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Transport Equations for Superconductors
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Using the microscopic theory of superconductivity due to Bardeen, Cooper, and SchrieGer, transport
equations, analogous to the Boltzmann transport equation for normal metals, are developed for super-
conductors. The damping is assumed to arise from collisions of the electrons with randomly distributed im-
purities. The collisions are treated in the Born approximation. By making suitable assumptions about the
solutions to the transport equation, the two-Quid model of a superconductor is derived. The response «a
superconductor to various driving forces is investigated, giving expressions for the phenomenological re-
lations and thermal conductivity of a superconductor.

1. INTRODUCTION

'HE Holtzmann transport equation as applied to
normal metals is very well known and has been

used extensively to describe all types of transport
phenomena. ' The object of the present paper is to de-
velop an analogous transport theory for supercon-
ductors. This transport theory is based on the micro-
scopic theory of superconductivity due to BCS' in the
Gorkov formulation. ' I'or a description of transport
phenomena in superconductors it is not sufhcient to
study only the excitations. Thus, for a superconductor
two distribution functions are required (or four if spin
is considered), which can be regarded as describing
the superfluid and normal components. There are also
two (or four) transport equations in general coupled to-
gether, giving the evolution of these distribution func-
tions. The scattering of the electrons is assumed to arise
from elastic scattering by randomly distributed im-
purities. The collision term in the transport equation is
treated in much the same spirit as the collision term in
the Boltzmann equation for normal metals. The trans-
port equation obtained here is a generalization of the
Boltzmann equation found by Bardeen, Rickayzen, and
Tewordt' for the excitations in a superconductor.

The two-Auid model of a superconductor is derived by
making suitable assumptions about the distribution
functions which are solutions of the transport equation.
It is assumed that the system is in local thermodynamic
equilibrium, i.e., equilibrium in the superconductor is
attained much more rapidly than any other process that
we consider. The actual interactions that lead to this
equilibrium are not contained in the transport equation
given here. These assumptions concerning the distribu-
tion functions lead to the two-Quid equations proposed
by Landau' for He II extended to the case where the

'A. H. Wilson, The Theory of ttrretats (Cambridge University
Press, New York, 1958).' J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).'L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 54, 755 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 505 (1958)).

4 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
982 (1959).

~ L. D. Landau and E. M. Lifshitz, Ptuid Mechanics (Pergamon
Press, Inc. , New York, 1959). C. J. Gorter, Progress in Jom-
Temperature Physics, edited by C. J. Gorter (John Wiley R
Sons, Inc. , New York, 1961), Vol. 3.
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particles are charged. The two-Ruid equations of a super-
conductor are not very realistic because lattice scattering
is generally more important than the electron-electron
scattering required to maintain local equilibrium.

In Sec. 4 the linear response of a superconductor to
various driving forces is found. Only the case where the
driving forces are very slowly varying (with respect to
the coherence distance) is considered, i.e., London-type
superconductor. These considerations lead to expres-
sions for the phenomenological relations and thermal
conductivity of a London-type superconductor. These
relations agree with those suggested recently by Lut-
tinger. Not unexpectedly, it is found that the excitations
in a superconductor behave very similarly to electrons
in a normal metal as far as their response to driving
forces is concerned.

Applications of the transport equations are only

made to London-type superconductors. But the equa-

tions may equally well be used to describe transport
properties of Pippard-type superconductors, e.g., for the

electromagnetic properties results are obtained in agree-

ment with those of other authors~ using the Kubo

approach.

2. THEORY

In order to develop the transport equations we use

the simple phenomenological Hamiltonian for a super-

conductor proposed by Gorkov'

5e=g dnP, '(r)

8
p+ A(r, t) +V„(r) -ey(r, t) P,(r)—

28$ — C

dr/„t(r)g„t(r)P„(r)P„(r), (2.1)
2 818'

J. M. Luttinger, Phys. Rev. 136, A1481 (1964).
7 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958);

P. B. Miller, ibid. 113, 1209 (1959); A. A. Abrikosov and L. P.
Gorkov, Zh. Eksperim. i Teor. Fiz. 55, 1558 (1958) /English
transl. :Soviet Phys. —JETP 8, 1090 (1959)g.
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where V„(r)=P, V(r —R,) is the potentia, l due to a set
of impurities at the positions R; and A(r, t) and. Q(r, t) are
potentials depending, in general, on space I' and time t.
The Green's functions are defined in the usual way by

(2 2)

where 1 is used as an abbreviaton for r~t~ and ~ indi-
cates the spin. The operators in (2.2) are in the Heisen-

berg representation and the angular brackets indicate
an ensemble average. Thus

(Q) =«Q expL —J3(&o—»)3/T«xp[ —&(~o—
t &)1

where Ko is the Hamiltonian (2.1) with the fields A and

p omitted and ti is the chemical potential. The equations
of motion of the Green's functions (2.2) are

{i(ct/Bti) —(1/2m)[pi+(e/c)A(1) J'—V„(1)+eg(1))G+(1,1')+A(1)Ft(1,1')= 8(1—1'),
{i(8/ct4)+ (1/2m) [pi (e—/c) A(1)]'+V„(1)—eg(1) )Ft(1,1')+ht (1)G~(1,1') =0,

{i(8/Bti)—(1/2m) [pi+ (%)A(1)$'—V„(1)+eg(1)}F(1',1)—A(1)G (1',1)=0,
{i(cj/Bti)+(1/2m)[pi —(%)A(1)j'+ V„(1)—ep(1) )G (1',1)—6"(1)F(1',1)= —8(1—1'),

(2 3)

where

6'(1)=—igF'(1, 1); 6(1)=—igF(1,1). (2.4)

In (2.3) we have not included explicitly the Coulomb
interaction. This is treated in the Hartree approxima-
tion and has the effect of screening the impurity po-
tential, and we suppose that it is already included in the
definition of V„(r). g is also the total self-consistent
potential in the metal.

For simplicity we begin by considering the case where
there is only a transverse vector potential A, acting on
the superconductor. Thus, in (2.3) we set &=0 and re-
place A by A&. The modifications introduced by longi-
tudinal potentials are considered below. To obtain the
transport equation we use a procedure, similar to that
of Kadanoff a,nd Baym, ' and add to Eqs. (2.3) the corre-
sponding adjoint equations, introduce new variables
R=~(ri+ri'), r=ri —ri', and t=2(ti+ti'), and take the
limit t~'~ t~+. The Green's functions are then assumed to
depend on the three variables R, r, and 3 and are entirely
analogous to the well-known Wigner distribution func-
tions. It is convenient to use a matrix notation and

introduce a column vector

'G+(rit, r, 't+) G~(R,r, t)
G'(R, r, t) = Ft(rit, ri't+) = Ft(R,r, t) . (2.5)

F(r,'t+, rit) F(R, —r, t)
.G (ri't+, rit). .G (R, —r, t).

A 2)&2 matrix notation leads to difficulties and so we
use this expanded version. The order of the times in
(2.5) should be noted. The equations thus obtained by
combining (2.3) with the adjoint equations are (retain-
ing terms linear in the fields only)

{M(R,r, t) —(e/mci)[A&(1) Vi+A&(1') Vi ])G'(R, r, t)
= [V,(ri)Pi —V„(ri')P2]G'(R, r, t) . (2.6)

Here M is an operator [see below Eq. (2.8)j and Pi
and I'2 are the diagonal matrices

1 1

—1 E

It is convenient to take the Fourier transform of (2.6)
on the variable r. We then find

Here M(R, k, t) is the matrix

cj ik
i + V——

m
6(Rp, t)

I M(R,k, t) —(e/mcz) [A,(Ri„t) (-;V+ik)+A, (Ri,*,t) (-', V—ik) )I G'(R, k, t)
= (1/V)P, V~(q)e'i'R[PiG'(R, k——', q, t) —P2G'(R, k+-';q, t)). (2.7)

t3 1
At(Ri„t) i—+2ei, — V'

Bt 4m

1
i—2ei,+ V' —A(Ri, t)

Bt 4m

(2.8)

—At(RI„t)
8 z

i———V
R teal

L. P. KadanoG and G. Baym, QNumtum Statistical Mechanics (W. A. Benjamin, Inc. , New York, 1962).
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and we have used the abbreviaton V= Vg, es ——k'/2m

and Rz ——R+(i/2) Vk, Rz*——R—(i/2) V&. Any function
of RI, can be understood in terms of its power-series

expansion

a(R, t) =A(R, t)+(i/2)(V Vs)~(R,t)+ (2.9)

The energy gap appearing in (2.8) may be regarded as
a self-consistent field.

For the purpose of determining the collision term in
the transport equation, we will neglect the external field

and regard
~

6
~

as a constant. After we have found the
collision term, these omitted driving terms will be re-
instated in the transport equation. As the scattering
potential is time independent the only time dependence
in (2.7) (omitting A,) arises from the phases of A and F.
Prom the definitions (2.2) (see Gorkov')

F'(R r t) = e'"I"F"(R r t) F(R r t) = e ""F(Rr t)

~ (R,t)=e" ~A~; &(R,t)=e-""~~~, (2.10)

and it is convenient to define a new distribution function
G(R, r, t) analogous to (2.5) except that Ft and F are
replaced by Ii t and I", respectively. The only effect
of this time dependence is to replace ez in (2.8) by

4= e~ —p. So that Eq. (2.7) becomes

N(R, k, t) G(R,k, t) = (1/V)P, U,(q).'»
X [PtG(R, k—-', q, t) —P,G(R, k+siq, t)], (2.11)

where N differs from M only in that ez replaces ei, and
~
A~ replaces A and At. Thus

N(R, k, t) = M(R,k, t, i
6 i)+(Pi—Ps)ti.

Then regarding
~

6
~

as a constant we take the Pourier
transform of (2.11) with respect to R and t. It is con-
venient to formally retain the t dependence in (2.11).

N(K, k, W) G(K,k, W)
=(1/U)P, V„(q)[PiG(K—q, k—-,'q, W)

—PsG(K —q, k+-', q, W)]. (2.12)

The collision term is obtained by iterating (2.12) in
powers of the scattering potential V.' Thus

G(K,k, W)=N —'(K, k, W+j6)
X (1/V)Q, V„(q)[PiG(K—q, k ——',q, W)

—P»G(K —q, k+-', q, W)], (2.13)

where we have chosen on physical grounds the retarded
value of the inverse matrix N ' by replacing W by
W+ i8, where 5 is an infinitesimal constant. Substituting
(2.13) into the right-hand side of (2.12), we obtain

N(KkW)G(KkW) = (1/V') P V„(q)V„(q'){PN '(K —q, k—-', q, W+i5)
Q~Q

X [PiG(K —q—q', k—-', q —-', q', W) —P»G(K —q —q', k—-', q+-,'q', W)]—P,1V
—'(K—q, k+ —q, W+j5)

X [PiG(K—q—q', k+-', q ——',q', W) —P&G(K—
q —q', k+-', q+-,'q', W)]}. (2.14)

+le now average this equation over all positions of the
impurities. The averaging on the right-hand side should

actually include the function G which depends implicitly
on the impurities. If we neglect interference between
different scattering events we can average over V„' and
G sepa, rately using

[Uy(q) Vy(q )]average= rtoU5»+q' &
I V(q) l

':
fop is the numb er of impurities in unit volume.

This procedure should be valid if the density of im-

purities is small and range of the potential short. "After
averaging the function G will not depend on the vari-
ables R and t and we write

N(0, k,0)G(k)
= (&o/U) 2 q ~

V(q)
~

'{[PiN '(q, k+-,'q, i5)Pi
+P N-'( —q, k+-,'q, i5)P,]
G(k) —[P,N-i(q, k+-'q, i5)P,
+P»N '(—q, k+-', q, »'5)Pi]G(k+q) }. (2.15)

The matrices P;N 'P; appearing here are easily calcu-
lated. Ke will only retain the imaginary part which
leads to relaxation. In the presence of driving terms, we
assume that the collision term has the same form as in
(2.15) except that G(k) is replaced by its local value
G(R,k, t) and that N(0, k,0) is replaced by the transport
operator appearing on the left-hand side of (2.7). The
transport equation in the presence of a transverse field
Ai then becomes

G(K,k,W) = (2»r)'5(K) 5(W) G(k),

and (2.14) becomes

9 This was suggested by Professor H. Suhl.
'» W. Kohn and J. M. Lnttinger, Phys. Rev. 108, 590 (1957);

S. F. Edwards, Phil. Mag. 33, 1020 (1958).

{N(R,k, t) —(e/mci)[A, (Ri„t) (-'V+ik)
+A, (R,* t) (-', V—i )]}G(R,k, t)

= [G(R,k,t)]..„.
N(R, k, t) differs from M(R,k, t) in (2.8) only in tha«s re
places ei and

I ~(R&,t)
~

replaces gt(R„,t) and i», (R„,t)



JI, 200 M. J. STEPHEN

The collision term is given by

[G(R,k,t)]..11=—(2pri/tp/ V) g p l V(k—k')
l
'[()(Ep—Ep )/(E/, +Ep )']

&({(2E/Ep +24pp )Bi[6(k)—G(k')]+(2EpEp —24pp )Bp[G(k)+G(k')]
+ l~l("—

pp )[(B+B )G(k)+(B —B )G(k')]+21 ~l'[(Bp—Bp)G(k) —(Bp+Bp)G(k')]) (217)

On the right-hand side of (2.17) we have omitted the
coordinates R and t which appear in G(R,k, t) and
F& (4'+ —l—Al') and is the usual quasiparticle energy
appearing in the theory of superconductivity. The
t/(Fp F/, ) —appearing in (2.17) expresses the conserva-
tion of the quasiparticle energies in the collisions.

Momentum is not conserved as the impurities are fixed.

The 4)&4 matrices B in (2.17) are given by

0
0

82—

1.

0 0110
0000
0000 '

0. .0 1 1 0

0000
1001
1001
.0 0 0 0. .0

0

(2.18)

Gp(k) =
G()+(k)
Fpt(k)
F()(k)

.G() (k).

Np'fp+[)p'(1 f/) '—Ip[)p(1 —2f/)
ttp[/, (1—2f/, )

.—Np (1—f/) —&p fp.

Before considering the modifications of (2.10) in the

presence of longitudinal fields, we make the following

observations. We 6rst note that if we set 6=0 and Ii =0
in (2.16), then the first row of this equation reduces to
the familiar Boltzmann equation for a normal metal
except for the terms in the fields. These terms do not
have the familiar form because k is the canonical mo-

mentum and not the mechanical momentum. Secondly,
we neglect the fields in (2.16) and substitute the BCS
equilibrium values of G, which are independent of R
and t, into (2.16). The BCS value of G is

where
Q/e 1 //' 4

=-l 1w-
2[ F.,

and fp (1+——e~e') '. It is found that the left-hand side
vanishes identically because of the relations

I~IF, (k) —lt] IF,(k) =0,
24Fpt(k)+ [Gp+(k)+G() (k)]=0. (2.20)

3. INCLUSION OF LONGITUDINAL FIELDS

In the presence of longitudinal fields in order that
Eqs. (2.3) be gauge invariant the gap will in general
have a phase in addition to the factor 2](1t in (2.1,0).11

We thus define new functions

The right-hand side may also be shown to vanish by
using the fact that Gp(k) depends only on 4 and writing

~(&~—F-')/(&~+E')'= (4~~14 I) '

x [&(4—4 )+&(ek+4 )]. (2.21)

This is a feature of all transport equations in that they
describe the evolution of the distribution from a given
initial distribution.

In the case where the Geld and gap vary slowly we can
expand these terms in (2.16) about the point R. Re-
taining terms up to the first derivatives in the fields
(2.16) becomes

{N(R,k, t) —(e/r/tci)[A& V—k (V V&A,)])G(R,k, t)

= [G(R,k,t)],.„. (2.22)

The argument of A is R, t. This expansion in powers of
Vz. Vp is equivalent to an expansion in $/6, where ( is
the coherence distance and 8 is a parameter giving the
spatial variation of the field. Thus, for London super-
conductors it is sufhcient to use Eq. (2.22).

G (1 1~) e
—(ie/e) [w(1)—w(l')] (1 1 ) ~

Ft(1 1 &) e(1e/e) [w(1)+w(1')]ft(1 1 ) ~

gt(1) =e( ee/e) w( )
l
g(1.) l

.

G (1' 1)=e ("/')[w(') w(')] '(1' 1)
F(1' 1)= e ((e/e) [w(1—)+w(1')]f(1' 1)'

g(j,) = e—(»e/e) w(»
l
t],(1)l,

(3.1)

where lAl and W are real. If W(r, t) is of the form
(e/c)W(r, t) /it= —r kp, we—would pair states in the
BCS model with momentum k+kp sild k+kp, i.e.,
2ko is the center-of-mass momentum of a condensed
pair. Introducing these new functions, the Gorkov Eq.
(2.3) for the new functions g' and f are exactly as in
(2.3) except that the potentials A and p are replaced by

the gauge-invariant potentials

A, (r,t) =A(r, t) —VW(r, t);

4,(r, t) =y(r, t)+(1/c)(aW(r, t)/at)
3.2

and t)1 and At are replaced by l6l. By analogy with

"V.Ambegaokar and L. P. Kadanoff, Nuovo Cimento 22, 914
(1961).
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He II we define the superfluid velocity by

v, = (e/mc)A, = (e/mc)(A —VW) . (3.3)

As before we introduce the vector distribution function

g+'(rit, ri't+) ' g+'(R, r, t)

(R ) f (lit li t+) f (R r t) (3 4)f(ri't+, rit) f(R, —r, t)
.g '(ri't+, rit). .g '(R, —r, t).

In this section we will confine ourselves to the case
where the fields A, p, and W are slowly varying functions
of the coordinates. A more careful analysis shows that
only the gauge-invariant potentials (3.2) need be slowly

g+'(R, r, t) = e+"81'i'v~G+(R, r, t),
and then the Fourier transform of g'(R, r, t) is

(3 5)

g'(R, k, t) =
G+(R, k—(e/c) VW, t)

ft(R,k, t)
f(R, —k, t)

G (R, —k —(e/c)VW, t).

(3.6)

The equation for the distribution function g' obtained
by combining (2.3) with the adjoint equations is

varying, but for simplicity in presentation we assume
that they are separately slowly varying. Thus we have
using W(1)—W(1') =r VW(R, t)

[M(R,k, t
~
6~)—(e/mci)[A, V—k. (V ViA, )]

+ei [V&, (e/2mc—') (VA, ')] V i 2 (Pi+Pi)+ (2eiIi, (e'/m—c')A, ')-', (Pi—P2)]g'(R, k, t)
= (1/V)P, V„(q)e'i' [Pig'(R, k ——,'q, t) —P2g'(R, k+2q, t)], (3.7)

where M(R,k, t,
~

A ~) is the opera, tor (2.8) with
~
5( replacing 6 and A. We can now determine the collision term

as before by inverting the left-hand side of (3.7) and substituting the result in the right-hand side. In the collision
term we will neglect terms depending on the derivatives of A, and @,. However, the terms in (3.7) proportional
to (e/mc)A, V =v, V and eP, —(e'/2mc')A, '= eP, ——,'mv, ' must be retained as they lead to the following changes
in the collision term. The term v, V arises because in the presence of superfluid flow the quasiparticle energies are
Eii, 2

——Ei~k v, and it is these quasiparticle energies that are conserved in the collisions with the impurities. The
term eQ~ —i2mv, ' is the chemical potential (see below). This is clear in the absence of fields from Eq. (2.10). The
collision term in the presence of superfluid flow replacing (2.17) is now

[g'(R,k,t)]..ii ———
(Ek1+Eh'2) (Ek2+ Ei'1)

irino 8(E~i—Ei, i)+&(Ei.2—Ei 2)
P

~

V(k—k') i'
I'

&& 2EiEi, +24ei'—
2(k —k') v.

(E + E )»I g'(k) —g'(k')]+(2E E —2 )& [g'(k)+g'(k')]
(E~—E~ )

+ I ~IL"—e' —(k —k'). v ][(~ '+~ ') g'(k)+(~ '—~ ')g'(k')]+
I
A

I [e —e +(k—k') v.]
X [(&3"+&4")g'(k)+(&i"—&4")g'(k')]+2

I A I '[(&~—&~)g'(k) —(&~+&~)g'(k')] (3 8)

where

01 10 ~„0000
0000 ' ' 0110
00
1 0

~4 10
.0 0.

00
0 1

84 0 1
s

.0 0.

(3.9)

The 8 are 4&&4 matrices and only the nonzero row
or column has been indicated. The other matrices 8
are defined in (2.18). Equation (3.8) reduces to (2.17)
when v, =0. Note that the quasiparticle energies
Ei,i, 2

——Ei&k v, are conserved in the collisions. The
form of this collision term is such that superfluid flow

will not be damped by collisions with impurities.

It is convenient to make one further modification in
the transport equation corresponding to the introduc-
tion of the mechanical momentum instead of the kinetic

momentum. We thus write

G~(R, &k—(e/c) VW, t) =G~(R, ~k+mv, —(e/c)A, t)
=gg(R, &k+mv„ t), (3.10)

so that the R, t dependence of G~ occurring via A is now
shown explicitly in g~. The operators V' and (cj/cjt)
appearing on the left-hand side of (3.7) act on all the
R, t dependence of the functions G+( R, &k—(e/c) VW, t),
i.e., not only on that explicitly appearing but also any
dependence on the coordinates contained in VB". We
now arrange that these operators act only on the explicit
R, t dependence appearing in g+. Thus, for example,

(8/Bt)G~(R, k+(e/c) VW, t) =(ct/Bt)g~(R, k+mv„ t)
+m(Bv, /Bt) Vig+(R, k+mv„t) . (3.1,1)

We now also define a new column vector

g(R, k, t) = [g+(R, k+mv„ t); ft(R, k, t);
f(R,k,t); g (R, —k+mv. , t)]. (3.12)
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The transport equation determining this distribution
function is now

{M(R,k, t, IAI)+iv, V
—eiRr[E+ (1/mc) (Rik+mv, ) XH] Vt,
—E,[iR,k (V ~ Vt v,)+2eg, —mv. '])g(R,k, t)

= [j(R,k, t)]..)i, (3.13)

where the Acids E= —VP —(1/c)(BA/Bt) and H= curlA
and R~ and R2 are the diagonal matrices

The transport Eqs. (2.16) and (3.13) can be solved by
the same techniques as are used for the Boltzmann
equation for the normal metal. There is, however, the
added complication that after the solution for g and f
in terms of D(R,t) and the driving fields is obtained,
A(R, t) must then be determined by the condition (2.4).

4. THE TWO-FLUID MODEL

R2—

0

0

In this section we consider the conservation relations
for the particle density p(R, t), momentum density

J(R,t), and energy density 8(R,t) and derive the two-

Quid model. These quantities are given by

p(R, t) = —(im/V)gt, [G„(R,k, t)+G (R, —k, t)+i],
J(R,t) = —(i/V)gt, {[k+(e/c)A(R,t)]G+(R,k, t) —[k—(e/c)A(R, t)][G (R, —k, t)+i]),
h(R, t) = —(i/ V)P t {(1/2m) [k+(%)A(R, t)]'G+(R,k, t)

+(1/2m)[k —(%)A(R,t)]'[G (R, —k, t)+i]) »t/g—. (4.3)

The combination G (R, —k, t)+i occurs because of the
definition of G as the density of unoccupied states (2.2).
These formulas take a simpler form if we introduce the
functions as in (3.10)

G„(R, ak —(e/c)A(R, t), t) =g~(R, wk, t) . (4.4)

Then p remains unchanged except for the substitution
of g+ for G+ and

J(R,t) = —(i/V)gt, k[g+(R,k, t) —g (R, —k, t) —i]. (4.5)

B(R,t) = —(i/V)gt, et, [g~(R,k, t)

+g-(R, —k, t)+']—(»'ig) (4 6)

In order to derive the two-Quid model we follow the
method developed by Chapman and Enskog" for
normal Quids. It is assumed that the system is in local
thermodynamic equilibrium, i.e., equilibrium of the
system is attained much more rapidly than any other
process that we consider. The actual interactions be-
tween normal Quid and superQuid that lead to this

equilibrium are not contained in our Boltzmann trans-
port Eq. (3.13) as we have only considered collisions
with fixed impurities. Owing to our ignorance of these
terms we make certain plausible assumptions about the
solutions of (3.13). It is assumed that the distribution
functions g and f in (3.13) have the form for local equi-
librium but depend on space and time through the eight
quantities p(R, t), v (R,t), v, (R,t), and P(R, t), where p
is the density, v„and v, are the normal and superQuid
velocities, and P= (kT) ' the inverse temperature. All
these quantities are slowly varying functions of R and t,.
We have already indicated how the superQuid velocity
is def'ined (3.3). It is related to the phase of the energy
gap or the center-of-mass momentum of a condensed
pair. The normal Quid velocity v„corresponds to the
thermal average velocity of the excitations in the super-
conductor. This velocity can be conveniently introduced
into the theory by considering the Hamiltonian K—P v
instead of 3C given by (2.1), P is the total momentum
operator for the system. The solution assumed for
Eq. (3.13) is

g+(R, k+mv„ t) =i{I&'f(E&i—k v„)+et,'[1—f(Et,e+k v„)]),
ft(R,k, t) = f(R, —k, t) =itttvt [1—f(Et r—k v„)—f(Et„+k.v„)],

g (R, k+mv„ t)= —i{ttt,'[1——f(&t,2+k v )]+a~'f(E&i—k v )},
(4 7)

where E» 2
——E&&k v.. This approximation to the solution of (3.13) will be referred to as the hydrodynamic one.

We now check by substitution to what order of approximation (4.7) is, in fact, a solution of (3.13). The erst two
equations of (3.13) are

{i(ct/Bt)+(i/m)(k+mv, ) V—ei[E+(1/mc)(k+mv, )XH] Vt, )g~(R, k+mv„ t)

+ I
~(R~ t) If'(»»t) —

I
~(R~* t)

I f(R —» t) =(g+) -11 (4 8)

{i(a/at)+2.,—(V /4m)+i[v, V—k (V Vzv, )]—2ego+mv, '}f"(R,k, t)

+I~(Kt)Ig+(R k+mv t)+I~(K*,t)Ig (R, k+mv„t)=(f )„it. (49)—
» S. Chapman and D. Enskog, in Mathematical Theory of Nonuniform Gases, edited by S. Chapman and T. Cowling (Cambridge

University Press, New York, 1958').
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Substituting (4.7) in (4.8) and neglecting deriva, tive
terms and the fields, the left-hand side vanishes owing to
the identity

i Z(R, l) i Lfr(R, k, l) —f(R, —k, l))=0.
The collision term on the right in (4.8) vanishes except
for terms proportional to v„.This is a consequence of the
fact that the superQuid is not damped by collisions with
the impurities. It will turn out that v„ is proportional
to the driving fields so that we are justihed in neglecting
it. Turning to Eq. (4.9) the collision term on the right
again vanishes except for terms proportional to v .
Using the identity, which is easily obtained from (4.7),

2(e„—p) fr(R,k,t)+ i &(R,t) i

X[g+(R, k+mv„ l)+g (R, k+mv„ —l)]=0 (4.10)

and neglecting terms involving derivatives we see that
for the left-hand side to vanish we require that

We will distinguish quantities in the moving coordinate
system by the superscript '. The only vector appearing
in g+(R, k+mv„ t) is (v„—v, ) and we define the normal
Quid density p„by

J'= p„(v„—v, ) .

To the first order in v —v, we find

(4.18)

3z2
k4dk

BAI„-
(4.19)

This result is similar to the Landau result for HeII
except that here the excitations obey Fermi statistics. ""

For consistency in the hydrodynamic equations it is
necessary to retain terms of order (v —v, )' in p„.

(b) Momentum density. Equa, tion (4.8) and the corre-
sponding equation for g are multiplied by &k+mv„
respectively, and subtracted. After summing over k
we find

or
ey, ——',mv, '—p =0 (4.11)

(BJ/cjoy)+V II+(e/m)LpE+(1/c)(JXH)]=I. (4.20)

(c/c)r~IV/ril= c4'+P+smv ' (4 12) The stress tensor II is given by

Taking the time derivative of (3.3) and using (4.12) to
eliminate t/t/" gives"

m(Bv, /N) = —eE—V(p+-', mv, ') . (4.13)

By using the vector identity

—',Vv, '=v, X(VXv,)+v, Vv, =(e/mc)v, XH+v, Vv, ,

Eq. (4.13) can be written in the form

m(dv, /dt) = —et E+(1/c)(v, XH))—Vp. (4.14)

This is the first hydrodynamical equation and shows

that the superQuid accelerates freely under the applied
fields. The remaining hydrodynamic equations are pro-
vided by the conservation relations for p(R, l), J(R,t),
and B(R,t). These relations follow simply by taking
moments of (4.8) a,nd (4.9).

(a) Particle density. Adding Eq. (4.8) to the corre-
sponding equation for g and summing over k gives"

II;,= —(2i/ V)Pi,(k,k,/m)g+(R, k, l) —(ADt/g) 8,, (4.21)

I= —(2/V)Z k(g+).. (4.22)

We first discuss II;,. Substituting from (4.7) we find

11;,=pv„.v,~+7 v„+J,'v„+II; s, (4.23)

11;,'= —(2i/V)gs(k, k,/m)g~(R, k+mv„ l)—(AAt/g) 8,;. (4.24)
The pressure I' is defined by

II,,'= p„(v„—v,),(v„—v,),+PS,, (4.25)

The damping term I is nonzero because momentum is
not conserved in the collisions. Owing to the form of
the collision term only the excitations are damped and
substituting from (4.7) in (3.8) we find to first order in
the velocity v

(4.26)
where

afs 1 ~ei~
k4dk

(cjp(R,l)/rit)+V. J(R,t) =0. (4.15)
(4.27)

Substituting from (4.7) into (4.5) we find for the hydro-
dynamical approximation to the current

37r2

J=pv, +J', and 7 „is the transport relaxation time in a normal metal
4.16

where J' is the current in the coordinate system moving
with a velocity v, .

J'= —(2i/V)PI, kgb(R, k+mv„ t) . (4.17)

"A similar argument has been made by P. W. Anderson,
J. M. I.uttinger, and N. R. Werthainer (to be published) to
obtain the linearized version of this equation.

'4 It should be noted that Zl, (k+mv, ) Vg+(R, k+mvs, t)
=V.ZI, (k+mv, )g+(R, k+mv„t), where on the left-hand side
V acts only on the R explicitly appearing in g+, whereas on the
right-hand side the V acts on all the functions of R appearing to
the right. In this result k+mv, may be replaced by any function
of (k+mv. ,).

,'ripNp dQI, —i V(kF —kp')
i
'(1—coso') . (4.28)

X& is the one-electron density of states at the Fermi
surface and dQI, indicates an angular integration.

(c) Energy density. The conserva, tion equation for h

is found in the following way. The equations for g+ and

g are multiplied by ok~, „respectively, and added.
The equations for ft and f are multiplied by ~A~ and

"J.Sardeen, Phys. Rev. Letters 1, 399 (1958').
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added. The resulting two equations are then subtracted
and summed over all momen. ta k giving

(88/rit)+ V J s+ (e/m) J E.=0 . (4.29)

The energy current is given by

Js= —(2i/V)ps(k/m) esg~(R, k, t) —2(~ a )'/g) v, . (4.30)

As the collisions conserve energy there is no collision
term in (4.29). In the hydrodynamical model sub-
stituting (4.7) into (4.6) we find

8=-'pn '+J'v, +P, (4.31)
where

h'= —(2i/V)gs esg+(R, k+mv„ t) (~ 6
~

'/g)—. (4.32)

In a similar manner the energy current is found to be

J s= (zips, +J v.+ h')v, +II'v, +-',v, 'J'+ Js', (4.33)

where

Js'= (2i—/V)g &(k/m) esg+(R, kjmv„ t) . (4.34)

This current may further be shown to have the form

J s'= [TPS+tip„+p„(v„v,)'](v„v,)—, (4.35)—

where the entropy density p5 is de6ned by

pS= —(2ke/V)gs [f(Est—k v„) 1n[f(Est —k v„)]
+[1—f(Esi—k v„)]in[1—f(Ei,i—k.v )]j. (4.36)

Using the definitions (4.25), (4.32), (4.36), and (4.18)
we may also derive the thermodynamic identity

P+h =2 S+(1/ )pp+p ( v ) ~ (4 3")

The eight equations (4.14), (4.15), (4.20), and (4.29)
together with the definitions of the fiuxes J provide the
set of hydrodynamical equations. By a simple thermo-
dynamic argument we can also derive the equation for
the entropy density

(~( S)/~t)+ V ( S~-)= ( /2') -' (4 38)

where n is given by (4.27). As in the case of He II the
entropy Qows with the normal Quid.

Except for the collision terms the above equations are
exactly the two-Quid equations proposed by Landau' for
HeII extended to the ca,se where the particles are
charged. The propagation of plasma oscillations and
second sound may be discussed by means of these equa-
tions. The calcula, tions are similar to those of Landau
for He II and we only give the results for the frequency
rpi and damping pps of waves with wave vector k.

(1) Plasma oscillations.

oasis

= (47rpe'/m)+k'u'; ops =n/2p, (4.39)

where u'= (BP/rip)e is the ordinary sound velocity.

(2) Second sound.

where C, is the specific heat. As discussed by Ginzburg'
these latter waves will normally be too heavily damped
to propagate. The real part co2 must also be limited by
the condition co~(d, .

ey, —p=o. (5.9)

Again making use of the definition of v, in (3.3) and
eliminating IV by means of (5.9) gives the linearized
form of (4.13)

m(av, /Bt) = —eE—Vp, . (5.10)

Turning now to (5.1) we assume that gi+ is of the
form k yX(function of es), where y is a unit vector.

S. PHENOMENOLOGICAL RELATIONS AND
THERMAL CONDUCTIVITY

In this section we investigate the response of the
superconductor to various driving forces confining our-
selves to linear response only. We will also only consider
the case where all quantities vary slowly in space and
time so that we make use of the transport Eq. (3.13).
Omitting the nonlinear terms in this equation the first
two members are

[i(B/Bt)+(i/m)k V eiE Vs—]g+(R, k+mv„ t)

+
~
~(Rit)

i
[f'(R,k,t) —f(R, —k, t)]=Q+)..ii, (5 1)

[i(8/Bt)+ 2es —2ett,]ft(R,k, t)

+
~
a(R, t)

~ [g+(R, k+mv„ t)

+g (R, —k+mv„ t)]= (ft),.ii. (5.2)

In solving these equations we proceed as in the solution
of the normal Boltzmann equation and regard all driving
terms as being of first order. The solution to these equa-
tions can then be taken in the form

gy(R &k, t) =gpss(R, &k t)+gry(R &k, t) (5.3)

ft(R, k, t) = f(R, —k, t) = fp(R, k,t), (5.4)

where go+ are the SCS values corresponding to a Qow

v, . Thus g+ is modified by a small amount g&~ due to
the driving terms whereas f is unchanged. The BCS
values gp+ and fp depend on R and t through v„
P(= 1/k&T) and ti and are given by

gp+(R, k+mv„ t) =i{ usfs( Ei)i+&v' 1[f(E»)]—), (5.5)

fp'(R, k, t) = fp(R, k, t) = iusvs[1 —f(Eg, r) —f(Es,)], (5.6)

gp (R, —k+mv„ t)
= —i{us'[1—f(E»)]+vs'f(Esi) }. (5.7)

Equation (5.2) is satisfied to terms linear in gi~ and the
driving terms if we choose

gl+= g1— (5.8)

because then (ft)„ii vanishes. The left-hand side of
Eq. (5.2) vanishes as before [see Eq. (4.10)] provided
we choose

oui =le (S p 7/p ~v); pps= (rr/2p)(p. /p ), (4.40)
"V. L. Ginzhurg, Zh. Eksperim. i Teor. Fiz. 41, 82$ (1961)

/English transL: Soviet Phys. —JETP 1.4, 594 (1962)j.
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It is then not dificult to show that

(5.11)

Substituting from (5.5) and (5.13) we find

J r. =/JJ K—2((e/m)E+(1/m) Vti) K—4(VT/T), (5.20)

where 7, is the relaxation time in the superconductor.
This is related to the normal metal relaxation time r
given in Eq. (4.28) by

where

3m27r 2

8
k'dhole'

— 7.

BEI,
(5.21)

8 Bf Bv,—go+(R, k+mv. , t)=i k
8$ BEI, 83

(5.14)

(5.12)

A similar result was obtained by Bardeen, Rickayzen,
and Tewordt. 4 Substituting (5.11) in (5.1) and assuming
that all quantities, e.g. , the field E, Vti, the thermal
gradient, and g&+ vary in time as e'"' we find

gi+(R, k+mv. , t) = —T,[(8/-Bt)+ (k/m) V—eE.Vi]
Xg,+(R, k+mv„ t), (5.13)

where r, =((1/r.)+i&a) ' From. (5.5) we have that

The phenomenological relations (5.17) and (5.20) can
be interpreted by observing that the excitations in a
superconductor behave in many ways like the electrons
in a normal metal. Thus the superAuid contributes the
terms p,v, and tip, v, in (5.1/) and (5.20), respectively.
The remaining terms are exactly what one would expect
for a normal metal (assuming a constant relaxation
time) except that the density of normal fluid occurs for
the superconductor instead of the total density as in the
normal metal. The superRuid has no entropy. These
phenomenological relations are also exactly of the form
suggested recently by Luttinger. '

Under stationary conditions from (5.10),

—Vgo+(R, k+mv. , t) eE+ Vp, =O. (5.22)

afk VT
= —zan — —(Vti) ' Vigp+.

BRA, m T
(5.15)

In the case of the thermal conductivity the superAuid
Qow is determined by the boundary conditions. The
most common condition is that of zero-mass Row, i.e.,
J=0. Then from (5.17)

In (5.14), Bv,/Bt can be replaced by —(e/m)E —(1/m) Vp
from Eq. (5.10).

The induced current is given by

J= —(2i/ V)pi, k[@0+(R,k, t)+gi+(R, k, t)j, (5.16)

pavs= 78p~V~
&

and from (5.21) the thermal conductivity is

~= K4/T.

(5.23)

(5.24)

Kg ———p„7-, -, E2——v-, TpS, (5.18)

where pS is the entropy density defined in (4.36) (except
that v =0 in this case). The energy current is given by

J a = —(2i/m V)P i ei kLgo+(R, k, t)+gi+(R, k, t)j—2(i A
i '/g) v, . (5.19)

and substituting from (5.5) and (5.13) we find

J=p,v, +Ki((e/m) E+ (1/m) Vp) K2(V T/T) . (5—.17)

If, for simplicity, we regard ~, as a constant independent
of k it can be shown that

When the explicit form of r, from (5.12) is substituted
in E4 this result agrees precisely with that of Ref. 4.
Some further consequences of these phenomenological
relations are discussed by Luttinger. '
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