprocal vector OII
(marked H in Fig. 10) joining the origin 0 and the 220
point of the reciprocal lattice. Once this was achieved,
the crystal could be rotated and simultaneous diffrac-
tions searched for. Simultaneous diffractions will occur
when additional reciprocal lattice points enter the
Ewald sphere. As shown in Fig. 10 there are four
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I'io. 11. Simul-
taneous anomalous
transmission in ger-
manium crystal. Un-
polarized incident
x-ray radiation.
Lower left and right
spots are, respec-
tively, 0 and H
beams. Upper spot,
the I' beam.

possibilities when strongest reflections simultaneous
with 220 should be observed (i.e. , in the sense of
anomalous transmission). We concentrated on the three-
field symmetrical case LFig. 10(a)] having worked out
the theory for that particular case.

As before, we will call the transmitted beam, the
primary reflected beam, and the additional beam, the
0, H, and I' beams, respectively. In searching for sirnul-
taneous diRraction we could monitor the reflected beam
H or the transmitted beam 0, and look for changes of
intensity. In our erst investigations, with unpolarized
filtered x rays of 1.54-A wavelength, the H beam was
monitored but no changes of intensity were observed.
When the 0 beam was monitored and the crystal
rotated about the OH vector, the entering of additional
lattice points onto the Ewald sphere was signalled by a
considerable increase of intensity of the 0 beam. In
some cases the increase was 100%. Photographic
exposure confirmed that in such cases the simultaneous
diffraction did indeed occur. We obtained photographs
of the three- and four-field cases, of which a reproduc-
tion of the three-field case is shown in Fig. 11.

A quantitative study of the three-field case was
attempted by us, and it was obvious that for this we
needed a monochromatic, polarized incident x-ray
beam. Using a special device" we were able to obtain
an x-ray beam which was both monochromatic and
could be polarized in any desired direction. We per-
formed several experiments with various directions of
polarization. One of them was the x direction indicated
in Fig. 9. In this ca,se all three fields (O,H, P) were
observed with the forward beam approximately three
times as intense as FI, and P about three quarters of H.
This result should be compared with Table III where
the intensities for the anomalously transmitting modes
are nearly in the ratio 3:1:1.

These and other results which we have obtained are
not in disagreement with our theoretical evaluations,
but neither can they serve as their verification because
of some uncertainty caused by the divergence of the
incident beam. Reduction of the divergence produced
in our case beams of such weak intensities that measure-
ments were doubtful.

» H. Cole, F. W. Chambers, and C. G. Wood, Rev. Sci. Instr.
33, 435 (1962).

Further experiments are needed to verify the theo-
retical predictions fully. The main feature of these
additional experiments will be a nondivergent, reason-
ably strong, and monochromatic incident x-ray beam.

4. DISCUSSION AND CONCLUSIONS

The general dynamical theory of x-ray diffraction
requires that for q fields propagated in the crystal, the
equations of the 2q dispersion sheets be obtained.
Practically all the information concerning the character-
istics of the x-ray wave field can be obtained from these
equations. In the ordinary case of two fields, the
dispersion sheets can be obtained in a relatively easy
manner. In cases when more than two fields are present
this becomes dificult and in general prohibitive. In
order to preserve the analytical solution, and yet obtain
the basic understanding of the multiple diffraction, we
utilized the diameter points of the dispersion sheets only.
The solution of the problem was provided 7vhen the normaL
modes of propagation were evaLuated This k.nowledge of
the normal modes of propagation contains the essential
and most important information for multiple diffraction.

In this paper we have treated only the highly sym-
metrical case of three fields in the germanium crystal.
All the modes of propagation have been evaluated in a
particular case, and it was established which of the
modes are anomalously transmitted. Out of the possible
six modes, only the three degenerate modes consisting
of pairs of dynamically coupled fields can be anoma-
lously transmitted.

In the two-field case, when anomalous transmission
is possible, a pair of dynamically coupled fields is
transmitted. We may thus say that in the three-field
case, two-field solutions are present, and these provide
the only modes which are anomalously transmitted.

Among the modes which we have determined, there
is a unique mode consisting of three dynamically
coupled fields, but this mode is anomalously absorbed.

As already stated, we have treated a special case of
three fields. The extension of the theory to higher
number of fields, and to asymmetric cases, has still to
be performed.

In conclusion it may be remarked that the inherent
beauty of the dynamical theory, so well illustrated in the
two-field case, is also presentwhen the number of fields is
higher. We have considered a noncoplanar three-field
case. In the two-field analysis the waves break up into
two independent states of polarization. Nothing similar
in the three-field analysis is possible, and as already
stated, the modes of propagation are the fundamental
quantities which provide the solution of the problem.
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