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One- and Two-Photon Transitions of Atoms in Solids*
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The theory of one- and two-photon t-ansitions between a given pair of impurity levels of the same parity
is developed. As is well known, lattice vibrations assist the otherwise forbidden one-photon transition, in-
creasing its intensity with temperature. The two-photon transition rate is shown to have a complementary
decrease with increasing temperature. A measurement of both temperature dependences determines the
effective frequency and coupling constant for the interaction. The formalism is applied to predicting the two-
photon transition rate for the 4d'o-4d'5s transition of the silver ion in NaCl: Ag. For an experiment using a
ruby laser and an ultraviolet beam the maximum absorption coefBcient predicted for the ultraviolet beam
is 3.2X10 'SEE cm ' at low temperatures, where Ii is the flux (photons/cm' sec) of the laser and X is the
Ag+ concentration. This should be within reach of present experimental techniques.

I. INTRODUCTION

HE well-known theory of the simultaneous ab-
sorption of two photons by an atom' has been

extended to impurity atoms in a solid by Kleinman. ' He
estimated transition rates by assuming that only a
single intermediate state is of importance and that the
one-photon oscillator strengths connecting it to both
initial and 6nal states are unity. Other two-photon
calculations have been made for band-to-band transi-
tions' and excitons. ~ Experimental observations of
various two-photon absorption processes have also been
reported. '

In static systems possessing inversion symmetry,
two-photon dipole transitions may take place only
between states of the same parity. Transitions between
such pairs are dipole-forbidden in ordinary single-
photon spectroscopy. In a crystal (or molecule), how-
ever, interaction with vibrations may admix a small
amount of states of opposite parity giving rise to a one-
photon transition rate which increases with tempera-
ture. A now familiar example of these vibrationally
assisted transitions is aRorded by absorption from the
d" ground state to the (mostly) d's configuration of a
silver ion included as a substitutional impurity in an
alkali halide lattice. These temperature-dependent ab-
sorption bands have been investigated in NaCl:Ag by
Martienssen. ' This work has recently been extended
over a wider spectral range and to other alkali halides

~Research supported in part by a grant from the National
Science Foundation and in part under contract with the U. S.
Army Research QfBce—Durham.' M. Goeppert-Mayer, Ann. Physik 9, 273 (1931).

~ D. A. Kleinman, Phys. Rev. 125, 87 (1962).' R. Braunstein, Phys. Rev. 125, 475 (1962).
4 R. Loudon, Proc. Phys. Soc. (London) So, 952 (1962).'W. L. Peticolas, J. P. Goldsborough, and K. E. Rieckho6,

Phys. Rev. Letters 10, 43 (1963); S. Singh and B. P. Stoiche6,
J. Phys. Chem. 3S, 2032 (1963);%'. Kaiser and C. G. B. Garrett,
Phys. Rev. Letters 7, 229 (1961);J. J. Hopneld and J. M. 4'or-
lock, Phys. Rev. 137, A1455 (1965).'%. Martienssen, Proceedings of the Internationa) Conference on
Semiconductor Physics (Czechoslovakia Academy of Science,
Prague, 1960), p. 760,

by Onaka et ul. ~ and by Fussganger. ' Theoretical inter-
pretations of these spectra have been made by Knox'
and by Conway et al. '0

In this paper we point out that one may advan-
tageously study one- and two-photon transitions to the
same state, at least in systems displaying vibrationally
assisted spectra. Ke demonstrate that the one- and
two-photon spectra have strikingly diRerent tempera-
ture dependence, the strength of the two-photon
transition falling oR as increasing temperature mixes in
more of an odd-parity excited state. It is found that
comparison of these one- and two-photon spectra allows
simultaneous determination of the eRective frequency
and coupling constant of the interacting lattice modes
independent of a knowledge of concentration.

%e address ourselves to the particular example of
NaCl:Ag. In this case it is possible to make a quite
careful evaluation of the two-photon matrix element.
For the model adopted the technique of "averaging"
energy denominators is not only equivalent to a time-
dependent variational treatment, but also produces an
approximate upper bound for the transition rate. VVe

also calculate the contribution of the radiation Hamil-
tonian's term in A' which couples opposite parity states.
This interaction will cause transitions between the
ground state and the vibrationally admixed odd-parity
part of the Anal state. It is found to be negligible.

The model for the calculation is presented in Sec. II.
The theory for one and two photon transitions to the
same state is presented in Sec. III where the two-photon
results are cast into a form suitable for the application
to NaCl:Ag given in Sec. IV. The calculation is briefly
discussed in Sec. V. Detailed evaluation of matrix ele-
ments, and the polarization dependence of two-photon
processes are given in the Appendix.

'R. Onaka, A. Fukuda, K. Inohara, T. Mabuchi, and Y.
Fujioka (to be published).

8 K. Fussganger, Diplomarbeit, Johann Qlolfgang Goethe Uni-
versitat, Frankfurt am Main, 1964 (to be published).' R. S. Knox, J. Phys. Soc. Japan Suppl. 1S, 268 (1963).' J. Conway, D. Greenwood, J. Krumhansl, and . Martiens-
sen, J. Phys. Chem, Solids 24, 239 (1963).
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II. THE MODEL

The electronic levels of our model system, chosen to
idealize NaCl:Ag, are shown in Fig. 1. These specify
the states of the system with the lattice at its static
equilibrium. The ground state P, is taken to be spheri-
cally symmetric (the 4d" configuration of Ag+ in
NaC1:Ag). The lowest excited state P, is of even parity
(in NaC1:Ag it is built from the 4d'5s configuration).
Above this lies the odd parity state P~(4d'SP) followed

by a continuum of conduction-band states. Here and
hereafter we shall neglect the crystal-field splittings of
the excited states, the resulting integrated absorption
coefficient being the area under all bands.

Ke assume that an electron-phonon interaction linear
in an odd-parity lattice mode mixes P, and P~, giving
rise to phonon-assisted transitions. Mixing of P, with
other excited states, and perturbations of the ground
state are neglected. %e work in terms of a single
"eAective" mode; generalization to many modes is
straightforward. The ground state is represented by the
Hartree-Fock wave function for the free ion. The ex-
cited-state wave functions are approximated by Slater-
type orbitals orthogonalized to the ion core. Overlap of
the wave functions with those on neighboring ions is
neglected. In two-photon processes we consider two
light beams each of whose photon energy is smaller
than E.—Eg.

III. THEORY

CONDUCTION 8AND

{4d 5p)

f, (4d15s)

Euv

(4d 0)

I.'IG. 1. Model for the electronic states of an impurity
atom in the rigid lattice.

index of refraction of the pure host material at the mean
energy of the absorption Er,. The (unit) polarization
vector of the incident light is s. (Q') r indicates a thermal
average of Q' at temperature T and enters via the
appearance of yQiP„ in the matrix element for the
transition; otherwise (3a) is just the ordinary "general-
ized Smakula equation" for the absorption by an im-
purity in a solid. " Performing the indicated thermal
average'4 gives

In the lattice, phonon coupling gives a perturbed
excited-state wave function

c4 +cA' ' Ic —I'+lc I'=I
7'It

X
2' ph

fScal ph
coth . (3b)

2kT
for the final state of interest. For a linear electron-
lattice interaction IJ,T., the mixing can be described in
terms of a coupling constant y,

c.= 8 nl &.LIP*)l(E. E.) =vQ, (—2)

where Q is the normal coordinate" for the mode in
question and E, and. E~ a,re the eigenvalues of f, and

f„ in the static lattice. In terms of the coupling con-
stant and the phonon frequency ~~h, the integrated
absorption coefficient for the one-photon (phonon-as-
sisted) transition between/, and f~ is well known to be"

(bi ' Ã e'
E= p(E)dE= I

—(2s.)'—
& bo n tsc

XEI 1&p„l e rip & IV&Q'&r (3a)

In (3a) (h~ /bo) is the effective field ratio, X the con-
centration of impurities, and n the (slowly varying)

"%'e adopt the convention of Born and Huang, Dynamical
Theory of Crystal Lattices (Oxford University Press, Oxford, 1956)
and absorb the square root of the "mass" of the mode into the
coordinate.

"R. Kubo and Y. Toyozawa, Progr. Theoret. Phys. (Kyoto}
13, 160 (1955).

In the dipole approximation, the rate My,
(2) of simul-

taneous absorption of two photons one of energy E
and the other E& by an atom is given by'

(c2)2
zvgg&" = (2s)'I —

I
EgE„~FgF„„

aci

&fl". rln&&nl«rig&xp

&fl ~ elm()In~. - rig) '
+ (4)

~ng ~uv

The second-order transition takes place from initial
state g to final state f through coupling with inter-
mediate states n. F~ and F„are the fluxes (photons
cm ' sec ') of the two beams which have polarization
vectors e~ and a„.E„,is the energy of the intermediate
state relative to the ground state, conservation of energy

' See, for example, D. L. Dexter, in Solid State Physics, edited
by I'. Seitz and D. Turnbull (Academic Press Inc. , New York,
1958), Vol. VI.

"See Ref. 11, Chap. IV, Sec. 16.
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demands that Ero=E„„+Ei and we assume that
neither beam is capable of causing transitions by itself
(cf., Fig. 1).

One may de6ne an effective absorption coefFicient

p„„(E),as the energy removed from the "ultraviolet"
beam per unit time for a beam of unit intensity in the
presence of the "laser" beam. It is then a straightfor-
ward matter to obtain the integrated absorption
coefEcient for a concentration of E impurities dispersed
in a dielectric medium having indices of refraction nI
and e„at energies E~ and E„.This gives one a "two-
photon Smakula equation" of the form

~Bi,iS, ...y' c E,E„„
X = p, (E)dE=

I I
(21r}'— Fi.V

~ &o, i&o...J Ac nin„.

In writing (5) we have assumed that the energy of the
transition is large compared to the width of the ab-
sorption band; E„ is the average energy of the ultra-
violet radiation over the absorption band. E~g~') is the
"second-order matrix element"

8"l~- rlf-&Q-I«rlk. &

fo
'o E„g—E)

The b's are the various effective fields of laser and
ultraviolet frequency. The hnal thermal factor in
parentheses in (5) arises from the lowest order approxi-
mation to c, appearing in (1) as demanded by nor-
malization and the form (2) of co. We may rewrite
(5) as

bloc, l bioo, uv c EiEuw
IC„„= (2~)'— F(1V

I
Elo"'I'

BQ, f bo, t1~ A~ S~~

( y'h Aa) pb

XI 1— coth . (7)
2Qlpb 2kT

This distinctive temperature dependence of the two-
photon absorption coefIicient can be viewed as the
complement of the phonon assistance of the one-photon
transition between the same pair of levels. As Pi, is
mixed into Pr by the lattice some f, is "mixed out, "
resulting in a decrease in the two-photon intensity.
This temperature dependence should be most useful in
the positive identihcation of two-photon absorption
processes resulting from dipolar terms in the radiation
Hamiltonian. As we shall see, two-photon transitions
between states of opposite parity arising from higher
moments of the term in A A behave quite differently.

If we wish to compute a transition rate or absorption
coefficient we must make simplifying approximations

in the second-order matrix element E~g(2). An obvious
simplification is the analog of the one customarily used
in the theory of dispersion forces."Ke take an "aver-
age" energy denominator independent of state, move
it outside the sum and then evaluate what remains by
using the closure property. If E is the average so
dehned, we obtain

1 1
+

, EE Ei —E E„.)—

XQ l(e-')(« ~ r) l4.& (g)

For a spectrum of the type shown in Fig. I it is obvious
that an upper bound to the transition rate is obtained
by setting E=E„,since f~ gives the smallest energy
denominator of any possible intermediate state appear-
ing in (6). More generally, Yarisio has shown that the
denominator "averaging" process corresponds to a vari-
ational treatment of the time-dependent Schrodinger
equation. A similar technique has been employed by
Axe" in considering two-photon and Raman processes
on rare-earth ions and by Gold and Bebb" in considering
multiphoton ionization.

Recently Ianuzzi and Polacco" have emphasized that
the term (e'/2mc') A A in the perturbation Hamiltonian
can, going beyond the dipole approximation, cause
two-photon transitions between states of opposite
parity. Since this process may contribute to the over-all
two-photon rate in the present problem, via coupling
to f„,we sketch the first-order perturbation theory for
the interaction. For two beams of different frequencies
co„and co~, the relevant part of the Hamiltonian is

Hgm' (c'/mc')Ai A-—
XexpoL(lti+lr„) r—(oii+io„)t), (9)

where the k's are wave vectors.
Retaining only the lowest nonvanishing multipole

term, the atomic transition rate for this perturbation is

rex*=I (2s)'e'/m'c'j(FiF„«/coioi„~)

X I(«'..)&fl(ki+k..) rig&I' (10)

This vanishes identically for perpendicularly polarized
beams and so, in any event, may be eliminated experi-
mentally and subsequently measured independently. It
should also be noted that this result gives a vanishing
rate for a single-beam two-photon experiment per-
formed with circularly polarized light.

If we again dehne an effective absorption coefficient

"See, for example, the review by H. Margenau, Rev. Mod.
Phys. 11, 1 (1939)."R.Yaris, J. Chem. Phys. 39, 2474 (1963)."J. D. Axe, Phys. Rev. 136, A42 (1964).

' A. Gold and H. B.Bebb, Phys. Rev. Letters 14, 60 (1965)."M. lanuzzi and E. Polacco, Phys. Rev. Letters 13, 371 (1964).
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p~~(E; A') and integrate, we obtain

(A') = p„(E;A')dl. '

h( ..h).. g '(2~) oe'kF, .V
~P QV@P $ P+ C PE)S11y

X(nP (E,/E„)+n„„'(E„,/E, )+ 2n,n„„Io) k„„)

~pg
X i &y„Isla,) ~' coth —. (11)

2copg 2kT

The k's are unit vectors in the directions of beam
propagation.

IV. APPLICATION TO NaC1:Ag

The matrix element in (8) may be rewritten as

width 0.1 eV we obtain a peak absorption coeKcient

go~, m~= 3.2X 10 EFl (cm )

at O'K. For typical concentrations of %=10" cm ',
one has an easily measured absorption coeKcient of 1

cm 'for alaser Aux of 4X10"photonscm 'sec '. Thus,
the measurement seems practical, since Quxes greater
than 10" can be obtained. Unfortunately, very high
power laser beams are capable of doing gross macro-
scopic damage to transparent crystals, probably making
it necessary to perform measurements at lower power
and giving rise to considerable additional difBculty.

The A' term may be similarly evaluated. The radial
matrix element entering is

N„g= fo,rf4'»= 1.«o

as discussed in the Appendix. The integrated absorption
coeKcient is

where

IVI'= fo,f f4o& ,
al

E (A') =7.43X10 "
X (8.52+5.08jk k„ i)B(, „)ill'F

X (y'k/2ooog) coth(hs&, g/2kT) (eV cm '). (14)

is the radial part of the matrix element of r' between
the 4d and Ss orbitals for Ag+, and the f's are the usual
radial wave functions. This has been evaluated using
the Hartree-Fock function" for the ground state (4d)
and Slater-type functions" for the excited state. The
details of this evaluation (showing a remarkable in-
sensitivity of result to choice of parameters) are treated
in the Appendix. C(s~, s„„)is a factor arising from the
angular integration and averaging. It is discussed in
detail in the Appendix where its value for various
states of beam polarization is tabulated. Typically it is
about 0.15.

The Lorentz-Lorenz form has been used throughout
for the effective field corrections, i.e.,

(hi.o,ovhi. o, i/ho, o~ho, i)'=(L(nP+2)/3)L(n„'+2)/3]}',

8(s~,e„) is an angular factor which varies between
zero and 43 and is tabulated in the Appendix. Even for
the largest values of J3, X„(A') will be six orders of
magnitude smaller than the dipole absorption given at
low temperatures by (13) and almost surely unobserv-
able under presently attainable experimental conditions.
This situation will not change substantially at higher
temperatures.

The temperature dependence of one-photon absorp-
tion is shown and fit in. Fig. 2. Ke use the results of
Ref. 7 which reveal that the dominant temperature-
dependent transition lies at 6.9 eV, an energy above the
range accessible to Martienssen's instrument. ' It gives
a one-photon oscillator strength an order of magnitude

appears in the two-photon absorption coeKcient. We
take E&= 1.78 eV appropriate to the ruby laser and E„=5.02 eV for the (weighted) peak position as given by
the data of Onaka et u/. ' E is (conservatively) taken as
the band gap 7.8 eV and the indices are m~=1.54 and
m„=1.65. From the Appendix M, z is typically 2.5ap'.
These parameters give

E„=1.53X10 ooC(«, e„)
XSFi(1 (y'k/2~os) coth (koo—,q/2k 2') )

X(eV cm '). (13)

& 2

X
LIJ

l-

C3l-
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Taking C=0.15 and assuming a Gaussian band of

'0 B. H. %'orsley, Proc. Roy. Soc. {London) A247, 390 (1958).~' J. C. Slater, Phys. Rev. 36, 57 {1930).

Fzo. 2. Fit of the temperature-dependence data of Onaka et OI.
{Ref.7}.Over 90% of the total oscillator strength comes from the"f" (6.9-eV) band shown here. The 6tted solid curve drawn
through the experimental points is of the form f(T)=f(0)
Xcoth(Acy~q/2kT) with ~q ——2.5X10"sec '.
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FIG. 3. Temperature dependence of the integrated two-photon
absorption coefBcient for NaCl:Ag+. The beams are polarized
parallel to each other. Using values obtained from Fig. 2 and
matrix elements given in the text, E„ is given by E =2.72
X10~'EPft 1—0.044 coth(hopph/2kT) g, where cyph =2.5X10 "
sec '.

V. MSCUSSION

A simple method for obtaining two-photon absorp-
tion coefficients a priori has been presented. The ap-
proximation of taking an "average" energy denominator
provides one with a reasonable estimate (or even an
upper bound) for the rate. It has been shown that the
strength of a two-photon dipole absorption has a unique
and readily identi6ed temperature dependence arising
from the same phonon interaction which assists the
otherwise forbidden single-photon transition between
the same pair of levels. Simultaneous measuremeot of
one- and two-photon absorption allows independent

greater than that previously quoted. The 6t to the
data gives cosh=2. 5&(10" sec—'. Inserting the value of
the 4d —SP dipole-matrix element given above we find

(y'h/2(u~h) =4.4X10 '

Figure 3 uses the parameters thus obtained and the
above value of the coupling constant to plot the pre-
dicted temperature dependence for two-photon transi-
tions in Nacl:Ag as given by Eq. (13).In practice it is
hoped that this procedure can be reversed, measure-
ments of the two temperature-dependent spectra being
used to determine y and u, h.

Comparison of the present results with the rough
estimates of Kleinman is best done via his Eq. (6).
It gives an integrated absorption coe%cient of 1.09
X10 "XF~ eV cm '. Presumably this should be inter-
preted as already containing the appropriate angular
factors. Taking the maximum value of the angular
factor C(si, e )=0.178, Eq. (13) gives 2.7&&10 4'ArFi
eV cm '. Hence, the maximum absorption strength pre-
dicted here is one fourth that estimated by Kleinman's
approximation. Even this close an agreement is likely
fortuitous.

measurement of the effective phonon frequency and
coupling constant.

The A' coupling has been examined and its angular
and temperature dependence explicitly noted. For
NaCl:Ag it gives a negligible contribution to the two-
photon absorption.

The predicted peak two-photon absorption coefhcient
of 3X10 "F~X cm ' at low temperatures should be
measurable with current experimental techniques, even
though care will be necessary in avoiding macroscopic
damage to the samples by the intense laser beam.

The neglect of crystal-6eld splittings is not a serious
limitation on the applicability of the present work.
Inoue and Toyozawa have recently given selection rules
for two photon transitions between crystal Geld split
levels. ~ These should prove of great use in making
explicit symmetry assignments to the various peaks
observed in the spectrum of NaCl:Ag.

Finally it should be remarked that the neglect of
overlap corrections and the use of Slater-type wave
functions in evaluating the transition matrix elements
are not expected to cause gross errors. It has been found
previously that overlap corrections to dipole-matrix
elements are extremely small. "The insensitivity of the
matrix elements to the choice of parameters in the
Slater functions gives one con6dence that the results
are not artifacts of that particular approximation.

ACKNOWLEDGMENTS

The authors wish to thank H. B.Bebb and T. H. Keil
for several helpful discussions.

TABLE I. The radial integrals .M, tl
=J f&,r'f4ddr and 3f„d= I"ff,„rf4~dr as a function of the parameter Z—S. Lengths are

expressed in units of a0 and rf*=4 is used throughout.

(Z—S)/n*

1 ' 7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.67
2.67
2.70
2.67
2.65
2.59
2.51
2.51
2.45
2.40
2.34

0.97
0.99
1.00
1.01
1.02
1.01
0.99
1.00
1.00
1.00
0.98

~ M. Inoue and Y.Toyozawa, J.Phys. Soc. Japan 20, 363 (1965).~ See, for example, A. Gold, J. Phys. Chem. Solids 18, 218
(1961).

APPENDIX

The radial-matrix elements M,~ and M„~ have been
evaluated for the silver ion using the Hartree-Fock
function for the 4d shell" and Slater-type functions for
the Ss and Sp orbitals. These are of the (unnormalized)
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form

fs (r) —r a~e—(z—s) /n~ (A1)

where n* is the "eAective" principal quantum number
and Z—5 is taken as a parameter. These functions are
orthogonalized to the inner electron wave functions and
normalized prior to use. The results are given in Table I.
A remarkable insensitivity to parameter choice should
be noted. The peculiar "wiggles" in the value of Mpp
are due to round error and of no particular interest.
All numerical integrations were performed on the Uni-
versity of Rochester Computing Center's IBM 7074
using programs by T. H. Keil. '4

The angular factor C(e&,ez) appearing in the matrix
element (12) is

Case

a.

b.

0
m/4
m./2

0
m /4
7r/4
~/4
m/2
n- /2
m/2

any
0
/4

m/2
0

m/4
~/2

C(ei, a2)

0.156
0.150
0.144

0.156
0.144
0.150
0.156
0.133
0.144
0.156

&(~1,~2)

0.667
0.500
0.333

0.667
0.333
0.500
0.667

0
0.333
0.667

TAsr. E II. C(aI, a2) and 8 (aI,a2) at various beam and polariza-
tion angles. See Fig. 4 and its caption for definitions of angles. The
first column refers to the three cases of beam polarization:
(a) both unpolarized; {b) beam 1 polarized; (c) both beams
polarized.

C(eg, ez) =Av„,„2P
(ei r)(ez r)

Pm+ 0 da, (A2)
f2

(a) Both Beams Unpolarized

14+13 tan2o.
C(e~~ez) =

5 32 2 1+tan2O.

where the average over polarizations is to be taken
when one or both beams are unpolarized. Delning
a,ngles n, P, and y as in Fig. 4 and its caption one ob-
tains the following expressions for C.

C.

0
0
0
0
0
0

m/4
~/4
~/4
~/4
~/4
m/4
~/2
~/2
~/2
m-/2

0
0
0

~/4
~/4
x/2
0
0
0

m/4
m./4
m/2
0

m/4
m /4
m/2

0
m/4
g/2
~/4
~/2
~/2
0

m/4
m/2
~/4
x/2
m/2
any
m./4
m/2
m/2

0.178
0.155
0.133
0.178
0.155
0.178
0.155
0.144
0.133
0.166
0.155
0.178
0.133
0.144
0.155
0.178

1.333
0.667

0
1.333
0.667
1.333
0.667
0.333

0
0.972
0.667
1.333

0
0.333
0.667
1.333

(c) Both Beams Polarized

C= (2/5 3z)L(3+cos'n) coszP coszy

+3 sin'P cos'y+3 cos'P sin'y+4 sin'P sin'y

+2 cosa sinP sing cosy]. (AS)

itg+kz r
j7 m2P mI ~ -dQB(ei,e2) =2 Z

)&Av„,„ieg ~ api'. (A6)

Evaluation gives:

(b) Beam 1 Polarized, Beam Z Unpolarized

( / '3)L7+( +s' P) "a n]/i- + a"a] (A ) These results are tabulated in Table II. Similarly the
factor B appearing in (14) is

IT CIRCLE IN )fZ PLANE

Fzc. 4. Angles appearing in C(aI,e~) and B(a1,a2) cosa = kI k2,
cosp= al y; cosy=@2 {z)(k~).The unit vector k~ is taken as the
x direction, placing e1 in the y—z plane. The angle between al and
y is P. The angle between the directions of the two beams is a.
y is the angle between a2 and the projection of y on the plane
perpendicular to k2.

"T.H. Keil, University of Rochester, 1964 (unpublished).

(a) Both Beams Unpolarized

B= —,
' (2+ tan'a)/(1+ tan'a) .

(b) Beam f Polarized, Beam Z Unpolarized

B= zz (1+sin'P tan'a)/(1+ tan'n) .

(c) Both Beams Polarized

B= z'(cosa cosP cosy+ sinP sing)'.

Values are tabulated in Table II.

(A7)

(A8)

(A8)


