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An electric field exerts a force on the charged ions in an ionic crystal and causes a net Qow of ions and
vacancies. In calculations of the drift mobility p, and diffusion coefKicient D, it has been customary to assume
that the vacancy Qow does not alter the average vacancy concentrations at sites that are second-nearest
neighbors or farther from the impurity. In the present treatment, this approximation is avoided. Instead
vacancies are presumed to be at equilibrium only at vacancy sources and sinks and on the symmetry plane
containing the impurity. The resulting equations for ps/D include terms Z; k;b,m;. Here A,m; is the difference
between the vacancy-jump frequencies in the positive and negative x directions from site i in the absence
of a field, and the k; are coefficients. The summation, which is over all sites in the crystal, simplifies in a
number of special cases. Whenever the vacancy-jump frequency for association of a vacancy-impurity
complex differs from the vacancy-jump frequency far from an impurity, extra terms which have not ap-
peared in previous expressions for p/D are obtained.

INTRODUCTION

A N electric field E exerts a force on the ions in an
ionic crystal. This force causes the ions to have a

preferred direction of jump and will cause ions of a given
species to undergo an average net displacement (x)
=@Et. Here t is the difFusion time and p, is the drift
mobility of this species. The average displacement (x)
can be measured by an experiment where a layer of
radioactive tracer ions of the species is originally on a
plane at x=0. Then (x) is the average x position of the
tracer ions after time t. This can be determined directly
from the position of the center of the tracer profile, since
in a homogeneous crystal with a constant field E this
profile will be symmetric around its midpoint.

If each tracer jump is independent of the directions of
preceding jumps, the simple Nernst-Einstein relation, '
pkT= Dq, relates the drift mobility of the given species
to its tracer difFusion coefIicient D. Here, q is the net
ionic charge, k is Boltzmann's constant, and T is the
absolute temperature. When difFusion occurs by a
vacancy mechanism, however, the directions of succes-
sive ion jumps are not independent of one another.
Mccombie and Lidiard' showed that for self-difFusion
by a vacancy mechanism, the factor D in the Nernst-
Einstein rela, tion must be replaced by Df ', where f is
the correlation factor. Subsequent work~' has shown
that for impurity difFusion the additional factor is not
simply f but instead is a somewhat diferent function of
the vacancy-jump frequencies near the impurity. These
calculations of p/D for impurity diffusion have all as-
sumed that the vacancy concentrations at sites which
are second-nearest neighbors or farther from the im-
purity are maintained at their equilibrium values. In the
present calculations, this restriction is removed. This

' See, e.g., A. B. Lidiard, Hendbuch der Physik, edited by S.
Flu*gge (Springer-Verlag, Berlin, 1957},Vol. 20, p. 324.

~ C. W. McCombie and A. B. Lidiard, Phys. Rev. 101, 1210
{1956).

A. B.Lidiard, Reactivity of Solids, edited by J.H. de Boer et al.
{Elsevier Publishing Company, Amsterdam, 1961),p. 52.

4 R. E. Howard and A. B. Lidiard, J. Phys. Soc. Japan Suppl.
18, 197 (1963).' J.R. Manning, Phys. Rev. 125, 103 (1962).
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introduces a number of additional terms into the ex-
pression for p/D. Even in very simple cases, these terms
can be important.

BASIC EQUATIONS

In a preceding paper, ' difFusion with a driving force
was discussed in terms of efFective jump frequencies.
This approach considers planar difFusion normal to
certain planes (usually the more nearly close-packed
planes) through which an atom cannot pass directly in
one jump. In passing from one side of such a plane to
the other, the atom at some time must stop briefly at a
site on this plane. An example of a suitable direction is
the $100j direction in a face-centered cubic structure
Here neighboring (100) planes are equally spaced at a
distance d, with d equal to half the length of a unit cell
edge or —,'K times the nearest-neighbor distance in an
fcc crystal.

In any crystal with equally spaced planes, the average
atom drift velocity (v) for diffusion normal to these
planes was found to be

(v) = 2Dd '(A+B+ 2'd8 1nf/Bx),

where D is the tracer difFusion coefIicient in the absence
of any forces, d is the distance between neighboring
planes, and A and 8 are proportional to the driving
force. In the present discussion, we shall assume there is
no variation of difFusion coefBcient with position. Then
8 1nf/Bx equals zero. The direct effect of the force on the
energy of motion for a difFusing atom is given by A;
while for difFusion by a vacancy mechanism, 8 gives the
indirect efFect from a Qow of vacancies. This Qow results
from the action of the force on the other atoms in the
crystal.

In particular, A is given by

po+g= Pop(1+2)

where vo+& is the basic jump frequency for a jump from

' J. R. Manning, Phys. Rev. 139, A126 (1965};ibid. Q4, 470
(1961).
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a site on plane 0 to one of the neighboring sites on plane
+1 immediately on the right (+x direction) of plane 0,
and vo& is this same quantity in the absence of driving
forces. By definition' of vp+q,

where X„+is the equilibrium probability (in the absence
of driving forces) that a site which is on plane +1, and
neighbors on our diffusing tracer atom, will contain a
vacancy; while mz ~ is the jump frequency for the atom
on plane 0 when there is a vacancy at a neighboring site
on plane +1.The force by definition does not aBect Ã„+
but can affect the energy of motion which deter-
mines R'p~.

When the driving force is that from an electric field,
the usual approximation is that the force decreases the
energy oi motion for a m»p+ jump in the direction of the
field by hE = ~q&Ed, where q& is the electric charge of
the tracer and E is the magnitude of the electric field.
Then, v~ y/van= exp(AE„/kT); and to first order

q&EdA=-
2kT

The expression for 8 is'

opposite direction. The term lV,++~+ gives the frequency
of vacancy travel on these paths away from the sites on
plane +1 while the term v ~ gives the frequency of
travel in the other direction. Thus, in the absence of
forces v + equals X„+mp+ and 8 equals zero.

If site p is any site either on plane 0 or next to a
vacancy source or sink, and site j is one of the sites on
plane +1 neighboring on the tracer (let us assume that
there are Z such sites all equivalent to one another), we

can write

v~p ——Z Q v X~vw» ~ (6)

X,+wp+=ZX„; g„w;,

where Ã,„ is the average probability that there is a
vacancy at site p and w» is the frequency with which
such a vacancy follows a path taking it to a site j
without returning to any site p. A driving force will not
change the value of X,„since a vacancy source or sink
should always keep the vacancy concentration at
neighboring sites at its equilibrium value. Also because
of the symmetry around plane 0, deviations in the
vacancy flow near the tracer (impurity) average out to
zero on this plane.

For vacancies moving in the opposite direction

TV~yvopg

where ze~+ is the effective escape or randomization fre-
quency for a vacancy which is on a site j.Here site j is
on plane +1 and neighbors on the tracer (which is on
plane 0). The vacancy can randomize its position with
respect to the tracer by making a series of one or more
jumps which takes it to a site on plane 0 w'ithout ex-
changing with the tracer. By de6nition, m~+ is the
frequency with which the vacancy follows a path
carrying it either to plane 0 or else to an infinite distance
from the tracer without having either exchanged with
the tracer or returned to one of the sites on plane +1
neighboring on the tracer. The number of jumps in the
series can be any number from one to in6nity. %hen
there are sources and sinks for vacancies in the crystal,
this de6nition can be revised to state that a vacancy
need merely reach either plane 0 or a sink where it is
destroyed. In practice of course, the vacancy will never
move an infinite distance away. The important point is
that it not return to a site on plane +1 neighboring on
the tracer or exchange with the tracer. Similarly, v ~ is
the frequency with which "fresh vacancies, " which
either have never exchanged with the tracer or else have
arrived at a site on plane 0 since their last such ex-
change, arrive at a site on plane +1 neighboring on the
tracer.

Vacancies which contribute to v + follow exactly the
reverse of the paths for vacancies which contribute to
zp+. In the absence of driving forces, a vacancy is just
as likely to move in one direction along a path as in the

where X„;is the average probability that a vacancy is at
site j in the absence of a force, and m, „is the frequency
with which a vacancy which is at this site begins a path
to take it to a site p without exchanging with the tracer
or returning to any site j.

The frequency m; for a given jump i in an electric
6eld can be expressed in terms of the frequency m;0 in
the absence of a field by an equation,

If there is a uniform held E directed along the x axis and
the component of the vacancy jump in the direction of
the 6eld is hx;, one 6nds to 6rst order

2kT

where q, is the charge of the solvent atom involved in
the jump. In most cases of interest, e; is much less than
one. A number of jumps i will make up the paths be-
tween any sites j and P. Thus, one can write

W;v=W;voD+e, v], (10)

where x,„o is the value of m;„ in the absence of the field,
and to 6rst order

Here the sum is over all jumps in the path j-p, and we
assume that the e; are small enough so that e,„also is
much less than one. The sum of hx; along the path j-p
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wn =wnio(1 ~in) (13)

where m»o is the value of zv» in the absence of the field.
Dividing Eq. (6) by Eq. (7) then gives

p.~ Qn Aenwn70(1 —6;n)
(14)

II +wa+ En ~' p'Ino(1+&~n)

Since X,n and X„.are probabilities (or vacancy concen-
trations) in the absence of the Geld

Ã„~,„o——E„m „;o,
and to Grst order in e;„,

na+ 2 Zn wino~jn=1—

Thus
lVq+R p+ Zn wino

where
8= (q,Ed/kT)(n, n),

y ~jyonjy
nju—

(15)

(16)

(17)

Here (n;„) represents the average number of steps a
vacancy is to the right of plane +1 when it arrives at a
vacancy sink or at a site on plane 0. Since the ex-
pression for (n, „)contains the jump frequencies wIno ill
the absence of an electric Geld, (n;„) also must be
evaluated for a vacancy diGusing in the absence of an
electric Geld. It may be noted that n, „=—1 for va-
cancies which arrive at plane 0. For vacancies which
arrive at sinks, n;~ may range from 0 to ~.

Substituting Eqs. (4) and (17) into Eq. (1) gives

(v) = (DE/&T) (qI+2q. (n .)) (19)

The drift mobility p, equals the average velocity in unit
electric field. Thus,

(20)II,= (v)EI-
and

I /D= (qt/&T)(1+ (2q./qI)(n .)) (21)

The Grst term inside the parentheses arises from the
direct force exerted by the Geld on the charged tracer
ion. The second term gives the eGect from the Qow of
vacancies created by the Geld. This second term makes
our equations deviate from the simple Nernst-Einstein
equation, p/D= q, /kT.

Equation (21) is similar to that found in a previous
paper, ' where it was assumed that vacancies were

equals n, P, where n;„ is the number of jumps in the +x
direction which a vacancy must take to move from
plane +1 containing site j to the plane containing site
P. When q„E, and T are the same for each jump along
the path j-p, one Gnds for any path between sites j
aild p,

e,n= —(q,Ed/2k T)n, „ (12)

For jumps in the opposite direction along the path

maintained at equilibrium at sites which were second-
nearest neighbors or farther from the impurity. In the
present derivation, this assumption is avoided. Thus
(n, „) appears in the place where the quantity L ap-
peared previously. In certain cases (n, n) exactly equals
L; normally however (n;„) contains a number of terms
not included in I..

C;= (w;~ —w; )/R;, (22)

where m;+ is the frequency of jumps from site i which
change the x displacement of the vacancy by +d and
m, is the frequency of jumps which make a change —d.
Jumps involving the tracer do not contribute to w,+ cr
zo, since by deGnition of m;„ the vacancy's path from
site j to equilibrium site p cannot involve an exchange
with the tracer. Also E; is the total jump frequency
from site i, so that w;+/R; is the probability of +d and
w, /R; is the probability of —d. By definition,

R~= Zu wii p (23)

where m;& is the vacancy-jump frequency from site i to
a neighboring site k. The summation is over all sites k
not occupied by the tracer.

CALCULATION OF (n;„)

Except when site j is very near a sink, very little error
is introduced by assuming that the vacancy sinks are

uniformly located on a sphere centered at the tracer and
with a very large radius. %ith this assumption, we can
proceed. to calculate (n;„)

The only vacancies which contribute to up+ are those
which move from a site j to some site P (either on plane
0 or next to a sink) without exchanging with the tracer
or arriving back at one of the sites j.Thus, these are the
only vacancies which should be considered in calcu-
lating (n, n). One can imagine the vacancy starting on a
j site, with sinks on a hemisphere and the zero plane.
Also interchange with the tracer is excluded. Then one
imagines the vacancy "diffusing" to the sinks by a
process averaged over all paths. Each site i in the system
makes a contribution to P w, „on,n This .contribution is
the product of the net probability of the vacancy moving
a step to the right each time it lands on that site
multiplied by the average number of times it does land
there. By summing over all sites i, P w;non, „can be
calculated. After the original jump, sites j also are
treated as being sinks since paths which return the
vacancy to a site j should be excluded from considera-
tion. (These paths actually are included in our equations
until the Grst return to a site j.This does not a8ect the
calculated value of Q w, non, „,however, since in moving
from j to j the vacancy undergoes zero net x dis-
placement. )

The contribution to P w, »n;n from a jump from site
i is on the average
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If V; is the average number of times a vacancy which
starts at site j visits site i without reaching an equi-
librium site p or returning to a site j neighboring on the
tracer, one can write for the numerator in Eq. (18),

by use of determinants. This yields

(28)V;=u;b '.

Zu WI~«~~=RI Z'&'V*

Since n goes to in6nity, both a; and b are determinants

(24) of infinite order,

Here E& is the total vacancy-jurnp frequency from site j
to neighboring sites s with jumps involving the tracer
excluded,

z—1

Rl= Q WIg.

+1
WI2RI

b= —W13RI '

—'Ry&E j

0
+1

—M2s% '
0—W284

0
—m32E3

—'
+1

—m3„R3

0
—W„IR—m 3E. —

(29)

Both E~ and the C; are easily expressed in terms of
vacancy-jump frequencies. To find (n;I,), one need
calculate only the V; and the frequency P „w;~0, which
is the effective escape or randomization frequency in the
absence of a 6eld.

Sets of Equivalent Sites

In cubic cl'ys'tais with dlBuslon alollg a (100) dll'ec-

tion, all sites j neighboring on the tracer and on the
plane to the right of the tracer are equivalent sites. A
vacancy at any of these sites has the same e6ect on
diffusion along the x axis as a vacancy at any other of
these sites. Thus, they can be grouped. together into a
set of equivalent sites which we shall call set i. Simi-
larly, other sites on planes to the right of the tracer can
be grouped into various sets which we shall number
from 2 to 00.

Considering the individual sites in terms of sets
simplifies the problem. Equations (22)—(2S) are still
valid. However, V; in these equations now refers to the
total number of visits summed over all sites in set i; and
the vacancy-jump frequencies m;I, refer to the total
frequency of jumps to all of the various sites in set k
from a particular site in set i, summed over all sites in
set k. Also, jumps between two sites in the same set do
not influence diffusion along the x axis. Thus, the m;;
and contributions of these jumps to the E; can for our
purposes be treated as equal to zero. The V; for the
various sets i then can be calculated as follows.

and a; is just b with the ith column replaced with

{1,0,0,0, . ). Also,

Q;C~V;=Qb ', (3o)

C2
+1

—m23R2 '

~2n%

Cs
—m32E3 '

+1

wsa%

C

(31)

CALCULATION OF EFFECTIVE ESCAPE
FREQUENCY P~ w;~

The effective escape frequency, which appears in the
denominator of Eq. (18), can be calculated in terms of
similar in6nite-order determinants. The efI'ective escape
frequency from site j(PI,w;~) is smaller than the jump
frequency E~ since some vacancies which make mj,;
jumps from site j (in set 1) to neighboring sites in set i
return again to a site in set 1 before arriving at an
equilibrium site p. These vacancies contribute to Rl but
not to g~ w;„o,

and the numerator in Eq. (18) can be expressed in
terms of the in6nite-order determinants 0 and b,

Q~W;~on, „=RIQb '.

Number of Vacancy Visits per Set

P ss K'yy

Z wjy0 Q wly+ Z wli 1 Q Vk(i)
p p j. am am gg,

(33)

The sites on plane 0 are all equilibrium sites p. Thus,
the only sites i which give a contribution to P w;„On;~
are those included in sets j. to ~. The values of V; for
these sites can be obtained from the equations,

Vg ——t,
V*= (wl;/RI) Vl+ P (wc~/Ra) Va

(26)

with i, k=2, , n, (27)

where the number of sets n goes to in6nity. These simul-
taneous equations can be solved for the V,(i= 1, , n)

Here the sulnmation over P includes all sites P (on
plane 0) which can be reached in one jump from site j
and are not occupied by the tracer, and m» is the jump
frequency to such a site. Also, m&; is the jump frequency
to other sets neighboring on site j, and VI,(;) is the
number of times a vacancy which starts on set i will
visit set k without reaching a site p or 1.The summation
over k gives the probability that a vacancy which makes
a wl, jump will return to set 1 before reaching a site P.
The fraction

weal/R&

is the probability of this happening
immediately after a given visit to set k. As in the previ-
ous section, all jump frequencies are those in the
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absence of a 6eld. The V&{,~ are given by

Vp(,g ——(32,+ p V (,q(w 2/R ), 333, k=2, ~ ~, 33, (34)
mHL

where 51,; is unity if k=i and zero otherwise. Solving
Eq. (34) for the Vz(,i (with k=2, , oo) gives

where

—K'ygRy

—wg&Ry

—R gag
+1

—R g3Rg

—203gR3
—K3gR3 '

+1
—K'3~Ra

—m „gR„'
—m „pR„'
—m „3R„'

Vp('&= Qp(O2r '.

When the number of sets 23 goes to infinity, both Qp(,~
and x are determinants of in6nite order,

Because of the zeros in the first row of the determinant
k in Eq. (29), k exactly equals or as given in Eq. (36).
From Eqs. (18), (32), and (43), it then follows that

(~,,)= fle-i. (45)—'RrtpR
—m„3R„'

—RagR3
+1

—~3n%-'

23Rs

—w2 J4
EVALUATION OF e AND 0(36)

(46)e=M i—P w, iM,R;-'.

+1 If we let m; be the minor of the element in the first
row and ith column of C (or 0) and, let M;= m, (—1) '+',

and Qz(o is found from 3r by replacing the kth column of we find after expanding C' in terms of minors

or by {0,0, ,0,1,0, ,0},where the nonzero element is
in the ith row. Using these expressions for Qp(o, we find

—Q Vg, (,)wp(R2 ' ——H,2r ',
k—2

where H; is just ~ with the ith row replaced by
(—w21R2, —w31R3, ', —walR ). Now

Since ir equals Mi, Eq. (43) yields

~ RgM;
P w;po=Ri —P—

u s-&R; Mg

where

(38)
The m;& and m»; will equal zero for all n greater than
some value q (i.e., the sites i=2, , q are the only i
sites which can be reached in one jump from site 1).
Then, with Eq. (40), we find

0
—

ZOyg

7f'0 = —'Nyg

—'NgjRg

+1
~23%

—~sAs

—5)3yR3

w32R3

+1
—~anR3 '

—K„qR
—w„&„—'
—w 3R„'

(39)

where

P (l(

2 wjpo= 2 wip+ 2 wi(R(

VO&y Ry Ms
F;=1— — for i=2, , q.

xg; R;Mg
(49)

Since

Eq. (33) reduces to the simple expression

p & w3&p= Ri+0. '

(40)

In calculations of the correlation factor, P„w,„p is
often expressed in the form of Eq. (48). In such calcula-
tions, numerical values of the Ii; have been found for a
number of cubic structures with various vacancy-jump
frequencies in the vicinity of the impurity.

When 0 is expanded in terms of minors, we 6nd

By direct multiplication, we 6nd

where

f1= PC,M, = P Dw,M ji'.; ', (50)

Rj
0

xRj= 0

0

+1
—R'g3Rg

—mg„Rg '

0
—m 3gR3

—'

+1
—m3„R3

—'

0
—m„qR
—w„oR„' . (42)

+1

Then, adding Eqs. (39) and (42) gives

With C =MiRi ' P„wjyo as in Eq. (43), we find

(51)

RgM;
Awi+ Q dw, (1—I';)+ Q hw,—

sm ~s~ '—&+ R M~
(52)

p a

P 2 w3'po= 7I R3C'
& (43)

Z wi, +ZwiP',
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Z

LJ

+pl f (X l"Q

&Ol0&

&l00&

2~s+P q ~~~0
(55)

In the special case where w=ws, 1+2(n;~) equals f '
For self-diffusion, q, of course equals q&, and Eq. (21)
reduces simply to

frequency m». In cubic crystals, the tracer correlation
factor f is given by'

FIG. 1. Location of sites in sets 1 to 5 in a face-centered cubic
sublattice. The impurity site is marked X. Plane 0 is the vertical
plane through this site. Sites marked by circles are in the plane
of the paper. Sites marked by squares are a distance d above or
below this plane. In addition there are four sites in set 5 which
are not shown. These sites are a distance 2d above or below the
circled sites in set 1. Two additional sites in set 4 are 2d above or
below the circled site in set 2.

as expected. ' 6/D) = (q~/&Tf), (56)

Equation (52) is valid for any cubic structure. When
substituted into Eq. (21), it yields a general expression
for p/D.

In a number of special cases, Eq. (52) simpli6es. If the
presence of the impurity does not aGect vacancy jumps
which originate at sites on the third coordination shell
or farther from the impurity, the Dm; for i&q+1 will all
be zero. The frequency of jumps zv;+ in the +x direction
(away from the impurity) equals the frequency of
jumps ze; in the —x direction (toward the plane con-
taining the impurity). This makes (w;+—w; ) and hence
her; equal zero for these sites. The summation over i
from q+1 to n then equals zero and Eq. (52) reduces to

Au )+P aw, (wg, /w, ,) (1—F;)

(53)
P

wg + Pwy;F;

If a vacancy at site i is bound to the impurity with a
nonzero binding energy, hx; for this site probably will
not equal zero. Still, one expects the dm; for sites i&q
to be smaller than the hm, for sites i&q, which are
closer to the impurity. Thus, in spite of nonzero binding
energies and hu, 's for i) q, Eq. (53) may be a good
approximation in many cases.

If all vacancy jumps involving solvent ions have the
same jump frequency, all hm; for i&2 will be zero.
However, Am~ will not be zero since jumps involving the
tracer ion are excluded in calculating the w;+ and m; .
From a site in set 1, one of the vacancy jumps in the —x
direction would involve an exchange with the tracer.
Hence Am» in the present case equals zv, where m is the
vacancy-jump frequency for exchange with a solvent
ion, and Eqs. (48) and (52) yield

R&'2) =Ql & 'R&&P (54)

This expression also applies to self diffusion where the
solvent jump frequency m equals the tracer jump

FIG. 2. 7F as a
function of m4/up
and mp/m4.

0 I I I I I I I I

0 0 2 0.4 0.6 O. B I.O O.B 0.6 0.4 0.2 0

Wp/Wy ~ ~Wy/Wp

The accurate evaluation of (n, ~) from Eq. (52) when
Dz, does not equal zero for i) q requires calculation of
the M, for i&q. This in turn involves evaluating a
determinant containing a very large number of terms.
If, however, we restrict consideration to cases where
Dw;WO only for i&g, we can use Eq. (53). Here the M;
are expressed completely in terms of the F;, which in
many cases have already been determined from calcula-
tions of the correlation factor. As a,n example, let us
consider the NaCl structure.

APPLICATION TO NaC1 STRUCTURE

Each sublattice in the NaCl structure is face-centered
cubic. Vacancy-jump frequencies near an impurity in a
face-centered cubic lattice can be defined as follows: m~

is the jump frequency for a jump between two nearest
neighbors of the impurity, m» for exchange with the
impurity, m3 for a jump from a nearest-neighbor site to a
non-nearest neighbor site, m4 for the reverse of a m3

jump, and zp for any other jump. Sites in set 1 and
neighboring sites in sets 2 to 5 are shown in Fig. 1.It can
be seen that

6'lay = 3R'3—2Kg )

hmg=4mp —4Z4,

DK3= 2'Mp —2R'4 )

6'N4= &p—Z04 )

6'Ns= 'leap
—Ql4 )

' J. R. Manning, Phys. Rev. 136, A1758 (1964).
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and all other hw; equal zero. In Eq. (53), w, z is the total
jump frequency to sites in set h from a particular site in
set g (summed over all sites in set k). Thus,

~12 ~3 ) ~21 4~4 )

K'13= 2'N3 ) &31=2K'4 )

m'14= m3 ) m41= m4 )

781S= 2'R3 ) R 51= 'R4 .
In addition,

P& wy&= 2wg+wo.

Substituting these values into Eq. (53) gives

(59)

3wo 2wg woL(w4 —wo)/w4]7 (1 F)—
(n, ,)= (60)

2m1+ 7Fze3
where

7F= 1+F2+2F3+F4+2Fg. (61)

The factor 7F has been calculated previously, assuming
vacancy-3ump frequencies m», m 1, m2, m 3, and m 4 as
a,bove. This factor depends only on the ratio w4/wo and
varies between the values 2 and 7, as shown in Fig. 2.
%hen m4

——mo, 7F equals approximately 5.15.
For a monovalent positively charged impurity ion

diffusing in a monovalent sublattice, q&= q, = e. Sub-
stituting Eq. (60) for (n;„) into Eq. (21) gives

p e —2Q,I1+ ping) 3

)
D kT 23)1+7FK3

(62)

20—
IS.I6

Fro. 3. The solid
line gives y1 as a
function of z 4/m0
and m0/m 4. The
dashed line gives
values obtained if
terms proportional
to m)4 —m 0 are ne-
glected.

where

Io

IS&

l3

II.IS

Q- —0

I I I I I I I I

0 0.2 OA 0.6 0.6 lo 0.6 IN 0.1 0.2 0

Wp/W~ —+ ~W~/Wp

~,=6+7F 14(1—F)(w4 —w—o)w4 '. (63)

For a, divalent impurity (q, =2e) in a monovalent
sublattice (q, =e), we find

pletely dissociate from the impurity. Each m3 jump is
necessarily followed by a m4 jump which returns the
vacancy to a site neighboring on the impurity, giving a
permanently bound vacancy-divalent impurity com-
plex. Moving the complex from sites c-b to sites c-d and
replacing it with two monovalent ions moved from sites
c-d to a-b results in no net flux of charge. Thus, the force
tending to move this complex is zero and p should equal
zero for a permanently bound complex. Also in the limit
where wo/w4 goes to zero, yq goes to —2 and 7F to +2.
Thus, for a monovalent impurity, p/D equals e/kT—in
this limit, just the negative of the Nernst-Einstein rela-
tion. This also is the expected value. Interchanging a
bound vacancy-monovalent impurity complex with two
monovalent ions results in a net flux of charge +e in a
direction opposite to the motion of the complex. This
gives the bound complex an effective charge —e.

In the opposite limit where w4/wo equals zero, one
6nds to two decimal places that y1 becomes 19.16 and
q» becomes 13.08. For z4 ——mo, q1 equals 11.15 and p2
equals 8.15.

The present equations for q1 and y2 include terms
proportional to m4 —mo. These terms do not appear in
previous treatments. They arise from the terms in Eq.
(53) proportional to hw, for i= 2 q, where site i is
on the second coordination shell. If these terms were not
included, A@1 and p2 would be given by the dashed lines
in Figs. 3 and 4. These terms do not appear in previous
treatments because sites on the second coordination
shell in these treatments have always been assumed to
have equilibrium vacancy concentrations. It is apparent
that eGects from these terms can be appreciable. For
example, when wo/w4 ——0, the dashed lines for q ~ and Ioo

deviate greatly from the correct values —2 and 0.
Expressions similar to Eqs. (62) and (64) have been

found previously. Howard and Lidiard, '4 using a pair
reorientation method with vacancy concentrations as-
sumed to be at equilibrium on all sites on the second
coordination shell from the impurity, found expressions
of this form but with 7F=7, q»=13, and q2

——10. These
correspond to values from the dashed lines in Figs. 3
and 4.

Previous calculations' using the present method but
making the approximation that vacancy concentrations

IS—

I5.06

where

p, 2e pg83

D kT 2701+7Fw3
(64)

o o= 3+7F—7(1—F) (w4 —wo)w . (65)

In Figs. 3 and 4, the solid lines give p1 and y2 as a
function of wo/w4. It may be noted that Ioo and hence
p/D for a divalent impurity goes to zero when wo/w4
goes to zero. In this limit the vacancy can never com-

FIG. 4. The solid
line gives ~ as a
function of m4/cop
and ur0/m4. The
dashed line gives
values obtained if
terms proportional
to m4 —mo are ne-
glected.
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(for vacancies which have never been at site j) are at
equilibrium on the second coordination shell gave ex-
pressions of this same form but with 7F=5.15, y»= 6
+7', and q ~ 3+—7—F. These three expressions are valid
in the special case where +4= mo. The essential difference
between the present results and those in Ref. 5 is that
(e;~) in the present paper replaces the quantity L in
Ref. 5. In the special case where mo=m4, I. equals
exactly (n;„). Otherwise, I. gives the values shown by
the dashed lines in Figs. 3 and 4.

If the pair reorientation method is applied in its
general form with allowance being made for vacancy-
impurity pairs which are not nearest neighbors and
vacancy concentrations are arbitrarily assumed to be at
equilibrium only at an in6nite distance from the im-

purity, results equivalent to those in the present paper
are found. The detailed calculations require solution of e
linear equations in n unknowns, where e goes to inanity.
Thus, determinants of infinite order again are obtained.
These expressions reduce exactly to Eqs. (21) and (52).

~13 ~»5 2~pm ) ~»4 @'pm )

Z~w»=2w~+wp'

Substituting these values into Eq. (52) gives

(67)

3wp- 2wi+2wp'E(w—'=w'p)/w*pj(1 ~')(~;„)=,(68)
2R»+ 2&p;F;+5K'p F

2F;= 1+Fg,
SF =2F3+F4+2FS.

(69)

(7o)

Both F; and F have been calculated previously in
terms of the above jump frequencies in correlation-

SPECIAL BINDING AT SECOND-NEAREST-
NEIGHBOR SITE

In a face-centered cubic sublattice, a vacancy at a
second-nearest-neighbor site from a divalent impurity
may still be strongly bound to the impurity. Then,
instead of the jump frequencies, mo, m», m~, m3, and m4

which were assumed above, a better approximation to
the actual vacancy-jump frequencies might be to let m»

be the frequency for exchange with the impurity m».

For a jump from one nearest-neighbor site to an-
other, let mp; be that from a first-nearest neighbor to a
second-nearest neighbor, m;p from a second- to first-
nearest neighbor, mp from a first-nearest neighbor to
other sites m which are not a first or second neighbor of
the impurity, m; from a second-nearest neighbor to a
site m, and zoo for all other vacancy jumps.

This gives
Azo» =3Rp))s

—2Ã» )

hm g
——4m;~ —4';p )

and all other hm; equal zero. Also

QP»g='%ps )

factor calculations. ' It was found that

56.04+19.22(w, p/w; )
2F'=

32.04+19.22(w;p/w; )
121.72+66.99(w;p/w; )

SF =
32.04+19.22(w;p/w, )

(71)

(72)

The jump frequencies between sites P, i, and m are re-
lated by the equation

wp'/wp~= w~p/w*'m. (73)

This equation must be true if accumulation of vacancies
at sites P, i, or m in the absence of driving forces is to be
avoided. For a divalent impurity, q&=2e. Then with

q, =e, it follows from Eqs. (21) and (68) that

where

p, 28 ygop~

D kT 2K'»+7F 'Wp)ps

225.88+191.87(wp;t'wp )
gs=

32.04+19.22 (wp;/wp )

(74)

(75)

121.72+123.03(wp, /wp )+19.22 (wp;/wp„)'
7p= . (76)

32.04+19.22(wp;/wp )

When there is special binding at a second-nearest-
neighbor site, one expects wp; to be much greater than
wp . Then Eq. (74) becomes

p/D= (2e/kT)L9. 98wp„/(2wg+wp;) j. (77)

There is some evidence in NaCl that a vacancy
neighboring on a divalent Ca or Mn impurity ion has a
jump frequency m p; much larger than m». ' ' Then Eq.
(77) would reduce to

p/D= (e/kT) (19 96wp /w. p,) (78)

and the ratio wp /wp, ——w, /w;p can be calculated from
a measurement of p/D. The measured values at 700'C
of p/D=0. 07e/kT for Mn++ in NaCl" and of p/D
=0.04e/kT for Ca++ in NaCl "gives

w; /w;p=0. 0035 for Mn++,

w;„/w;p =0.002 for Ca++.

According to this, the reassociation jump frequency
zo,p from site i is 300 to 500 times larger than that for
dissociation m; . The probability that the vacancy
escapes from the impurity on any given jump thus is
quite small.
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