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Rare-Earth Ions in the Alkali Halides. II. Pseudolocalized Vibrational Frequencies
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Vibronic structure observed in the emission and absorption spectra of alkali halides containing either
Sm'+, Eu'+, or Yb'+ is reported, and shown to result from pseudolocalized vibrations occurring at the rare-
earth defect. A model for the defect is dehned, and an analysis of its vibrational frequencies is given for the
sample case of a RbCl host lattice. A Green s function formalism is used in the analysis. The calculation,
in which a number of approximations are made, yields the qualitative features of the experimental results.

INTRODUCTION
' 'N a recent paper' (number I in the series of papers on
~ ~ rare-earth ions in the alkali halides) an analysis
was given of the crystal Beld splitting of the emission
spectrum of the Srn'+ ion in a number of alkali-halide
host lattices. The emission spectra consist of sets of
very sharp lines which arise from electronic transitions
between Stark components of states of the 4f' ground
con6guration. In contrast, the absorption spectrum
of Sm'+, as well as the absorption and emission spectra
of Eu'+ and Yb'+ in the alkali halides, consists of
broad bands which arise most probably from transitions
of the type 4f ~+4f" 'Sd. Many of these broad bands
show long series of sharp vibronic structure when
measurements are made near liquid-helium tempera-
tures. The vibrational frequency, obtained from the
interval between successive lines of the vibronic series,
overlaps the frequency region of lattice phonons. This
indicates that the corresponding electronic levels of
these ions are coupled to very narrow regions within
the frequency band of the disturbed lattice, and we

may suspect that these small spectral regions are just
the regions where resonances occur in the phonon
scattering, i.e., where there are pseudolocalized modes.
Thus, these experiments provide a method to measure
pseudolocalized modes without requiring that they
have an electric dipole or that their frequency lie in a
transparent region of the crystal. These latter restric-
tions are essential for the direct optical observation
of local modes. '

On the other hand, the observation of these localized
vibrations through vibronic spectra requires for their
analysis not only an understanding of the pseudo-
localized vibration, but also an understanding of the
electron-lattice coupling. In the present paper we give
an analysis of the pseudolocalized vibration, and in the
paper immediately following this one (hereafter re-
ferred to as Ref. 3 and number III in the series of
papers) we analyze the details of the vibronic spectra
in terms of the electron-lattice dynamics.

* Present address: Institut fur theoretishe und angewandte
Physik, Technishe Hochschule, Stuttgart, Germany.' W. E. Bron and W. R. Heller, Phys. Rev. 136, A1433 (1964).

'P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London)
A273, 222 (1963).

W. E. Bron and M. Wagner, following paper, Phys. Rev. 139,
A233 (1965).

The vibrations of a defect in a host lattice can be
solved in principle by the Green's function formalism
introduced by Lifshitz. 4 For practical calculations it
becomes necessary to introduce certain approximations.
The calculation of the pseudolocalized vibrations pre-
sented in the discussion of this paper is based on the
simplest dynamical model which nevertheless yields
all the qualitative features of the experimental results,
and which can be used as a guide to a more complete
calculation. For example, in practical calculations it is
essential to know the Green's function of the lattice
explicitly. For an idealized cubic lattice with nearest-
neighbor central and noncentral force interactions, it
has been tabulated extensively by Maradudin et al. ,

"

but it is unknown for real crystals.
%e shall establish, therefore, a Green's function by

using suitable approximations, such as the adoption
of the frequency-distribution curves of Karo' for
alkali halide crystals. These distributions, which have
been calculated by an improved Kellerman' procedure,
have been proven to be in quite good agreement with
experimental results. So we can hope to get a reasonable
approximation for the Green's function of the real
crystal.

Another essential restriction for the practical appli-
cation of the Green's function formalism is that the
number of lattice coordinates which are involved in the
disturbance has to be small. This we shall do by assum-
ing that the force constants are practically unchanged
outside the immediate neighborhood of the center of
disturbance. This seems to be an adequate assumption
for all lattice points which have static displacements
which are no greater than those involved in harmonic
oscillations, and this is certainly true for the points
outside the immediate neighborhood. of the center,
even if the center is not electrically neutral.

'I. M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956). This
review article gives exhaustive reference to the original papers of
Lifshitz.' A. A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman,
and H. W. Milnes, Green s Functions for Monatomic Simple Cubic
Lattices (Academic Royale de Belgique, Memories XIV, 1960),
Vol. 7.

6 A. M. Karo, J. Chem. Phys. 31, 1489 (1959); 33, 7 (1960);
J. R. Hardy, Phil. Mag. 4, 1278 (1959); ?, 315 (1960). J. R.
Hardy and A. M. Karo, Phil. Mag. 5, 859 (1960); Phys. Rev.
129, 2024 (1963).

7 E. W. Kellermann, Phil. Trans. Roy. Soc. London 238, 513
(1940); Proc. Roy. Soc. (London) A178, 17 (1941).
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FIG. 1. The absorption spectrum of
Yb'+: KBr taken at 10'K showing the
vibronic structure on the two lowest
energy absorption bands.
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EXPERIMENTAL METHODS

Single crystals of rare-earth-doped alkali halides were
prepared by the Kyropoulos method from mixed melts
of either SmC12, EuC12, or YbCl~ in either NaC1, KCl,
RbC1, KBr, or KI. As indicated in Ref. 1, all samples
were quenched to room temperature from 600'C in
order to remove rare-earth halide precipitates. The
apparatus used to obtain the spectra is described in
Ref. 1.

EXPERIMENTAL RESULTS

At room temperature the absorption spectra of
Sm'+ Ku'+, and Yb'+ in the alkali halides consists of a
number of broad bands. At '10'K these broad bands
narrow somewhat, and their peak positions generally
shift to somewhat lower energies. (For an example, see
data for Sm'+: KCl in Ref. 1.) In addition, at the lower
temperature some of the broad bands have super-
imposed on them series of sharp vibronic lines with the
interval between successive lines of any one series being
essentially constant. For most of the samples studied,
the vibronic structure was not observable at tempera-
tures greater than about 30'K. The data presented here
refers to measurements at about 10'K. In general, the
vibronic structure occurs on the bands appearing in
the low-energy part of an absorption spectrum. The

lines are narrowest on the low-energy side of any one
absorption band, and becomes progressively broader
with increasing energy and are usually barely detectable
on the high-energy side of the band. These general
features of the absorption spectrum are illustrated in
Fig. 1 for the case Yb'+:KBr.

Similar vibronic structure appears on the emission
bands of Eu'+ and Yb'+ in the alkali halides. For these
ions two or more broad emission bands are observed,
the lower energy one of which having the more pro-
nounced sharp line structure. On the emission bands
the lines are narrowest on the high-energy side, and
become progressively broader with decreasing energy.
See Fig. 2 for the case of the lowest energy emission
band of Eu'+: KI.

In general, each broad band has more than one series
associated with it. The different series interweave, i.e.,
the first line of a second series occurs before the last
line of a first series. As many as 6ve distinct series have
been observed on one broad band.

Usually any one vibronic series does not consist of a
single set of equally spaced lines. Each major spacing
contains a number of lines with a minor (smaller)
interval which is again approximately constant. In
what follows or& is assigned to the frequency difference
in the major interval, and co2 to that of the minor
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FIG. 2. Vibronic structure on the lowest energy emission band of Eu'+: KI taken at 10'K.
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FIG. 3. Major and minor vibronic intervals observed on the lowest energy emission band of Yb'+: KI at 10'K.

interval. Similarly, tn(0, 1,2,3, . ) refers to an index
which counts the lines of the major interval, and
e(0,1,2,3, ) to that of the minor interval. Figure 3
illustrates such double vibronic frequency as observed
in the emission spectrum of Yb2+:KI. The minor
interval is speci6cally enumerated for m=5, and is
easily discernible for the other m values.

In the bromides and iodides co~ is small, and the
number of vibronic lines in any one series is large, as
compared to the chlorides. This can be seen from the
examples of the data given in Table I for the lowest
energy observed in the emission spectrum of Eu'+:KI,
and in Table II from similar data from Eu'+: NaC1. This
data also illustrates the general result that the fre-
quency interval in any one vibronic series is essentially
constant in the bromides and iodides, but has a slight
monotonic decrease in the chlorides. ' In the iodides and
bromides co~ and co2 were determined by taking the
average value of any one series, while in the chlorides
the value of the first vibronic interval is reported. Table
III lists ~~ and co2 obtained in this way for the lowest
energy absorption band and the lowest energy emission
band of all samples investigated. The error in these

TABLE I. Vibronic lines on lowest energy emission
band of Ku'+:KI

values is of the order of +4 cm—'. It should be noted.
from Table III that, with some exceptions, co~ and co2

for any one alkali halide is essentially independent
of the rare-earth ion, and are only slightly higher in
absorption than in emission. The vibronic frequencies
decrease as either the cation or the anion of the alkali
halide lattice becomes heavier, the dependence being
much weaker on the next-nearest cation than on the
nearest-neighbor anion mass. The anomalously high
values of coq (of the order of 800 cm ') observed in the
absorption spectra of Eu'+: NaCl, KC1, and RbC1
correspond to the observed intervals between four
sharp lines observed on the low-energy side of the
lowest energy absorption band in each case. A com-
parison of the position of these lines with the spectra
of Eu'+ in KBr and KI, as well as that in alkaline
earth halides, appears to rule out the possibility that
the sharp lines in the alkali chlorides arise from transi-
tions to four pure electron states of the Eu'+ ion.
Instead we have attributed these lines to a vibronic
series whose vibrational interval has been increased
as a result of a Jahn-Teller effect arising from the
existence of an accidental degeneracy of two electronic
states of the Eu'+ ion. Ke defer further discussion of
this point to a forthcoming paper in which we give
preliminary arguments for this interpretation.
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78
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This monotonic decrease is real. The lines can be easily
resolved from the broad background. For a discussion of the
background see Ref. 3.

TAsLE II. Vibronic lines on lowest energy emission
band of Eu'+: NaCl.
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DISCUSSION

The vibronic frequencies cv& and co2 listed in Table
III lie, with one exception, either in the optical or
acoustical region of the lattice absorption' of the
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YOLK III. Vibronic frequencies in rare-earth-doped alkali halides.
Absorption (first excited state)

NaCl
601 Cd 2

KC1
M1 C02

RbC1 KBr KI
~l 2 ~1 2 1 2

Sm2+ 215 52 208 23 193 27 115 39 85 56
Eu'+ 794 54 822 831 36 116 37 86 24
Yb'+ 218 208 43 185 114 84

Emission iground state)

Ku'+ 210 48 196 45 183 36 110 37 79 19
Yb'+ 208 45 203 44 183 42 108 37 79 19

a Frequencies given in cm ~.
b Probably 2co2.

particular host. (The frequency in the 80 cm ' region
observed in KI actually falls in the gap between the
optical and acoustical branches. ) In general, therefore,
the observed vibrations must be considered as pseudo-
localized, since the frequencies occur in the pass band
of lattice phonons.

The general formalism required for the analysis
of pseudolocalized vibrations has been developed in
detail elsewhere. ''" Our aim here is to apply this
formalism to the vibrations of a divalent rare-earth
ion in an alkali-halide lattice. We, therefore, outline
only those results of the theory necessary to the calcu-
lation and for the definition of terms.

In Sec. I we discuss the approximations used to
define those eigenvectors of the vibration of the un-
disturbed lattice which are required for the Green's
function. The latter, as well as the eigenvalue equation
for the pseudolocalized vibration, are given in Sec. II.
Finally, in Sec. III we apply the formalism to an
approximate model of the defect and solve for the
eigenfrequencies.

I. Vibrations of the Ideal Lattice

The basic idea of the Green's function formalism
is to reduce the high-dimensional problem to a low-

dimensional one which includes only those lattice
coordinates involved in the disturbance, whereas the
inhuence of the other lattice coordinates is described
by a Green's function given by the solutions of the

undisturbed lattice. This necessitates that we know
the latter.

The eigenvectors of the ideal lattice are well known
to be of the plane-wave form"

g„„'(kX)=S ' 's '(k'A) exp[ik (n+v)j, (1)

where n (or m) is the position of a unit cell in the
Bravais lattice, v (or p) is the position of the ions within
the cell, i(i=1, 2, 3) refers to the ith Cartesian com-
ponent of q, and we have assumed that our lattice has
S' unit cells. The lattice matrix in the harmonic
approximation is real and symmetric, whence the eigen-
vectors can be chosen to constitute a complete ortho-
normal system. The k vectors define a reciprocal lattice
with reduced spacing. The polarization vectors e„'(kX)
are solutions of the 3s-dimensional dynamical equation
of the lattice, which gives also the 3s frequency branches
cv(kX); (s=number of ions within the unit cell, X=1,

, 3s). The dynamical matrix M„„"(k) within this
equation is given by a transformation of the original
lattice matrix with the plane-wave part of (1). We
refer to the standard literature for a more complete
discussion.

For a "general" k vector, i.e., for one which cannot
be transformed into itself by any point-group operation
of the reciprocal lattice (except by the unit operation),
all 3s frequencies cv(kX) are different. If the k vector
lies on an axis or a plane of symmetry, some solutions
of M„„'&'(k) may be degenerate. " As the number of
general k vectors is much larger than that of those which
lie on symmetry axis or planes, one should expect that
the case where all 3s frequencies of M„„'&(k) are not
degenerate will be predominant.

This statement is correct in principle. But for most
ionic crystals we often have a quasidegeneracy, espe-
cially if the first Brillouin zone approaches a sphere.
Then one has to a good approximation s nondegenerate
longitudinal and s doubly degenerate transverse
branches. This approaches a continuous k space, where
C„„is the "group of k," whence e„(kX) must belong to
the Ai or E~ representation. For the alkali halides the
first Brillouin zone is a truncated octahedron and there
this approximation is rather good, as shown by the
detailed investigation of Kellerman. " Therefore, we
can write the polarization vectors as:

transversal waves,

e„(kX)=a„(kX){cosPsin8, sing sin8, cos8}$ longitudinal waves

e„(kX)=a„(kX){sing, —cosg, 0}
e„(kX)= a„(kX){ cosP cos—8, —sing cos8, sin8}.

(2)

(3)

where a„(k'A) are polarization amplitudes, and k, 8, g
are the spherical coordinates in k space. I'or ionic
crystals with inversion symmetry the dynamical matrix
M„„"(k) is real and symmetric. This is especially true

M. V. Klein, Phys. Rev. 131, 1500 (1963).
"M. Wagner, Phys. Rev. 133, A750 (1964).

for an alkali-halide crystal, as shown by K.ellerman,
but also for alkaline-earth-halide crystals, as shown

' G. Leibfried, Hundbuch der I'hysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1955), Vol. 7, pp. 1, 145.

"M. Born, Atomtheorie des festen Zustundes (Verlag Julius
Springer, Leipzig and Berlin, 1923),Vol. 2; M. Born and K. Huang,
Dynumicul Theory of Crystul t.uttices (Clarendon Press, Oxford,
England, 1956).

13 J. C. Phillips, Phys. Rev. 104, 1263 {1956}.
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recently by Ganesan and Srinivasan. "Then the polari-
zation vectors e„'(kX) may be chosen real, normalized
and orthogonal

(4a)P„,'„'(k) ).„'(k) ') =s„.
or vice versa

(4b)Pg e„'(kX)e„"(kX)=h„„b,; .

The polarization vectors (2) and (3) are already chosen
to be orthogonal and the normalization (4a) requires
for a diatomic crystal that

[a (kX)]'+[a (k),)]'=1 (3)

by means of which all information about the vibrations
of the ideal lattice is contained in two real scalar
functions,

o&(kX) and c(kX) = a (kX)/a+(kX) . (6)

Here we have substituted + or —for ts to stand,
respectively, for the amplitude at the alkali or the
halide ion. However, both functions are not independent
from one another. In view of the fact that for diatomic
crystals each of the three branches, Equations (2) and
(3), have both an optical frequency or,~(kX) and an
acoustical one, o~„(k)), where X is one of the three
branches (1 longitudinal& 2 transversal), one has

M+(e.,'(k)I.)—M oi.,'(kX)
ac= )

(M~+M ) (ee.p' —oi..')

[g (Xi] 2—
M o~.,'(k)I.)—M+o~.,'(kX)

(M~+M ) ((o.,'—(o.,')
(7b)

for the case M+&M .

II. Green's Function Formalism

If the lattice is disturbed the translational invariance
breaks down and there is no longer the possibility of
defining the eigenvectors by the points in the reciprocal
lattice. The eigenvalue equation of the disturbed
lattice, normalized to the ideal lattice masses 3f» can
be written in the form

[L—.'I] ( ) = —V ( .) ( )

where L is the matrix of the mass normalized force
constants of the undisturbed lattice, I the unit matrix,
and the disturbance matrix V(oi) is given by

masses. It is to be emphasized that the new eigen-
vectors z(s) are no longer orthogonal as were the
corresponding vectors ri(kX) in the undisturbed lattice;
this is because the s(s) are normalized to the masses of
the undisturbed lattice and therefore

P„„,(M /M„)s„'(s)*s„'(s')=5„ (10a)

&„ '(kx)~„ (kx)
G",-"(~)=2

oi'(kX) —oi'
(13)

This transformation reveals the advantage of the
Green's function method, if we bear in mind that the
disturbance V(ee) extends only over small regions of the
crystal and is defined, therefore, by a low-rank matrix
w(a&). The frequencies of the disturbed lattice are then
given by the determinental equation

det[1+g(ee, )s((o,)]=0. (14)

This equation was first established and investigated by
Lifshitz4 and subsequently in the work of Montroll and
Potts, "and many others. For a more detailed descrip-
tion of the Green's function method we refer to the
article of Klein' and also to the book of Montroll
et al."

For pseudolocalized vibrations, for which the local-
ized frequency is in the region of lattice frequencies
oi(kX), the Green's function (13) is no longer defined,
being an improper integral. We redefine it according to
standard scattering theory as

~(k) )~(k) )*
G+(~') =Z

&x GP(kX) —(GP+1e)
(15)

Q, (M "/M „)'"s„'(s)"(M„"/M„)'"s„„'(s)

5„„5;;. (10b)

This modification of the orthogonality relations becomes
very important, if s(s) is strongly localized around. a
region where the lattice masses 3f I' differ from the
ideal ones.

The true eigenvectors are the orthonormal quantities

i „'(s)= (M &/M„)'i's„. '(s) . (11)

A Green's function may be used to transform Eq. (8)
to an integral equation form

s(~) = —G(~.)V(&.)s(~) (12)

where the required Green's function is given by''

"E. W. Montroll and R. 3.Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).A. A. Maradudin, P. Mazur, E. W. Montroll, and
G. H. Weiss, Rev. Mod. Phys. 50, 175 (1958)."A.A. Maradudin, E.W. Montroll, and G. H. Weiss, "Theoryof
Lattice Dynamics in the Harmonic Approximation, " in SOIid State
Physics, edited by F. G. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1963), Suppl.

H(" being the disturbance in the force constants in
terms of Cartesian coordinates and 3f I' the new lattice

"S.Ganesan and R. Srinivasan, Can. J. Phys. 40, 74 (1962).

M i"—M„ which is the Green's function for the "outgoing" (or +)
o&'8 8„,5g, (9)

3E
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where recognition has been given to the fact that the
disturbance matrix V is of low rank tY, and the e(j) are
a suitable set of normalized eigenvectors.

We indicate the connection to the scattering formal-
ism by subdividing the total eigenvectors of the vibra-
tion into

z(k~) =&(k~)yw(kx)

where we may consider &(kX) as the incident phonon
and w(kX) as the scattering amplitude.

It is possible to write down a remarkably simple form
for those components of the total eigenvector Z+(kX),
which lie in the space of v,

wave solution. " (» is an infinitesimal positive number
which we take to be zero after the calculation is per-
formed. )

The eigenvalue equation now becomes

f pe(j) =p,;+e(j)

X= (Xp, Vp, zp, Xt,V.) . (20)

They define a representation of C&„(110) and can be
reduced to the following symmetry coordinates:

defined in some detail in Ref. 1. A positive ion vacancy,
required for charge compensation, is present as a
nearest 110 neighbor to the divalent cation impurity.
In addition, static displacements of ions from normal
lattice positions occur in the vicinity of the impurity
ion. The largest static displacements are thought to be
those of the divalent impurity and the center of charge
of the vacancy toward each other. Because of the
similarity in charge, size, and electronic configuration
of Sm'+ Eu'+ and Yb'+, it is reasonable to assume that
the general features of the defect are the same for
these rare-earth ions.

In order to simplify the calculation, as well as the
interpretation, we assume that the only spring constants
which are changed are the ones to the two nearest
neighbors in the (100) and (010) direction. This is
shown in Fig. 4."The argument for this choice as a
first step is that the rare-earth ion, of mass 350, is
statically displaced in the (110) direction which
reduces the distance to the (100) and (010) ion, respec-
tively, thus involving the non-Coulombic repulsion of
the ionic cores. This should increase the spring constants
to a much greater extent than the decrease of the springs
in (—1, 0, 0) and (0, —1, 0) directions. Naturally this
picture is oversimplified, but we shall use the calcu-
lation of this model as a guide to a more realistic choice.
It is seen from Fig. 4 that only five coordinates are
involved:

&e(j)ln(kl ))
z+(ky)= g e(j).

1+a;+

Qualitatively speaking, the local amplitude can be very
large if

~
1+p,;~ is very small, for which case the local

amplitude may well exceed the nonlocalized one. As far
as phonon scattering is concerned, this means a strong
scattering. The strongest localized amplitude occurs if

—(Xp+ Vp), —(Xi+Vs),
v2 v2

A2. none,

1 1
Br '. —(Xp—Vp), —(Xi—Vs),

W2 v2

(2»)

(21b)

(21c)

(21d)

1+~.ui+(~) =0

which is just the condition for a scattering resonance,
if simultaneously the imaginary part of p,;+, Imp, +, is
small.

For a detailed discussion of the scattering formalism,
as applied to lattice vibrations, we refer the reader to
the papers by Klein' and Wagner. '

III. Model of a Rare-Earth Defect in
Alkali Halide Crystals

The defect responsible for the optical spectra ob-
served in the alkali halides containing Sm'+ has been

'7 See, for example, E. Merzbacher, Quantum 3IIechanics (John
Wiley 8z Sons, Inc, , New York, 1962), pp. 223, 490.

where Bj is defined in such a way that the basic func-
tions are symmetric to the plane o i ——o (x,y) and
antisymmetric to o&——o (110,s), whereas the basic func-

Qa A(

Fro. 5. Symmetry
s( coordinates for the

chosen model of the
defect.

In this fjgure we have, for the sake of clarity, omitted the
displacement of ions from their normal lattice position.



RARE —EARTH IONS IX ALKALI HALI DES. I I A 229

D(x) = 2A 1+2B1+B2 (22)

we shall see in the following consideration that the
solution of the vibrational problem reduces to the
solution of two 2-dimensional (Al and Bl) and one
1-dimensional equation for the five possible frequency
branches of the quasilocalized modes.

The potential V of Eq. (8) is most easily found by

tions of 82 have the interchanged symmetry properties
with respect to 0-&, a-2. Figure 5 shows the symmetry
vectors corresponding to the system (21a—d).

As the representation of C2„(110), given by (20),
decomposes into

using the Hermitian form

-', (XiH&'iiX)
= l (f'—f){(V —Vo)'+ (X —Xo)'}

2 (f f)LV2 +Vo +Xl +Xo 2V2VO 2XIX0$
(23)

which is the addition to the potential energy of the
vibrational equation due to the change (f' f)—in the
force constants. Using (9) and mass-normalized
coordinates

(xo,yo, so) =M+'i2 (Xo,Vo,Zo),

(xl,y2) =M '"(X1,72),
we have

( I VI )=(f' f)(M=—'y'+M y,'+M='*;+M;*,
Mp —M+—2 (M+M-) '"(yoyo+»Xo) )—00'- (Xo'+yo'+ So')

=(f —f)(M (y., +y., )+M -'(*,'+
Mp —M+—2(M~M ) '"(xA,yA, +xe,ye, ))—012 (xA,2+x',2+x1122) (24)

M
where, according to (21a—d)

1 1
xA (x0+yo) yA (xl+ y2)

V2 v2
(25a)

1 1
xa, =—(*o—yo), ya, =—(»—y2),

W2 V2
(25b)

Hence, the disturbance matrices become
$+2—Sp ('-5c)

((f' f)IM+ '(—Mo M+—)IM+ —(M+M ) "—(f' f)-)-—
V

(f' f),'M—
3fp

—3XI+
Vg2= QP

(26a)

(26b)

which has the obvious meaning that the 5X5 matrix V is decomposed into two 2)&2 matrices (VA„V11,) and a
scalar matrix V~,. The matrix g+ can be decomposed in a similar way; we consider the scalar product

(s (
g+

~
s)=goo"*o'+goo"*oyo+goo"*oso+goo"yoxo+goo"yo'+goo"yoso+goo"so*o+goo"soyo+goo"so'+ (gol +glo )x0xl

+ (g02 jg20 ')yoy2+ (g02 +g20 )xoy2+ (gol +glo ')yoxl+ (gol +glo )soxl

+ (g02 +g20 )soy2+gll xl +g22 y2 + (g12 +g21 )xly2

(27)
where we have used the abbreviation

's

goo G+ + gol G+
000, 000 000, 000

(28)

where tl and v are (+) for the rare-earth (R.E.) impurity located at the cation site at the origin, and are (—) for
the nearest-neighbor halide ions. Expression (27) is readily transcribed into the symmetry coordinates (25a—c).
(s

~

gl+1~ s) is invariant under the operations of the group C2„(110).Therefore, all terms with products of the co-
ordinates of digere21t irreducible representations must vanish, i.e., the coefficients of xA,x&„xA,x&„etc.&y means
of which we 6nd the following properties:

g00"=gp, "=0 fol SNAB. (29)
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Using the abbreviations
Ie~*(kh)I'

A =goo =goo =goo » ca'(k)&.)—(oP+ze)

s~*(k)&,) e &(kX)
B= gpP = gozzz = 1V 'P -exp( —zak.)» (u'(k)&, )—((o'+i e)

I
*(»)I'

g
11

g
22

ggT zp-
&& GP(kX) (M +zE)

e *(k)%,)e &(kX)
D= ggP= Ã 'P -— —exp[za(k, k„—)j,» aP(k)&,)—(oP+ze)

(30a)

(30b)

(30c)

(30d)

where a is the nearest-neighbor distance, )'z; are the components of k.
The scalar product (s

I
g+

I s) reduces to

(s I g+ Is}=A (*..'+».') +A».'+» »(a". +»». )+(C+D)(».'+» ')
Ol'

~A B
g

+
g

+"' = " =&a jc+o&)

g~,——A.
Consequently,

gg,+Vg, ——gg,+V
A (n —sPA) —pB pA+ By—

!B(n oPA) P(—C+D)— PB+ (C+—D)y)

g~,+Vg, ——~~'~.

(31)

(32a)

(32b)

(33a)

(33b)

We have used the abbreviations

(f' f)— (f' f)——(34a)P=(~+~-) '"(f' f), v=-
M+

(34l )

and we realize that

From (35)
pg, ———AoPA. (36)

p~, +'=p»„——,[A ( '6) 2PB+y(c+D—)j—
:&[A( '-~) 2PB—+~(c-+D)1

+4y(v'A[A (C+D)—B']}'~'. (37)

The quantities 8 and D are much smaller than 2, C.
This is so for two reasons: (a) They contain an oscil-
lating factor [exp( ik,u) or —exp(iak —iud„), respec-
tivelyj which reduces the absolute value of the sum
[see Eqs. (30b), and (30d)j. (b) The product e,,&+&(kX)

Xe, ' &(k)) is of opposite sign for the optical and

It is now almost trivial to calculate the eigenvalues of
Eq. (16), which in our case of Cz„symmetry are pz, &+&,

p~, & &, pz&, &+&, yz&, ~
—

&, y», . Inserting (33a) we arrive at

»,' LA (~ ~'~)—2pB+—(c+D—)~1m~,
—yes'A[A (C+D)—B'$=0 (35)

acoustical branches [see Eq. (7b)j, whereas the
product e, & &(kX)s„& &(k)) partly cancels, if we sum
over )., because of the closure property (4b). B and D
are exactly zero for a simple cubic lattice with nearest-
neighbor forces"; in such a model the Green's function
matrix is diagonal in i and j (i.e., the Cartesian com-
ponents of the displacements of the lattice points). For
other models G'&' will not be exactly diagonal, but we

expect the nondiagonal terms to be much smaller than
the diagonal ones. For a careful discussion of this point
we refer to the paper by Klein. ' Neglecting 8 and D,
(37) may be written in the form

n2— GP

y,g, &+&=p», &+&=— rA+r 'C——dA
2 0'

~z )2 ~2 — 1/2

~
I
rA+;~C ——ZA!+4r-z—AC, (38)

D ) nz

where [see (34a,b)]:
(M0'= (3l+M ) '~'(f' f), — —

(39)
M+

"H. B. Rosenstock and G. I~'. Newell, J. Phys. Chem. 21, 1607
(1953).
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The approximation (38) will be used for the numerical
evaluation of the quasilocalized modes of the defect.

The Green's functions A and C are easily evaluated
for alkali-halide lattices because of the simple approxi-
mation for the ideal eigenvectors rf(kX) outlined in
Sec. I. Using these approximations, which reasonably
include also

——EXACT CALCULATION

ANALYTIC APPROXIMATE� '

ro(k) )=rex(ski) (40)

which follows again from the fact that the first Brillouin
zone for alkali-halide lattices is almost a sphere, and
integrating Eq. (15) rather than summing up, we have

Ai(~) =
L~+'"' (re~)]'px(~x)d~i

co), (d 16

cos'01 singd9dp, (41a)
4x g sln8

2.0
tu xl0 sec

30

Fzc. 6. Density of the vibrational states of the undisturbed
RbC1 lattice as calculated in Ref. 4 by A. M. Karo, and as ap-
proximated by Lorenzian analytic functions of Eqs. (4) and (5).
The observed u& and co2 frequencies are indicated by arrows.

C&, (o&) =
P+'"'(~x)]'px(~x) ~~i

M), GO 'LC

cos'01
sinededg.

4x -,'sin'0
(41b)

where the upper function refers to the longitudinal
branches, the lower one to the transversal ones, and
u+(~), u &~) are the amplitudes of the positive and
negative ions as defined by (2), (3), (5), (6), and (7).
For the integration we have made use of the fact that
the spectrum of ideal and disturbed frequencies is
discrete but very dense, so that we replace

px(&) it is possible to use a sum over a large represen-
tative number of eigenvectors available from the work
of Karo. ' We have chosen instead the integral form
of (42a,b), and use for px(re) an analytical fit to the
density-of-states curves calculated by Karo. This
method is especially suitable for computer calculations,
although it omits among other things the detailed
effects of singular points in the phonon density of
states. "Nevertheless, it may be considered a good first
approximation to a more complete treatment since, as
will be shown, it leads to reasonable results.

Accordingly, the frequency distribution has been
approximated by

iV 'Q by
(2z.)'

~ ~ ~

p ( )—
(~ ~ (ii)2+~2

where e, is an elementary volume of the original lattice.
The angular integration is trivial and by means of (5)
we have

Ag(ro) =-',

Cx(~) = s

and naturally

L~+'"'(~x)]'p&, (~x)d~x

M)t GO Z6

px(~x) d~),

CO&
—M Z6

~(-)=gx ~x(~), (:(~)=Pi(=x(~). (43)

It is elementary to evaluate the integrals (42a) (42b),
if we use properly chosen frequency distributions p&, (&o)

for the four vibrational branches. Finally, it should be
noted that within (43) the transverse branches are to
be counted twice.

We now carry out the calculation for the pseudo-
localized frequencies for the sample case of a R.E.'+
ion in RbC1. In the evalua, tion of (42a,b) a choice exists
as to the values to be used for pq(&e) and Lu+"]'. For

p
(&)—

(X)~ (~ ~ (Xi)4+)4
(44b)

If ) =1, 2, 3, and 4 designate, respectively, the trans-
verse-acoustical, the longitudinal-acoustical, the trans-
verse-optical, and the longitudinal-optical branch, Eqs.
(44a,b) can be fitted rather well to the distributions
calculated by Karo' for RbCl with the following values
(in units of 10+"sec ')

%0 1 12
7 0 1 6~

y %0 1 99, &0"=2.88

0 21 ) 8&@ 0 14 ) 6&0 0 22 7 bio 0 42

» It has recently been shown PJ. R. Hardy, Phys. Rev. 136,
A1745 (1964)g that the phonon spectrum of the undisturbed
lattice may persist in lattices where the iInpurity concentration
is very small. The selection rules for defect-activated lattice bands
have recently been determined LR. London, Proc. Phys. Soc.
(London) S4, 379 (1964)g for simple defect configurations. The
vibronic spectra reported in the present paper do not indicate any
structure attributable to phonon states, although we have ob-
served such vibronic structure in the spectra reported in Ref. 1.
We defer for future investigation the question of the effect of
phonon states, especially singular points, on the present vibronic
structure.
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M+M

p~

0

IIG. 7. Sketch of
the comparison of
[a+& "&g,~' as given by
Eqs. (7b) and (45).

These values have been chosen such that

p&, (a&)d&e =1

for the approximate distributions. In Fig. 6 the approxi-
mate distributions are compared to those calculated by
Karo, which later have also been normalized to unity.
For comparison, the position of the observed co~ and
co2 frequencies are also shown in this figure.

An analytical function has also been used. to approxi-
mate La~&"& (a&)]'

(~ ~ &x&)

$&&+
"&(~)]-'=v&,+~&,

(~ ~ &X&)2+p 2
(45)

where &ro„p&„and y&, are determined in such a manner
as to fit the exact value of L&&+&"&(&0)]' at er=ar&&&~&, its
first derivative at this point and to give the point
nr=ar&&&"& —p&„ the value M+/(M++M ) for the acous-
tical branches or the point n&=a&&r&"&+P&„ the value
M /(M++M ) for the optical branches. We have
sketched the function (45) in Fig. 7. The function
(7a,b) cannot be exactly evaluated, although one may
obtain the qualitative features of [a+'"&(er)]' from the
dispersion relationships given by Karo. It can be seen
from Fig. 7 that the analytical fit (45) describes
[&&+&~&(a&)]' best near the &0&&&~&, i.e., near the peak of the
distributions p&, (er). But, since in the Green s function
(42a,b) La+&"&(&0)]' is weighted by the distribution

p&, (ar), the inconsistency in (45) far from the center of
p&, (nr) becomes unimportant.

C0 2

coax

l0 i~SEC i

I xo. 8. The resonance denominator 1+pg, ( ) ' as a function
of the vibrational frequency eP8,s calcu ated for the two values of
the force-constant parameter 0=3 and 4.

By means of these approximations A (ar), C(nr), p;(e&)
and, therefore, the resonance denominator

~
1+p,, ~

' of
Eq. (18) can be calcula, ted. As will be shown in Ref. 3,
only vibrational modes with Aj symmetry can be
coupled to electronic transitions for C2„point symmetry.
We therefore restrict the calculation to p,~,(+). Of these,
only &a&& & yields solutions which satisfy condition (19).

The resona, nce denomina, tor ~1+p~, &
—

&

~

—' has been
calculated for various values of the force constant
parameter Q. In Fig. 8 the resultant values are plotted
as a function of ~ for 0=3 and 4. Two sharp resonances
can be seen, one lying on the high-frequency side of the
longitudinal-optical branch and the other near the peak
of the transversal-acoustical branch of the undisturbed
lattice. The higher frequency resonance depends on 0,
while the lower frequency does not. In order to discuss
this result we would need to know the normal modes
of vibration. To specify these in detail the eigenvectors
of the vibration wouM need to be calculated, which in
the present approximate calculation we have avoided
doing. We can, however, construct a reasonable set
of local normal vibrations of A& symmetry which have
qualitatively the properties of the observed. resonances
by choosing linear combinations of the symmetry
coordinates shown in Fig. 5 and given in Eq. (25a).
These approximate normal modes are sketched in

FIG. 9. Approxi-
mate normal local
vibrations of A I sym-
metry.

Fig. 9. In the mode of Fig. 9(a), in which the motion of
the R.E.'+ ion and the halide ion are out of phase, these
ions a,re forced against each other. The resultant
vibrational frequency depends, therefore, on the local
force constants as well as the masses of the ions. In the
mode of Fig. 9(b), in which the motion of the ions is in
phase, the vibrational frequency should be less sensitive
to 0, be a lower frequency than that of Fig. 9(a), but
should be sensitive to the local masses.

The resonance frequency can be fitted to the ~&

frequency with a value of 0 of approximately 2.75.
However, since this is a one-parameter 6t to the data, ,
no great significance should be attached to this value.
The low-frequency solution appears near 1.1)&10"sec—'
instead of the observed A&2 of 0.73)(10" sec '. An
attempt to improve this latter result, by substituting
a Debye-Einstein distribution to 6t exactly the low-
frequency tails of the acoustical branches of the un-
disturbed lattice did not produce any substantial
change in the result. This discrepancy is perhaps not
too surprising in view of the approximation made in
the calculation. Since the low-frequency A& mode is
particularly sensitive to the effective mass of the rare-
earth ion, one likely source of this error is the neglect of
the effect of the positive-ion vacancy on the effective
masses of the defect.
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In conclusion, it has been shown that a crude calcu-
lation based on the Green's function formalism of
pseudolocalized vibrations does yield two localized
vibrational frequencies which have the qualitative
features of the experimental results.

In the paper immediately following this one, we
discuss the electron-lattice coupling, which we then

use to analyze the details of the vibronic spectrum.
Finally, we indicate how, in principle, the results of
this analysis can be connected to the vibrational
problem discussed in this paper. We defer, until the
end of the next paper, a comparison of the results of
the present vibronic spectra and those observed in other
systems.
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Rare-Earth Ions in the Alkali Halides. III. Electron-Lattice Coupling
and the Details of the Vibronic Spectra
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Electron-lattice interaction is discussed for the case of rare-earth ions in the alkali halides. A selection rule
is derived to show that for the present defect electronic transitions can be coupled only to vibrational modes
of A I symmetry. Under the assumption of electrostatic coupling between the electron and the lattice vibra-
tions, a coupling function is derived which is proportional to the projection of the held of the electron under-
going a transition on to the eigenvectors of the vibrations. It is further shown that this coupling function
can be determined from the details of the structural form of the vibronic spectra. A number of other features
of the vibronic spectra are accounted for through the properties of Franck-Condon integrals.

INTRODUCTION

' 'N this paper, which is the third in the series on rare-
- - earth ions in the alkali halides, we deal with the
coupling of electronic transitions to the pseudolocalized
lattice vibrations analyzed in the second paper in the
series. LThe first paper (marked I) has appeared pre-
viously' and the second (marked II) immediately
precedes this one. ']

We show that selection rules exist which govern the
coupling of electronic transitions to lattice vibrations.
For the important case of an electrostatic coupling a
more explicit discussion of the electron-lattice inter-
action is given. It is shown that for a center with inver-
sion symmetry the coupling has no dipolar term; thus
for ions whose electronic wave functions do not overlap
the nearest la, ttice neighbors (e.g. , rare-earth (R.E.)
ions) the coupling can at best be quadrupolic. This
restricted coupling makes it possible to obtain very
sharp vibronic spectral lines. It a,iso makes it possible to
define a coupling function, which, in principle, can be
obtained experimentally from the structural form of the
vibronic line spectra. Finally, the details of the spectra
are accounted for in terms of the properties of Franck-
Condon integrals.

*Present address: Institut fur Theoretische und Angewandte
Physik der Technische Hochschule, Stuttgart, Germany.' W. E. Bron and W. R. Heller, Phys. Rev. 136, A1433 (1964).

2 M. Wagner and W. E. Bron, preceding paper, Phys. Rev. 139,
A223 (1965).

EXPERIMENTAL RESULTS

The experimental methods have already been de-
scribed. We refer the reader to Refs. 1 and 2.

Many details of the vibronic spectra have already
been given in Ref. 2. Figure 1 shows a representative
vibronic spectra as observed on the lowest energy
emission band in Yb'+:KI at 10'K. This figure shows
the general result, that any one vibronic series does not
consist of a single set of equally spaced lines. Each
major spacing contains a number of lines with a minor
interval which is again approximately constant. Here,
we adopt the notation given in Ref. 2, and assign co1 to
the frequency difference in the major interval, and co2 to
that of the minor interval. Similarly, m(0, 1,2, )
refers to an index which counts the lines of the major
interval and N(0, 1,2, ) to that of the minor interval.
The minor interval is specifically enumerated in Fig. 1
for m=5 and is easily discernible for other m values.
This figure also shows the general result that the sharp-
line vibronic spectra is found on the high-energy side of
the broad emission bands. The converse is observed on
absorption bands where the sharp vibronic lines are
observed to be displaced asymmetrically against the
low-energy side of the broad-band background.

Measurements have been made of the integrated
intensities of the lines of the main (a&i) vibronic series
observed in the emission spectra of the Eu'+-doped
alkali halides. Table I lists the lines of the lowest energy


