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In conclusion, it has been shown that a crude calcu-
lation based on the Green's function formalism of
pseudolocalized vibrations does yield two localized
vibrational frequencies which have the qualitative
features of the experimental results.

In the paper immediately following this one, we
discuss the electron-lattice coupling, which we then

use to analyze the details of the vibronic spectrum.
Finally, we indicate how, in principle, the results of
this analysis can be connected to the vibrational
problem discussed in this paper. We defer, until the
end of the next paper, a comparison of the results of
the present vibronic spectra and those observed in other
systems.
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Electron-lattice interaction is discussed for the case of rare-earth ions in the alkali halides. A selection rule
is derived to show that for the present defect electronic transitions can be coupled only to vibrational modes
of A I symmetry. Under the assumption of electrostatic coupling between the electron and the lattice vibra-
tions, a coupling function is derived which is proportional to the projection of the held of the electron under-
going a transition on to the eigenvectors of the vibrations. It is further shown that this coupling function
can be determined from the details of the structural form of the vibronic spectra. A number of other features
of the vibronic spectra are accounted for through the properties of Franck-Condon integrals.

INTRODUCTION

' 'N this paper, which is the third in the series on rare-
- - earth ions in the alkali halides, we deal with the
coupling of electronic transitions to the pseudolocalized
lattice vibrations analyzed in the second paper in the
series. LThe first paper (marked I) has appeared pre-
viously' and the second (marked II) immediately
precedes this one. ']

We show that selection rules exist which govern the
coupling of electronic transitions to lattice vibrations.
For the important case of an electrostatic coupling a
more explicit discussion of the electron-lattice inter-
action is given. It is shown that for a center with inver-
sion symmetry the coupling has no dipolar term; thus
for ions whose electronic wave functions do not overlap
the nearest la, ttice neighbors (e.g. , rare-earth (R.E.)
ions) the coupling can at best be quadrupolic. This
restricted coupling makes it possible to obtain very
sharp vibronic spectral lines. It a,iso makes it possible to
define a coupling function, which, in principle, can be
obtained experimentally from the structural form of the
vibronic line spectra. Finally, the details of the spectra
are accounted for in terms of the properties of Franck-
Condon integrals.

*Present address: Institut fur Theoretische und Angewandte
Physik der Technische Hochschule, Stuttgart, Germany.' W. E. Bron and W. R. Heller, Phys. Rev. 136, A1433 (1964).

2 M. Wagner and W. E. Bron, preceding paper, Phys. Rev. 139,
A223 (1965).

EXPERIMENTAL RESULTS

The experimental methods have already been de-
scribed. We refer the reader to Refs. 1 and 2.

Many details of the vibronic spectra have already
been given in Ref. 2. Figure 1 shows a representative
vibronic spectra as observed on the lowest energy
emission band in Yb'+:KI at 10'K. This figure shows
the general result, that any one vibronic series does not
consist of a single set of equally spaced lines. Each
major spacing contains a number of lines with a minor
interval which is again approximately constant. Here,
we adopt the notation given in Ref. 2, and assign co1 to
the frequency difference in the major interval, and co2 to
that of the minor interval. Similarly, m(0, 1,2, )
refers to an index which counts the lines of the major
interval and N(0, 1,2, ) to that of the minor interval.
The minor interval is specifically enumerated in Fig. 1
for m=5 and is easily discernible for other m values.
This figure also shows the general result that the sharp-
line vibronic spectra is found on the high-energy side of
the broad emission bands. The converse is observed on
absorption bands where the sharp vibronic lines are
observed to be displaced asymmetrically against the
low-energy side of the broad-band background.

Measurements have been made of the integrated
intensities of the lines of the main (a&i) vibronic series
observed in the emission spectra of the Eu'+-doped
alkali halides. Table I lists the lines of the lowest energy
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PzG. 1. Major and minor vibronic intervals observed on the lowest energy emission band of Yb'+: KI at 10'K. Shown as a dashed line
is the graphically obtained background intensity used to determine the integrated intensities and half-widths of the vibronic lines.

TABLE I.Normalized integrated intensities of the ~& vibronic series
on the lowest energy emission band of Eu'+-doped alkali halides.

Sample

Eu'+'NaCl

v (cm-')

23 674
465
261
080

Normalized
integrated
intensities

1.0
1.3
0.5
0.3

Eu'+: KCl 24 342
146

23 964
788

1.0
1.3
0.7
0.3

Eu'+: RbCl 24 536
352
170

23 987

1.0
1.5
1.2
0.5

emission band and their corresponding integrated inten-
sities normalized to the intensity of the m=0 line. The
integrated intensity and the half-widths of the lines of
the minor (~2) vibronic series were also determined.
Those are listed in Table II for the lines m =0, n = 1, 2, 3,
observed on the lowest energy absorption band of
Sm'+:KC1. The half-width of the lines of a major (~q)
vibronic series could not be determined. The half-widths

of the lines of these series, which are observed to be
inherently narrower than those of the minor vibronic
series, were distorted through instrument broadening.

In determining the integrated intensities and half-
widths given in Tables I and II, the following method
was adopted to subtract the broad background. As will
be shown in a later section of the discussion, the broad
background originates primarily from lattice vibrations
of 2& symmetry which extend over a frequency range
which is large compared to those which give rise to the
sharp vibronic lines. Examples of such broad frequency
distributions can be seen in Fig. 8 of Ref. 2 near co equal
2 and 3)&10 " sec '. Since, as will also be shown, the
sharp vibronic lines should be asymmetrically displaced
against the high-energy side of the broad background in
the emission spectra (and conversely in the absorption
spectra) the low-energy side is essentially representative
of the broad background. We have graphically reQected
the low-energy side to the high-energy side, under the
reasonable assumption that the broad background is
symmetric about the maximum of the band. We illus-
trate this procedure with the dashed line in Fig. 1. We
estimate that this approximation of the background
leads to errors in the integrated intensities and in the
half-width which do not exceed 10 to 15%.

Eu'+: KBr

Eu'+: KI

24 333
225
119
015

23 906
804

23 750
671
593
514
435
356
277
199
120
041

1.0
1.9
1.9
0.7
0.3
0.2

1.0
6.7

11.7
21.7
23.3
28.3
22.3
18.3
10.0
5.0

DISCUSSION

In the discussion, which is to follow, we investigate
in Sec. I the symmetry properties of electron-lattice

m=o
) (i.)
6366.7
6356.5
6344.4

v (cm-')

15 707
15 732
15 762

Half-width
(cm ')

7&2
18~2
26~4

TABLE II. Half-widths of spectral lines of a vibronic series with
co2 frequency as observed in the absorption spectrum of Sm'+: KCl
at 10'K.
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coupling. This is done to determine the selection rule,
already indicated in Ref. 2, that only vibrational modes
of A & symmetry can be coupled to electronic transitions.
In Sec. II, we investigate, in some detail, the case of
electrostatic coupling, and indicate how this leads to an
electron-lattice coupling function which can, in prin-
ciple, be determined from the integrated intensities of
the lines of the vibronic spectra. The latter, together
with other features of the structural form of the
vibronic spectra, is discussed in Sec. III.

where
q'(44) —

q (~) =n (~),

mpi &ym pm & ~ (lb)

We continue the notation established in Ref. 2.
Accordingly, m is the position of the mth unit cell in
the Bravais lattice, p the position of the ions within the
cell, i(i= 1, 2, 3) the ith Cartesian component, 44 is the
index for the vibrational modes of the disturbed lattice,
and |'„4(44) are the orthonormal eigenvectors of Eq. (11)
in Ref. 2.

There is also a second-order coupling due to the
change in the spring constants during the electronic
transition. Therefore the eigensolutions of Eq. (8) of
Ref. 2 are different for the two electronic states and
there is not even an exact one-to-one correspondence
between single eigenvectors of the two sets, i.e., there
is no exact diagonal coupling. But, as will be shown by
one of us (M.W.),4 for a strongly localized disturbance
there is an approximate one-to-one correspondence
between single eigenvectors for the pseudolocalized and
localized modes as well as for the unlocalized ones. One
finally arrives at the very helpful concept that the
phonon modes are changed only in their eqlilibrium
position, whereas the local modes change also their fre-
quency during the transition. Drastic deviations from
this approximation are not to be expected in real
crystals. For alkali halide host lattices we may even

H. A. Jahn and K. Teller, Proc. Roy. Soc. (London) A161, 220
(&937).

4 M. Wagner (to be published).

I. Coupling Selection Rules

It is well known from the theory of the jahn-Teller'
effect for molecules that an electronic state of given
symmetry can only couple to selected modes which

obey certain symmetry requirements. Naturally, this is
also true for the electron-lattice coupling.

Here we are concerned with selection rules which
govern the coupling of electronic transitions between
states of opposite parity to lattice vibrations. As will be
shown below, a measure for the 6rst-order coupling of
an electronic transition to lattice vibrations is given by
the displacement n„' of the lattice equilibrium. Hence
one has to project 0.„' onto the orthonormal set of
eigenvectors l„' )see Eq. (11) of Ref. 2] to get the
displacement of the single normal coordinates, q(14)

RU (x,X)= U (x,X) . (2a)

The interaction potential U(x,X) can be developed
into a power series in X

U(x,X)= U(x)+Q „,U„'(x)X;

+Pm 444nyj Up@,mn X~Xj+ ' ' '
~ (3)

If we chose the normal coordinates q(44, s„) to belong to
an irreducible representation ~ of V (s„denotes the
different degenerate coordinate within the representa-
tion 44) then we may rewrite (3)

U(x,X)= U(x)+Q. ..„U.„,(x)q(44,s„)+ . (4)

which we have carried out to only the linear term, since
for the case under study we are neglecting second-order
coupling. Because of the harmonic approximation in the
nuclear part of the Hamiltonian we need, at any rate,
not go beyond the second order. From the fundamental
theorem of algebra we have that (2a) must be valid for
each power in q itself; thus U(x) transforms according
to the unit representation, whereas U„,„(x) must be a
basis for the representation ~ in x space. Similar, al-
though more complicated, rules are easily derived for
the higher terms in (4).

Employing the zero-order Born-Oppenheimer ap-
proximation' the vibrational equation reads

{H„„.)(X)+(P„'(x)
~
U(x,X) ~P„'(x))}4 "(X)

=E„„e"(X), (5)

where lt „e(x) is the zero-order Born-Oppenheimer wave
function of the electron in the state n and C "(X) the
nuclear wave function for the state ~n. The effect of the
linear potential in (5) is thus

(6)

and it is this term which defines the equilibrium of the
lattice oscillators for the electronic state n. (The

5 M. Born and J. R. Oppenheimer, Ann. Physik. 84, 457 (1927).

neglect any second-order coupling since, as is shown in
Table III, Ref. 2, absorption and emission exhibit
essentially the same vibrational frequencies.

The total Hamiltonian of the electron-lattice system is

H4 ——H.i(x)+H„„,i(X)+U(x,X), (2)

where H, &, the purely electronic part, is a function of the
electron coordinates; H„„,j, the purely nuclear part, is
a function of the nuclear coordinates; and U is the total
interaction potential which is a function of all electron
and nuclear coordinates. In the present context, x, X are
to stand for Cartesian coordinates. The total Hamil-
tonian H& must be invariant under any operation E. of
the point group of the defect, i.e., under any operation
of the group of V /the matrix of the disturbance, see
Eq. (9) of Ref. 2]. Since H.~+H„„,~ is itself invariant,
we must have that
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similar term arising from the term which is second order
in q„defines the effect of the electronic state on the
frequency of the oscillator. ) Now, as is well-known from
standard group theory, ' the matrix elements (e I

U, ,„ I ri&

do not vanish only if the symmetric product of the
irreducible representation iP„(x) with itself contains the
irreducible represents, tion U„,,„(x). Thus we have the
coupHeg selectior rule:

The electronic wave function of a vibronic system
is coupled only to those normal coordinates q„,,„
whose representation is contained in the symmetric
product [P„'&(f„o].

This rule has its most simple form, if the electronic
function is nondegenerate. In this case the direct
product is the unit representation, whence all non-
degenerate electronic wave functions are coupled only
to those modes which leave the symmetry of the defect
unchanged. Consequently, for a defect whose symmetry
group has only one-dimensional irreducible representa-
tions, all electronic states can couple only to the modes
of the unit representation, and if one of them has a
large local amplitude, all P ' are mainly coupled to this
mode. The divalent rare-earth ions in alkali halides, for
which the symmetry is C2„'' belong to this class of
defects. Therefore all electronic states of this defect
couple to only A~ modes.

In the case of degenerate electronic functions the
symmetric product Q „)&P j contains in general, apart
from the unit representation, also other representations.
Because there is now also a coupling to modes which
destroy the initial symmetry, the electronic levels will
not remain degenerate and a Jahn-Teller splitting of
the states can be expected. It is because of this compli-
cation that defects of lower symmetry are more easily
tractable than those of a higher one.

We shall confine ourselves, therefore, to defects with
nondegenerate electronic states, i.e., with only one-
dimensional irreducible representations. It is to be
emphasized, however, that this restriction does not
apply to those parts of this study where only the
vibrational problem is considered.

It is also to be emphasized that the above selection
rules are only valid for the zero-order term in the series
(written in shorthand notation)

It is not possible to give such simple selection rules
if the electronic wave function depends strongly on the
vibrational coordinates X.

II. The Coupling Functions

All vibronic bands with a sequence of sharp lines
above (or below) the zero-phonon line can be considered
to arise from transitions which are localized at foreign

6 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon Press, Ltd. , London, 1958), p. 343 G.

ions in the crystal. This is especially so for the lantha-
nide and actinide ions, whose electronic wave functions
involved in the transition can be given by those of the
free ion, rearranged properly in the crystal field. This is
certainly true for transitions within the inner f orbitals
of the lanthanides and actinides, which have a splitting,
due to the static crystal field, of the order of 100 to
1000 cm ', whereas the ionization potential for an
f electron is of the order of at least 10' cm '.' Since even
for (the lowest) d orbitals the crystal-field splitting is
only increased by one order of magnitude, we may sup-
pose that the conclusion drawn here for the f electron
holds for the 5d electron to a good approximation.

We may assume, therefore, that the zero-order Born-
Oppenheimer approximation for the electronic wave
functions is well justified to a high degree of accuracy.
This approximation seems to hold even for some cases
when vibronic structure is no longer present. For
instance, in the system KC1:Tl+ even the wave func-
tions of the electrons in the outer shell of Tl+ (6s' and
6s6p) can be taken as the ionic ones, ' although there is
already some overlapping with the nearest neighbors.

Naturally, the assumption that the electronic wave
functions are given by the static crystal-6eld calcula-
tions~ is only possible for nondegenerate levels. As has
already been mentioned the defect in (R.E.)-doped
alkali halides has C2„point symmetry and therefore has
only one-dimensional states. We defer the complication
of degenerate states for a later study.

With this assumption the practical calculation of any
given vibronic band is "reduced" firstly to the calcula-
tion of the quantity

which gives the displacement o,, of the oscillator equilib-
rium between the initial (i) and final (f) states and
secondly of the quantity

which gives the frequency change. (Here U„„refers to
the second-order coupling coeflicient. ) With these two
quantities the vibronic band is readily calculated, as will
be shown in Sec. III of the discussion.

But, of course, U„and U„, can only be defined if one
knows the Cartesian coupling coef5cients U„'(x) and
U„„,'J(x) and the solution of the disturbed lattice
dynamics. The latter has already been outlined in
Ref. 2. But there is no general method of handling
the Cartesian coupling U(x,X) in the Schrodinger
equation. The procedure depends on the number of
electrons which are not included explicitly since it is, of
course, impossible to make an exact calculation. It
would unduly extend our study to investigate the differ-

D. S. McClure, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1959), Vol. 9,
p. 401.

8 J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963),' F. K. Williams, J. Chem. Phys. 19, 457 (1951).
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U (x,X)= pe' P P
mv ~ ~r —R

(10)

ent possibilities of various approximation, which thern-
selves depend heavily on the peculiarities of the
particular problem. For ionic crystals the simplest
approximation is based on a modi6ed point-ion model'0
which takes into account the polarizability of the
lattice ions.

We shall outline this approximation in somewhat
more detail. Suppose the impurity ion, which is located
at the origin, has s electrons involved in the transition.
These electrons located at r, have a Coulombic inter-
action with the lattice point charges Z & at R &, then

Z

grXPi). ) We have thus established directly the sym-
metry property of the matrix (f ~

U &~ f) in the special
case of a Coulombic interaction.

We assume also that the repulsion potential of the
ions is not changed appreciably during an electronic
transition. This should be so since both the initial and
final electronic state are localized strongly at the foreign
atom.

The integral (13) has interesting symmetry aspects.
First, we may decompose F' &r(R) into a sum of multi-
pole 6elds.

R p&~& 3(p&» R)R
F«&(R)= —e—— +

R' R3 R'
where

where p is an effective dielectric constant to account for
the polarization of the ions. If the electrons, which are
involved in the transition, have much higher average
velocity than those of the outer ionic shells of the sur-
rounding lattice (which determine essentially the
polarizability), we can employ a second adiabatic
approximation" and p takes the value

where $„' are Cartesian nuclear displacements from
the equilibrium positions X("„',which latter we can
choose in the most suitable way, e.g., we may choose
them as the equilibrium positions of the electronic
ground state. In the vibrational equation of motion we
have then a linear term of the form

P „eZ &&„'F,(R &),

where the integral

(x,'—Rio&')
F;&~'(R)= ega Q —lt r*dx,

S g6—

(12)

(13)

is just the ith component of the electric 6eld of the
charge distribution ~f~~'. F&~&(R) is a basis of the unit
representation in R space if fr is nondegenerate. (Other-
wise it belongs to the symmetric product representation

» B. S. Gourary and F. Adrian, in Solid State I'hysics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 10, p. 210."M. Wagner, Z. Naturforsch. 15a, 889 (1960).

(e„=refraction index).
In (10) we use the obvious notation

r, = {x„y„s,), R= {X,I',Z};
Eq. (10) can be expanded about the equilibrium posi-
tions of the nuclei,

Z p

U(x,X)-e' Q
r,—

(13b)

If the electric wave functions Pr are strongly localized
well within the nearest-neighbor surroundings, the
decomposition (13a) is already valid for the nearest
neighbors. From (8) through (12) we see that the
Cartesian displacement during the electronic transition
is proportional to the difference

&(gi) ice peZ u/P, (f) (R(o) s) F,.(g) (R(ol v)]]„ i (14a)

where we have assumed that the initial state (i) is the
electronic ground state (g).

Inserting (13a) into (14) the monopole term cancels,
and the coupling is as localized as a dipolic field. But in
many cases its localization is even stronger. If the
defect has inversion symmetry, the symmetric product
is an even representation, whereas the dipole operator r,
is odd, whence (13b) is zero. Therefore, the first non-
vanishing term in (14a) is of quadrupolic localization
(i.e., it is localized with 1/R ).

In our case of (R.E.)'+ ions in alkali halide host
lattices the symmetry of the defect is C2, . But the
parent symmetry is O~ and within an assumed restricted
crystal-field approximation the breakdown of the 0&
symmetry does not mix different representations of the
OI, symmetry. "Hence we can to a good approximation
ascribe a "parity" to each electronic state in C2„sym-
rnetry as well, although there is no inversion symmetry,
and consequently the dipole expectation value (16)
becomes negligibly small.

Thus for ions whose wave functions are strongly
localized, the coupling function Ii,&~)R&') I' is localized
with 1/R . Writing (14a) in normal coordinates,

pe
cr (gf) (ii) — P „,. Z s

07@

&&LF""(R'" ")—F'"'(R"' ")j{() ' (14b)
~2 This is, of course, only true if we restrict the crystal-field ap-

proximation to a superposition of electronic wave functions of the
same configuration, i.e., of the same parity. Naturally there are
also small admixtures from other orbitals, whence the dipole
matrix element (16) does not exactly vanish in C2, symmetry.
Admixtures from foreign configurations are usually neglected.
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where i'(a) „' are the orthonormal eigenvectors defined
in Eq. (11) of Ref. 2. It is clear that F projects most
strongly on those eigenvectors i „which have a large local
amplitude, i.e., onto pseudolocalized (or truly localized)
modes.

In the region of a strong "scattering" resonance, i.e.,
where the resonance denominator $1+@;)of Eq. (18)
of Ref. 2 becomes very small, the width of the resonance
peak spans only a small frequency interval. This can
be seen to be the case for the two resonance peaks
shown in Fig. 8 of Ref. 2. From Eq. (14b) it is then
evident that, if a strongly localized electronic transition
is coupled to vibrations (of Ai character) near a,

"scattering" resonance, the coupling extends only over
a limited frequency range. We may suspect, therefore,
that the resultant vibronic spectral lines are sharp. On
the other hand, if the wave function of the transition
electron overlaps the nearest-neighbor ions, the mono-
pole term in (14b) does not cancel, i.e., F '~& —F 'g& may
even increase before starting to decrease away from the
center. This is the case for the Ii center in the alkali
halides, where the electron is coupled to a frequency
range which is extended enough to exhibit only a broad
absorption band with no vibrational structure.

The above discussion is limited to the case of first-
order coupling. It is possible to treat in a similar way
second-order changes, i.e., the changes in the oscillator
frequencies, but as experimental evidence shows that
these are negligible, we do not write down the respective
formula. We turn instead our attention to the details of
the vibronic spectra and show that, in principle, the
displacement of the equilibrium position of the oscillator
~ between the ground electronic state and the 6nal
state n'~ can be obtained from the spectra.

III. STRUCTURE OF VIBRONIC SPECTRA

The structural form of vibronic spectra has been
analyzed by a number of investigators. "For the present
case of sharp-line vibronic series we use the method
recently reported by Wagner. "In general, the structural
form of the vibronic spectral lines can be accounted for
in detail by the properties of Franck-Condon integrals

(15)

P-(x) = (1/~!)[P(~)],
where p(s) is a, coupling function equal to

p(~) =2P s& &/(1+p &)&

(17)

(18)

The square root of p (~) is equal to Is (P„,y„) except for
a constant factor.

It has already been pointed out that electronic transi-
tions, which are coupled to pseudolocalized vibrations,
must be considered as coupled not to one oscillator but
to a distribution of lattice oscillators. " For a general
distribution of oscillators, the functional form of the
mth line of the resulting vibronic series can be
expressed as

1
or ~ o - g mÃ

+or ~1,~2 & m„r

where nz=Pm„defines the individual members of the
vibronic series, and the summation has the additional
restriction that co(Qm„&o„(te+Da&, since f (co) is the
probability per unit frequency.

The integrated. intensity of the mth line (as nor-
malized to the zero-quantum line) is given by

(20)

follows is to compare the structural form of the experi-
mentally observed vibronic lines with that predicted by
Eq. (15) and to extract values of n„ from this data.
Therefore, only the results of (15) will be stated; the
reader is referred to Wagner's paper" for the pertinent
derivations. The integration (15) can be written in terms
of two parameters P„and y„,

P = tea /re~ )1 'Y =Oix Crx /h~x, (16)

which are measures of the change in vibrational fre-
quency or„, and the change in the equilibrium displace-
ment. Since the present experiments were carried out
near 10'K, absorption and emission transitions can be
expected to originate from states with m=0. Also, since
the vibrational frequencies observed in absorption
nearly equal those observed in emission, P' is approxi-
mately equal to unity. For P'=1 the probability of a
vibrational transition from m=0 to m =m is

where C (q„) are the eigenfunctions of the lattice
oscillator sc, m and m' refer to the quantum number
associated with, respectively, the initial and the final
state of the oscillator, and O.„ is the equilibrium displace-
ment in the coordinate q„due to the electronic transi-
tion. LSee Eqs. (1a) and (1b).) The purpose of what

"See, for example, M. Lax, J. Chem. Phys. 20, 1752 I,'1952);
R. Kubo and Y.Toyosawa, Progr. Theoret. Phys. (Kyoto) 13, 160
(1955); K. K. Rebane and V. V. Kkizhnyakov, Opt. i Spektro-
skopiya 14, 362 (1963) LEnglish transl. : Opt. Spectry. (USSR)
14, 193 (1963)j."M. Wagner, J. Chem. Phys. 41, 3939 (1965).

where E' is an effective coupling function for the distri-
bution of oscillators. The position of the center of a line
is given by

co =mXt P, P(lr)co„/P) (21)

in agreement with the result that within the harmonic
approximation vibronic lines are equally spaced.

' An alternative viewpoint, recently given by Wagner, considers
pseudolocalized vibrations in terms of metastable states of a
localized oscillator. The structural form of vibronic spectra is,
however, more easily discussed in terms of sums over a distribution
of lattice oscillators. See M. Wagner, Phys. Rev. 136, 8562 (1964).
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TABLE III. Normalized integrated intensities of vibronic lines
on lowest energy emission band of Eu'+: KI.

(cm ')

23 750
671
593
514
435
356
277
199
120
041

Experi- Calculated
mental for P=5

1.0
6.7

11.7
21.7
23.3
28.3
22.3
18.3
10.0
5.0

1.0
5.0

12.5
20.8
26.0
26.0
21.8
15.5
9.7
5.4

E p(~)~
Pp

d(p~')
(po' —o~p')'+ I'/4

(22)

and if the resonance is sharp, i.e., I'/2((~po, then the
functional form of the lines can be written in an approxi-
mate form

-2&P —m I m/~o

The effective coupling function can be evaluated from
the experimental integrated intensities and Eq. (20).
Table III shows, for the representative case of the
emission to the ground state of Eu2+:KI, that the
normalized integrated intensities (F ) of a large number
of lines of a given vibronic set can be fitted by a single
value of P. Table IV lists the values of P as determined
from the integrated intensities of the lines of the emis-
sion data of Eu'+ in the various alkali halides as given in
Table I.

It follows from Eq. (19) that the functional form of
the first phonon line (m=1) gives the frequency dis-
tribution of P. For certain specific frequency distribu-
tions it is possible to determine, in addition, an
analytical form for the half-widths of the vibronic lines.
For example, a Lorentzian distribution for which

X (~—~o —~o )+
I'lm I'2g - 2 —1

-2&p' 2+o"
(26)

where m, pp, and the subscript 1 refer to the first set of
oscillators, and e, qp, and the subscript 2 to the second
set. cop' and ~p" are the centers of the distributions

P„p (~) and P, q(~). If the lines of the second. distribu-
tion are sufBciently narrow and if coo"(cop', then one
observes in addition to the lines of the first set defined by

Wagner" of the general problem of scattering resonance
and metastable states. Wagner's result depends on the
postulate that the amplitude of the local mode decays
exponentially with time. The present experimental re-
sult would appear to support this postulate. The reader
is referred to the paper by Wagner for a more detailed
treatment of this point.

Since the distribution of frequencies P„p(~) can be
determined experimentally from the 6rst phonon line,
the coupling function p(~) for the individual oscillators
in the distribution can, in principle, also be determined.
Then the equilibrium displacements of the individual
oscillators n„can be obtained through Eqs. (16) and
(18).Finally, a comparison of the experimentally deter-
mined O,„can be made with those obtained through
Eq. (14a). The latter can be evaluated, in principle, if
the wave functions of the electronic states are known
together with the values of the vibrational eigenvectors
obtained from the formalism of Ref. 2. Thus Eq. (14a)
defines the link between the details of the vibronic
spectra and the results of the vibrational analysis.

It is possible to account for a number of other features
of the vibronic spectra. For example, if the electronic
transition is coupled to a second set of oscillators with a
Lorentzian distribution Q„q(~), then the functional
form of the lines of the vibronic spectra becomes

2wPo- 2xqo " I' m I'2e
f-"'(~)=

27/'8$ tR ~ — Fl — F2 COp GDp

f-'" (~)= — (23)
2s m! I' (~—mpop)'+ (I'„/2(go)' f,p(a&) m=0, 1, 2. (27)

and the half-width H of a Lorentzian line is given by
a second set of lines, between the lines of the first set,
defined by

H &~&=m&&1'/pip. (24) f„„((o) I=1, 2, 3 (28)

In a similar manner the half-width of a Gaussian dis-
tribution may be shown to be

the number of lines observable in the n series depends
on cop"/cvp' and the inherent half-width of the second
distribution. The formulation (26) therefore accounts

H„&~& ~ Qm. (25)

The observed half-widths as given in Table II of this
paper progress nearly proportionally to m, i.e., as would
be expected from a Lorentzian distribution. A Lorentzian
distribution can in fact be expected on theoretical
grounds. In the vicinity of resonance the frequency dis-
tribution of the eigenvectors of Eq. (17) of Ref. 2 can
be approximated rather well by a Lorentzian distribu-
tion. This has been shown in the recent treatment by

Sample

Eu'+' NaCl
Eu'+: KCl
Eu'+' RbCl
Eu~ o Br
Eu~+: KI

1.1
1.1
1.5
1.9
5.0

TABLE IV. ERective coupling function P for coj vibronic series on
the lowest energy emission band of Eu'+-doped alkali halides.
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for the observation of the ~2 frequency as a minor
vibrational interval in the vibronic spectra.

The electronic transition can also be coupled to a
frequency distribution which is broad. Such distribu-
tions can be understood from those parts of the solutions
of the vibrational problem that are not localized, e.g. ,
those solutions for which the resona, nce is not sharp (see
Fig. 8, Ref. 2). If a coupling exists to a narrow distribu-
tion P„p(s) and to a broad distribution P„q(s) such
that the lines of the broad series overlap strongly, then
the combined spectrum contains the sharp series of lines
of Eq. (21) )and that of Eq. (28) if ws is also present]
superimposed on a 'continuous background. This is so,
providing co„ is considerably smaller than the frequency
extent of the continuous background. The center of the
continuous background is given by

COCO ~g
=p g p (K)Ol @+C Q g g (K)M g i (29)

where C is a constant equal to

exp)+. q(x)j
C=

(exp(P, q(x) j)—1
(30)

P„p(x)~„ is just the center of the sequence f s From.
(29) it is obvious, therefore, that for small ~„ the set

f s is displaced asymmetrically against the low-energy
side of the continuous background of absorption bands.
This can be seen to hold true in Fig. 1 of Ref. 2. The
reverse is predicted in the emission spectra, as is indeed
observable in Figs. 2—4 of Ref. 2.

SUMMARY AND CONCLUSIONS

In this paper we have shown that electronic transi-
tions between one-dimensional states can be coupled
only to normal mode vibrations of the unit representa-
tion, i.e., for C2, symmetry only to A& modes. From an
analysis of the special case of an electron-lattice coupling
through electrostatic interaction, we have defined a
coupling function which is proportional to the projection
of the field of the electron, undergoing the transition,
onto the eigenvectors of the lattice vibrations. We have
also shown that the coupling function can be determined
experimentally from the details of the functional form
of the vibronic spectra, and further, that a number of
other features of the vibronic spectra can be accounted
for in terms of the properties of Franck-Condon
integrals.

Some concluding remarks are perhaps in order on a
comparison of the vibronic spectra observed in the
present work and those observed by others. For
example, in a recent case" one observes a coupling of
electronic transitions not to the states of a localized
vibrational oscillator as observed here, but to certain
lattice phonons. In some cases both localized and lattice
vibrations appear in the vibronic spectra. For example,

"I.Richman, R. A. Satten, and F.. Y. Wong, J. Chem. Phys.
39, 1833 (1963).

in Sm'+: KCl we find pseudolocalized vibrations coupled
to 4fs~4f'Sd transitions. However, we observe ap-
parent coupling oi lattice vibrations to 4f' —+ 4f' tran-
sitions (these latter results have not been included in
the present paper). Loudon'r has recently shown from
symmetry arguments that certain simple defects and
phonon symmetries could lead to the simultaneous
observation of both types of vibrations.

Without, however, going into the details of the group
theoretic properties, it is possible to make a number of
preliminary observations as to the factors which govern
the various types of vibrational coupling.

The general problem of electron-lattice coupling can
be characterized by the strength of the dynamical
lattice distortion (change in mass or spring constants,
or both) and the strength of the coupling of the elec-
tronic transition to the lattice vibrations. Using these
parameters we may distinguish four extreme cases.

A. Small Lattice Distortion, Weak Electron-
Lattice Coupling

An example of such a system is Pr'+ in a LaC13
crystal. "Here, because the distortion is so small, one
can apply first-order perturbation theory, which yields
the restriction to one-phonon processes and vibronic
selection rules to special points of the Brillouin zone. '
The spectrum consists of a strong electronic line ("zero-
phonon line" ) and a vibronic line for each involved
frequency. "

B. Large Lattice Distortion, Strong Coupling

This is the case treated in detail in this and the
preceding paper. Other examples are rare-earth ions in
certain alkaline-earth halides which exhibit line struc-
ture, and also the E center with no line structure in its
broad band. The number of the involved lattice quanta
is often of the order of ].0.

C. Small Lattice Distortion, Strong
Electron-Lattice Coupling

Because of the localized nature of the coupling and
the nonlocalized properties of phonons, a broad fre-
quency region is involved and the first "phonon line"
should be a reproduction of those parts of the frequency
distribution of the ideal lattice which from symmetry
considerations can be coupled to the electronic transi-
tion. Apparently the spectra of Sm'+: CaF2 reported by
Wood and Kaiser'9 belong to this class. The exciton
bands of the alkali halides and the localized excitons
of halogen ions in alkali halides2' appear to be other
examples.

i7 R. Loudon, Proc. Phys. Soc. (London) 84, 379 (1964)."R.A. Satten, J. Chem. Phys. 40, 1200 (1964)."D.. L. Wood and W. Kaiser, Phys. Rev. 126, 2079 (1962).
"H. Haken, Fortschr. Physik 6, 271 (1958).
si H. Mahr, Phys. Rev. 125, 1510 (1962).
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D. Large Lattice Distortion, Weak Coupling

Here the phonon solutions are strongly altered near
the defect and there is the possibility of localized modes
with a sharp frequency outside the bands and of scatter-
ing resonances with strongly increased local amplitudes.
Thus, electronic transitions of proper symmetry types
can couple to narrow frequency regions. But because of
the weak coupling we may expect only a limited line
structure above the zero-phonon line.

On the other hand, some cases such as M and E
centers ' and NO2 molecules" in alkali halides, as well
as the 4f"~4f" transitions of Sm'+ in the alkali halides

"D.B. Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. Wolf,
Phys. Rev. Letters 11, 275 (1963).

"T.Timusk and W. Staude, Phys. Rev. Letters 13, 373 (1964).

are not as easily classified. These defects are complex
and should cause considerable local distortion. They
should belong to either the case B or D. Yet the vibronic
structures in parts of their spectra appear to represent
coupling to certain singular points in the phonon dis-
tribution. It is possible that in these cases coupling to
localized vibrations is forbidden by symmetry considera-
tions. Ke intend to subject these cases to further study.
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The pulsed-saturation method at 8.9 kMc/sec was used to measure the spin-lattice relaxation rate Ti '
for Eu'+, Ho'+, and Tm'+ in CaF2, for Yb'+ in yttrium gallium garnet, yttrium aluminum garnet, and
lutetium gallium garnet; for Nd'+ in yttrium gallium garnet and yttrium aluminum garnet; and for Sm'+ in
lanthanum ethyl sulphate at low temperatures. The experimental data in most cases are in satisfactory
agreement with the theoretical predictions based on the combined Van Vleck —Orbach theory. Besides the
expected conventional processes, a process T1 'c(:T' was observed for Eu'+ in CaF2 in the temperature
range 15'K&30'K. Furthermore, a pronounced anisotropy in T1 (a factor ~6) for Sm'+ in lanthanum ethyl
sulphate was found both experimentally and theoretically.

I. INTRODUCTION

''T has been shown by Heitler and Teller, ' Fierz, '
~ ~ Kronig, ' Van Vleck4 and others that the dominant
spin-lattice interaction is through the thermal modula-
tion of the Stark 6eld. According to them the energy
transfer between the spin system and the lattice vibra-
tion gives rise to two processes: (1) a one-phonon proc-
ess in which a phonon is absorbed or emitted accom-
panied by a quantum jump of a spin between two
Zeeman levels; (2) a two-phonon process in which a
phonon is scattered by a spin and another phonon with
diGerent energy is emitted accompanied by a quantum
jump of spin. Theoretically, it is found that the former
predominates at low temperatures.

*This work is supported by NONR 1866(16)73764.
)Present address: Research Institute for Advanced Studies,

Baltimore, Maryland.' W. Heitler and E. Teller, Proc. Roy. Soc. (London) A155, 629
(1936).' M. Fierz, Physica 5, 433 (1938).' R. de L. Kronig, Physica 6, 33 (1939).

4 J. H. Van Vleck, Phys. Rev. 57, 426 (1940).

Before 1961, no detailed theory for the rare earths
had existed. This problem was first attacked by Orbach'
who uses a simple orbit-lattice interaction to estimate
the spin-lattice relaxation time.

Since the divalent rare-earth ion in CaF2 is surrounded
by eight F ions sitting at the eight corners of a cube and
the trivalent rare-earth ion in the garnet occupies the
site surrounded by eight oxygen ions situated at the
corners of a distorted cube, ' the orbit-lattice interaction
for an XV8 molecular cluster is computed in Sec. II,
based on the normal coordinates calculated by Huang
and Inoue. ~ In order to facilitate the calculation of the
spin-lattice relaxation time for Sm + in lanthanum ethyl
sulphate, denoted LES, Orbach's phenomenological
orbit-lattice interaction is criticized and improved. The
formulas for calculating the spin-lattice relaxation times
are also given in this section. The experimental results

e R. Orbach, Proc. Roy. Soc. (London) A264, 458 (1961).' S. Geller and M. A. Gilleo, Acta. Cryst. 10, 787 (1957).
~ C. Y. Huang and M. Inoue, J. Phys. Chem. Solids 25, 889

(1964).


