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The phonon-broadened densities of states associated with (a) a point charge, (b) an S-wave hydrogenic

shallow donor, and {c)an exciton bound to a neutral defect are calculated. The electronic states are coupled

to the lattice vibrations via the (a) longitudinal-optical, (b) piezoelectric, and (c) deformation-potential

linear electron-phonon interactions. The major dynamical approximations consist of the use of the Debye
model for the acoustical-phonon spectrum and the neglect of the mixing of electronic states by phonons.

Within the framework of the model Hamiltonian the Fourier transforms of the densities of states are cal-

culated exactly and analytically. For CdS, CdTe, and ZnS numerical calculations of the densities of states
are presented. The density of states associated with a shallow donor in CdTe and ZnS exhibits, in lieu of a
zero-phonon line, a Lorentzian peak whose width is proportional to temperature. The inclusion of the
static shielding of the piezoelectric interaction by mobile charge carriers replaces the Lorentzian by a
zero-phonon line plus two shoulders. The extensions of the calculation to donor-acceptor, band-impurity,

interband, and intra-deep-impurity transitions are discussed.

I. INTRODUCTION
" 'N this paper we calculate the modification of the

density of states associated with a localized electron
in a crystal due to its interaction with lattice vibrations
via (a) optical, (b) piezoelectric, and (c) deformation-
potential electron-phonon coupling. The results are
well known for the case in which the electron couples to
longitudinal-optical phonons. ' ' They are rederived
herein primarily to facilitate the comparison of our
results and notation to others in the literature. The
coupling of the electron to piezoelectric phonons is
considered both with and without the static shielding
of the interaction by mobile charge carriers. Hopfield'
discussed the latter situation for an exciton bound to a
neutral defect. Our results for this case are more general
than his. Using the same dynamical approximations in
the Hamiltonian we obtain the spectral function exactly
whereas he relied on an iterative expansion of it. The
coupling of an electronic state to phonons via the
deformation potential has also been considered by other
authors. ~' The results presented herein differ from
theirs in that within the framework of a simplified
Hamiltonian we calculate the spectral function without
relying on further calculational approximations or the
use of perturbation theory.

' K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950).

2 J. J. Markham, Rev. Mod. Phys. 31, 956 (1959),has reviewed
the literature on the interaction of localized electrons with longi-
tudinal-optical phonons.' J. J. Hopheld, Proceedings of the International Conference on
the Physics of Semiconductors, Exeter, 1062 (The Institute of
Physics and the Physical Society, London, England, 1962), p. 75.

4 E. O. Kane, Phys. Rev. 119,40 (1960).' D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682
(1963); D. E. McCumber, J. Math. Phys. 5, 222 {1964);G. F.
Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and
M. D. Sturge, Phys. Rev. 133, A1029 (1964); and B. DiBartolo
and R. Peccei, ibid. 137, A 1770 (1965).

'A body of literature on the wave functions of trapped elec-
trons in crystals also contains discussions of LO and deformation-
potential electron-phonon interactions. See, e.g. , B. S. Gourary
and F. J. Adrian, Solid State Phys. 10, 127 (1960).

A

Our major dynamical approximation consists of the
use of the Debye model with an average speed of
sound for the acoustical-phonon excitation spectrum.
This approximation is made primarily because it
permits the Fourier transform of the one-electron
spectral function to be evaluated exactly. Although
frequently employed, the approximation has two major
consequences. First, the changes in the normal-mode
spectrum due to the presence of the impurity are
neglected. For example, effects due to the local modes
associated with light impurities' and alterations in the
short-wavelength density of (phonon) states associated
with the heavy impurities' are neglected. Second, peaks
in the (electron) spectral function due to critical points
in the phonon spectra are not accounted for by a Debye
spectrum. ' Therefore our model is suitable for describing
the line shape of narrow phonon-broadened spectral
lines in solids due either to electronic transitions at a
point defect or to sharp-line pair recombination radia-
tion such as that observed in GaP."For these narrow
lines, the above modifications of the phonon spectra
only cause discernible effects in the one-electron spectral
function at energies associated with the Brillouin-zone
boundaries. However, these effects do not alter our
main conclusions.

The second dynamical approximation consists of the
pair of assumptions that the electron-phonon interaction
is linear and that the phonons do not mix different
electronic states. The latter approximation is expected
to be quite accurate for transitions between non-
degenerate localized electronic states. These localized
states are usually separated by energies much larger

' See, e.g., G. Schaefer, J. Phys. Chem. Solids 12, 233 (1960);
M. Balkanski and %. Nazarewicz, ibid. 25, 437 (1964).

'See, e,g. , P. G. Dawber and R. J. Elliot, Proc. Phys. Soc.
(London) 81, 453 (1963}.' See, e.g. , C. B. Pierce, Phys. Rev. 135, A83 {1964);D. Langer
and S. Ibuki, ibid. 138, A809 (1965).I J. J. Hop6eld, D. G. Thomas, and M. Gershenzon, Phys.
Rev. Letters 10, 162 (1963);D. G. Thomas, M. Gershenzon, and
F. A. Trumbore, Phys. Rev. 133, A269 (1964).
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than the Debye energy so that all mixing eft'ects are
second or higher order in the electron-phonon inter-
action. In particular, this approximation ignores the
temperature-dependent polaron shift and lifetime
broadening of the zero-phonon line. ' However, we
obtain additional structure near the zero-phonon line
which scales linearly in the temperature as opposed to
the T4 and T~ low-temperature scaling of the polaron
shift and lifetime broadening, respectively, The neglect
of electronic-state mixing by phonons u prior~ limits the
direct applicability of the analysis to transitions between
localized states.

Within the framework of the above two approxi-
mations our evaluation of the one-electron density of
states (spectral function) is exact for charges well
localized relative to a lattice spacing. For electron
states which are extended relative to a lattice spacing
we use in addition the effective-mass method of Kohn"
and neglect Brillouin-zone edge effects. However, no
iterative approximations or moment expansions are
employed. The Fourier transforms of the spectral
functions are calculated analytically and exactly, with
the final Fourier transformation being performed by
numericaL integration. Where a zero-phonon line is
present, we derive an exact analytical formula for its
spectral weight as a function of temperature and other
relevant parameters.

In this paper we present only the analytical and
sample numerical results. In Sec. II we specify our
Hamiltonian and. give the general formulas for the spec-
tral function. In Sec. III the interaction of an arbitrary
electronic state with longitudinal-optical (LO) phonons
is discussed. We present in Sec. IV the analysis of a
point charge interacting with Debye phonons via an
unshielded piezoelectric electron-phonon interaction.
The next topic to be discussed is the interaction of pho-
nons with a shallow impurity state possessing a hydro-
genic S-wave envelope function. In Sec. V the inter-
action is considered to occur via the unshielded piezo-
electric and deformation-potential interactions. In Sec.
VI the modidcation of these results due to the shielding
of the piezophonon interaction by mobile charge carriers
is given. In Sec. VII we present an analysis of the ex-
citon bound. to a neutral impurity analogous to that of
Hopheld. ' A synopsis of the results is given in Sec.
VIII.

II. DEFINITION OF THE BOUNDARY-VALUE
PROBLEM

The general Hamiltonian for a coupled electron-
phonon system interacting via a linear interaction is
given, in the notation of second quantization, by

H=gg Egcdc«+P«M(k)

XLo«'o«+-,'j+Z« ~«Lou( —k)+~«tp(k) j (2.&)

"%.Kohn, Solid State Phys. 5, 258 {1957).

p(k) = P cg tcgM«, «(k), (2.2a)

3f„ (k)= d'xe —'«'*4' ~ (x)p„(x). (2.2b)

pp 4 1 4
+ + +

13 C44 C11 C11 C12 C11+C12+2C44

+ + , (2 4)
Cu+2Cu+4C44 C11 C12+C44-

which emphasizes the contribution of the shear modes.
In treatments of electronic mobilities in piezoelectric
crystals, '2—'4 the velocity average is usually taken
within the framework of calculating an average electro-
mechanical coupling constant. For cubic structures
this procedure is equivalent to using an average
velocity of sound. Therefore as any of the averaging
procedures yield results deviating from the exact ones
by factors =1, for cubic structures we embody all of
our averaging in (2.4) alone. For Wurtzite structures
we use the averaging procedure of Hutson. "

The equality of the longitudinal and transverse
sound velocities would result (in a cubic structure) if
the relations

Cn ——C'2+2C44 (elastic isotropy), (2.5a)

~ A. R. Hutson, J. Appl. Phys. Suppl. 32, 2287 (1961)."J.D. Zook, Phys. Rev. 136, A869 (1964).The approximation
is implicit (although not explicitly stated) in Eq. (4) of this
reference.

'4 H. J. G. Meijer and D. Polder, Physica 19, 225 (1953); and
W. A. Harrison, University of Illinois, Ph.D. thesis, 1956 (un-
published); Phys. Rev. 101, 903 (1956).

The electrons alone are taken to have eigenfunctions
p«(x) with associated eigenvalues Z~ and creation
operators c&t. The phonons are labeled by the quasi-
momentum k (we suppress polarization indices) and
have the energy spectrum Aced(k). The phonon creation
operator is u~~. The electron-phonon interaction is
denoted by V&. We confine our attention to systems
which are optically isotropic. Cubic crystals rigorously
exhibit optical isotropy and the anisotropy in the
dielectric function is often neglected in the treatment of
piezoelectric modes in Wurtzite structures. ""

The Hamiltonian is simplified by use of the two
dynamical approximations discussed in the Introduc-
tion. The acoustical phonon spectrum is taken to be a
Debye spectrum

co(k) =e k k& (6m'No)u', (2.3)

in which np is the number of atoms per cm+' in the
crystal. We further neglect the difterence in the sound
velocity between longitudinal and shear modes by
using an average velocity of sound in (2.3). Denoting
the density of the crystal by pp, for zincblende struc-
tures we use the value obtained from
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Cg~= —C«
(longitudinal-transverse degeneracy), (2.5b)

Deformation-potential coupling:

vp —iDp/kk/20p pv, 7up (2 9)

v(k, X)= V2M)„g(k). (2.7b)

Equations (2.7) are valid only for localized electronic
states. An analog of the above analysis for continuum
states is obtained by 6rst making the Lee-Low-Pines"
elimination of the electron's coordinates and subse-
quently using Van Haeringen's'~ truncation of the
resulting Hamiltonian. The 6nal one-electron eigen-
values contain phonon frequencies which explicitly
depend on the electron's momentum and effective
mass in the initial and 6nal states. Therefore, the
formulas analogous to those given below, although they
can be derived, are intractable.

The dynamical approximations concerning the phonon
spectra alter Eqs. (2.7) both in the free-phonon term
and in the electron-phonon vertex Vj,. Using the
adiabatic approximation for the shielding of the piezo-
electric electron-phonon interaction by mobile charge
carriers, we obtain for the electron-phonon vertex
functions:

Optical coupling:

(2.8a)

COP 1

were satisfied. A tractable model of a cubic piezo-
electric material is obtained by assuming relations (2.5)
and using (2.4) to calculate the common speed of
sound. For this model Eq. (2.10c) gives the electron-
piezophonon interaction and the calculation of the
one-electron spectral functions can be carried through
easily and explicitly for arbitrary charge distributions.
All of the numerical calculations on zincblende struc-
tures are performed within the framework of this
model.

The dispersion relation for the longitudinal-optical
modes is taken to be that given by the Lyddane-Sachs-
Teller relation"

()= =L(o)i ( )7" ( )

in which p(0) is the static dielectric constant, p( pp) is
the "high-frequency" dielectric constant, and cop is the
reststrahl frequency.

The second dynamical approximation is the neglect
of o6-diagonal matrix elements of the electron density
operator (2.2). It reduces Eq. (2.1) to the form

&=+),Kcdcx+Pp k (k)Lopto2+2'7

+P c),tc) Pv(k, X)a2+v(k, X)*a2t7, (2.7a)

Piezoelectric coupling without screening:

V2 ——kv, L22rg/k05'~2

g2 g2

g= mCp'

p(0) kv~ p(0)ppv~

Piezoelectric coupling with screening:

(2.10a)

(2.10b)

V2 —kvgL22rg/kg7'12k2/(k2+ko2) (2.11a)

ko2= 42m@/[8 p(0)5 (2.11b)

The use of Eq. (2.10c) leads to the value of C,

Cp= (4/5)"' (2.11)

for an isotropic charge distribution. In Wurtzite struc-
tures we use Hutson's" averaging procedure. By
employing this procedure we neglect the dielectric and
elastic anisotropy while taking separate averages over
the three independent piezoelectric constants for longi-
tudinal and transverse elastic waves.

It is well known that (2.7) can be diagonalized. '
We use the method of canonical transformations with
the appropriate transformation, exp(iS), being given
by

We use the notation q for the charge on the electron,
Dp for the deformation-potential constant (assumed to
be associated with a nondegenerate band), 0 for the
volume of the system, p(cp) for the dielectric function
at the angular frequency co, e for an appropriately
averaged piezoelectric constant, Cp for a numerical
constant of order unity and depending on the crystal
structure, g for a dimensionless electron-piezophonon
coupling constant 8=~T, z for Boltzmann's constant,
and n, for the net number of mobile charge carriers per
cm'. It should be noted that in nondegenerate semi-
conductors the temperature dependence of k~ is
dominated by an exponential dependence of np on 1/e.

For zincblende structures the only averaging used
is that given by (2.4) for the speed of sound. We use
p(cp) = 222 and e= e24. '2 If we impose the restrictions (2.5)
and calculate v, from (2.4), then in the principal-axis
coordinate system the electron-piezophonon vertex
function is given by

4mq
Vp= e24(k/2ppv, kQ)' 2

22'(0) —
k 2k 2+k 2k 2+k 2k 2-1/2

(2.10c)

42 p(0) p(~)
(2.8b)

(2.12a)

"R.H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941)."T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953)."W. Van Haeringen, Phys. Rev. 137, A1902 (1965).

s2=ic) tc2, +2 (fv(k, x)ap —v(k, y)*a2t5/kpp(k)) . (2.12b)

"See, e.g. W. G. Cady, Piezoelectricity I (Dover Publications
Inc. , New York, 1962), p. 192.
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((t~')""
I(«))=II. Io)

(n ')"'
(2.13b)

with the corresponding eigenvalues

The one-electron eigenstates of (2.7) are given by the
formulas

I+(X,(n},)))=exp(—is},)(:gtI(N},)), (2.13a)

The probability Pt}(X,E) is simply related to the single-
hole spectral function" and has been recently studied

by McCumber. ' In the single-hole spectral function the
thermal average is taken over both electron and. phonon
energies. From Eqs. (2.16) it is evident that we do not
wish to take the thermal average over the electronic
states. Therefore we consider only the spectral function
obtained prior to the thermal averaging over the
electronic energies:

E},(n},) =E},—Ag+Q}, Aau(k)[n},+ ', ],-(2.14a)

D},=+2 LI(}(k,l()I't'M(k)]. (2.14b)
t -2 s( }.(»E)=Ps(~, —E). (2.18)

For the simple state functions (2.13) the spectral
function (2.18) can be evaluated analytically be
employing I'eynman's theorem" for disentangling
operators. The result is given by

Therefore the electron-phonon interaction causes a tem-
perature-independent polaron shift 6), of the one-elec-
tron energies and phonon correlations exp( —is},) I (n},) )
in the wave function.

%e study the density of states associated with the
one-electron state given by (2.13a). This state is an
eigenstate of (2.7) with the eigenvalue (2.14).However,
it is not an eigenstate of the noninteracting electron-
phonon

t",s( }(7,E)

+)(„I

2xh
exp(iTE+E(7()]tJh)gt}"(t)dt, (2.19a)

Hamcltoman (}(k,7) '

p E ...+~ f (k)I-. ..+ ,] (2 15) g "() = m -E.
„

L
— p(- (k) )]

The utility of a study of the density of states may be
seen by considering a dilute concentration of defects in a
crystal. The electrons at the defect sites interact
simultaneously with local electromagnetic fields in the
crystal and with lattice vibrations. " In this paper the
interaction between defects is ignored. The interaction
between the electromagnetic field and the electron is
treated in 6rst-order perturbation theory, ' using as
basis states the one-electron eigenstates of Eq. (2.15).
The e6'ects of the simultaneous interaction of the
electron with lattice vibrations are investigated by
asking for the probability P(X,E) that the exact
eigenstate (2.13) is an eigenstate of (2.15) with the
electron possessing an energy E. At nonzero tempera-
tures the phonons are not in a single eigenstate of (2.15)
but rather have a well-de6ned probability of being in
any of their possible eigenstates. Therefore we are led
to consider the temperature-dependent probability
Pt}(),E):

Ps(~,E)=Z" ' 2 I(( .')I .I+(l,{ &))I'

XexpC —Z, Pft (k)(N, +-', )]a

X(E+ft P},cu(k)I n},
' —Nk] E},+A/) (2.16a)

Zph= Z expL —p}tt pk ~(k) (22},+-,')], (2.16b)
( rtgl

(2.17)

"For a discussion of a case in which the separation between
the electromagnetic and elastic modes of the crystal cannot be
made see, e.g., M. Born and K. Huang, Dynamical Theory of
Crystal Lattices (Clarendon Press, Oxford, England, 1954), p. 89.

X((e }+1}+(2—e*p(' (k}e}}(e}), (2.19b}

(22},)= Lexp[Pho) (k)]—1] ',
E(X)=E,—~&.

(2.20)

(2.21)

+r = T)~, , &,4x, &),+c.c.

is given by the similar formulas:

lf's(E) =
I T», ~ I'& 'P(P)

(2.22a)

X exP(ilE+E(X})—E(X2)]tt'h)gt("2"}(t)dt, (2.22b)

2}(k,7 2)—(}(k,7 2)
'

g(}"2"2 (t) = exp —Q
Aa)(k)

X 1—exp —m k 3 n~+1

+(2—e*p(+' ((e}i}}(e„}),(2, 22 }

~ See, e.g. , A. A. Abrikosov, L. P. Gorkov, and I. E. Pzyalo-
shinski, Methods of QNantNm Field Theory in Statistical Physics
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963), Chap. 3."R. P. Feynman, Phys. Rev. 80, 440 (1950};Charles Kittel,
Qganturn Theory of Solids Uohn Riley 8z Sons, Inc. , New York,
1963), pp. 393-396.

%e subsequently suppress the e& and P indices of the
spectral function. The transition probability per unit
time between two localized states caused by an external
perturbation of the form
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F(P) = exp{—PE(l~i)/'[exp( —PE(Xi))

+exp( —PE(X2))]}. (2.22d)

In Eqs. (2.22) the nonzero population of level 2 relative
to level 1 has been neglected. These formulas are well
known but the original derivations'4~ utilized an
expansion of exp( —iSi) which is invalid for the un-
shielded piezoelectric electron-phonon interaction. How-
ever, it is known that such an expansion is unnecessary
to obtain Eqs. (2.22).' "Our derivation of (2.19) and
(2.22), requires no expansions of exp( iS—&) and no
assumptions concerning the dependence of the electron-
phonon vertex on the volume of the system.

In subsequent sections of this paper we obtain
analytical expressions for ga" (t) using several electronic
charge distributions ~pi(x) ~'. The final integrations
over t in (2.19a) are performed numerically on the GE
235. The new results presented herein consist of (a) the
demonstration that the sums over k in Eqs. (2.19b)
and (2.22c) can be performed analytically for con-
tinuous phonon spectra; (b) the specification of these
sums for several physically interesting charge distri-
butions, and (c) the numerical evaluation of the density
of states associated with the charge distributions
considered.

For ga" (t) given by (3.2a) the Fourier inversion can be
performed analytically by expanding ga" (t) as a
Dirichlet series. '4 We perform the expansion

exp{S(X)[(ni+1)exp( u—ott)+nt exp(icuit)]}

—=Q Q {[S(li)]~"(ni+1) "ni"

Xexp[—i(r —p)ant)}(r!p! (3.3)

and divide the series into net emission (r& p) and net
absorption (r(p) processes. The Fourier transform of
(3.3) gives a series of delta functions whose coefficients
are simply related to the power-series expansions for
the modified Bessel functions Ia(x). ' The final result
is the well-known formula'~

p& '(li, E)=exp[ —S(li) (2ni+ 1)]

X Q h(E+E(!%,)—dhcui)

n)+1
X Ia(2S(li) [ni(ni+1)]'") . (3.4)

S$

III. LONGITUDINAL-OPTICAL PHONONS:
ARBITRARY CHARGE

i
S(l~) =— —Qg

~
v(k X)

~

'
(Mi)'

fq' d'k
~
M)„i(k)

~

'
(3.1)

+Ace)' k'

in which co& is given by (2.6) and f by (2.8b). We obta. in
directly from (2.19b)

ga" (t) = exp{—S(!i)(2ni+1)+S(X)[(n&+1)exp( unit)—
+ni exp(unit)]}, (3.2a)

(3.2b)ni—= [exp(Pkui) —1] '.

~ M. I.ax, J. Chem. Phys. 20, 1752 (1952)."R.C. O' Rourke, Phys. Rev. 91, 265 (1953);D. E. McCumber,
ibid. 135, A1676 (1964) and Ref. 5.

The form of Wa(E) obtained from the interaction of
I,o phonons with an arbitrary charge distribution was
first derived by Huang and Rhys. ' We outline a compact
derivation of the known result to facilitate both the
comparison of our approach to others in the literature
and the comparison of the optical-mode results with
those obtained for a Debye phonon spectrum. The
calculation of ga" (t) is particularly simple because &a(k)
is independent of k so that the time dependence of
ga" (t) is independent of the cha.rge distribution. (This
convenient result ceases to be correct when the mixing
of electronic states via, e.g., electron recoil, is incorpo-
rated in the dynamics. ) Following the nota, tion of
Huang and Rhys we define

The coefficient of the delta function for a value of
d&0 corresponds to the probability that the exact
eigenstate (2.13) consists of a "bare" electron plus d
optical phonons. As the exact eigenvalue is E(li), the
"bare" electron has an energy E(X)—dhco& and more
energy (dtuu&) must be supplied by an external field in
order to raise it to a reference state at E=O. In terms
of the transition probability (2.22) this coefficient is
interpreted as the probability that d optical phonons
are created during the transition.

We are able to define a probability for the (net)
emission or absorption of d phonons solely because all
of the phonons have the same energy Aced~. In general,
the phonons exhibit a continuous energy spectrum and
p& &(!i,E) is interpreted as the probability that the
"bare" electron coexists with an assembly of phonons
whose wave vectors are unknown, but whose total
energy is E+E(X).

Numerical calculations of the coefficients in (3.4)
indicate that the phonon coexistence (emission) proba-
bilities depend sensitively on the value of S(!~). The
maximum probability occurs when d= [S(X)]. The
major effect of increasing the temperature from 50 to
500'K is to increase the half-width of the envelope of
the coefficients by a factor of about 2. The value of d
associated with the maximum coexistence probability
undergoes no appreciable change with temperature in
the above temperature range.

'4 B. Van der Pol and H. Bremmer, Operational Calculus
(Cambridge University Press, Cambridge, England, 1950), p. 87.

"Higher Transcendental Functions, II, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 85.
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k = (&s'st)'~ (4.1)

in which e is the atomic density of the crystal. For a
point charge at xo

Mg, i(k) =exp( —tk. xo). (4 2)

The point charge sets an upper bound 5 on the value
of S() ) for the interaction of a deep defect with optical
phonons.

S =4q'fk /h P (4 3)

For the continuous acoustical spectrum (2.3) both the
shape of the electronic charge distribution and the form
of the electron-phonon vertex alter the functional form
of p&

—
& (li,E) due to the exp[&ico (lr) t] factors in (2.19b).

%e study a point charge with an unshielded piezo-
electric electron-phonon interaction because the long-
wavelength singularity in this interaction leads to one
of the most striking consequences of the phonon
continuum: the existence of an "infrared catastrophe"
resulting from the ease of copious emission of zero-
energy phonons. At non-zero temperatures the thermal
motion of the phonons prevents an actual divergence
of (2.19b), but its possibility in the 8 —+0 limit is
reflected by a broadening and asymmetry of the zero-
phonon hne which is linear in 8. %e find in Sec. VI that
the introduction of static shielding of the interaction by
mobile charge carriers yields a bona)fde zero-phonon
line but does not obliterate the low-temperature struc-
ture in the spectral function near the zero-phonon
energy.

The spectral function is calculated by using (2.10a)
and trigonometric identities to write (2.19b) in the form

g &mdk

ge" (t) = expl —
l M)„),(k) l'(i sin(e, kt)

p k

l+[1—cos(z,kt)] coth(hz, kP/2)) l) (4 4,)

IV. UNSHIELDED PIEZOELECTRIC PHONONS:
POINT CHARGE

The limiting case of a charged deep impurity level
is a point charge. Such a charge, being localized. relative
to a lattice spacing, interacts strongly with all LO and
LA phonons. Therefore Srillouin-zone boundary effects
cut off the lt sums in (2.19).Shallow-defect states do not
couple strongly to short-wavelength phonons because
their large spatial extent averages out the charge Quc-
tuations due to these phonons. For these states the
averaging alone is used to cut off the k sums and
Brillouin zone effects are neglected. The important con-
clusion to be drawn from this section is that for values
of E such that E+E(X)=0 the behavior of the one-
electron spectral function is insensitive to the deep-
shallow nature of the defect state.

The use of the Debye phonon spectrum implies that
the 'k sum in (2.19b) is cut off at the maximum wave
number

in which
l Mq, y(k) l' is the angular average of the form

factor (2.2b). We define the dimensionless variables:

x=hv, Pk /2,

e=e,k t,
w=k/k

Introducing the variable substitution
expanding

(4.5a)

(4.5b)

(4.5c)

s=new and

coth(x) =1+2 P exp( 2—nx),
n 1

(4.6)

we obtain by using (4.2) and (4.5) in
pression

ge'(t) =em[ gl(e,—x)],
"ds

I(e,x)= —[1—exp( —z)]
0 Z

(4.4) the ex-

(4.7a)

did
+2 g [1—cos(wz)] exp( —2nxw) . (4.7b)

n 1 0 QJ

We set X = q to denote that (4.7) is calculated for a point
charge of magnitude q. The first integral in (4.7b) can
be expressed in terms of the exponential integral
Ei(is)."The second integral is evaluated by expanding
the cosine in its Taylor series about the origin, inter-
changing the resulting sum and integration, and
utilizing an integral representation of the incomplete
gamma function y(2s, 2nx). 's We obtain

I(v,x) =y+ln(iv)+S(s, x)+Ei(i,z), (4.8a)

( )e+1 z )2e
S(e,x) =2 P P l

y(2s, 2Nx), (4.8b)
(2s)! 2lxi

y =0.577216 (4.8c)

Although Eqs. (4.7) and (4.8) constitute an analytical
evaluation of ge'(t), they do not yet give a useful
expression because of the nested infinite summations.
In the low-temperature limit we obtain the more
tractable expression

S(z,x) —+ g in(1+ 'z4/n' )x+O(ex(px)), (—4.9)

which follows from the expansion"

~-i (1-st)
Xe~(—» Z "+O(lyl-&) . (4.10)~ (—y)~

I W. Gautschi and W. F. Cahill, Haedbook of Mathematical
Fgoctimu {National Bureau of Standards Applied Mathematics
Series SS, Washington, D. C., 1964), p. 227.~ Higher Tramceadeetar FNNctimas, II, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc. , Neer York, 1953},Chap. 9.
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cosine integrals which are evaluated numerically
directly from their power-series expansions for @&10
and from their asymptotic formulas for v) 10.

If we de6ne 8~ as the dimensionless variable

I

CO
lz'
4l
4J
4J
CF

I

IP

8& pE——t& (—q) J/hv, tt

h(q) =gatv. k /v,

we obtain for the spectral function

p' '(q, 8&) = F(v)~v,
1l 0

(4.12a)

(4.12b)

(4.13a)

—
g (2x

F(v)=cosL8|v —
g Si(v)/vjXexp y+ln~—

E~

-8 -4 0 4 8 I 2 l6 20
e' fE-6 (q)j /qKT

Pxo. 1.The low-temperature spectral function associated with a
point charge in a hypothetical strong-coupling material. Only the
pimelectnc electron-phonon interaction xs included in the calcu-
lation. All symbols are de6ned by Eqs. (4.5), (4.12), and (4.16)
in the text.

The evaluation of the error estimate is not trivial and
is outlined in Appendix A. Using (4.8) and (4.9) in
(4.7a) and neglecting the error terms we obtain an
infinite product from the sum in (4.9). This infinite
product can be simply related to the hyperbolic sine"
so we obtain the final expression:

gp&(t) = exp fy+In(2xi/v)+E&(iv)

+ln sinh — —Ci v . 4.13b
2x

It is easy to demonstrate that p' & (q,E) does not exhibit
a delta-function zero-phonon peak by using the asymp-
totic expansions"

Si(v) -+ v/2+O(v '),
Ci(v)

'—+ O(v-').

(4.14a)

(4.14b)

—
g x gv

F(v)
'—&" exp ln —+y

Thus the integrand in (4.13) exhibits the asymptotic
behavior:

+ln(sinhLv v/2x]) j, (4.11)

where x, v are defined in (4.5). For numerical calcu-
lations we use the identity"

Eg(iv) = i Si(v) —Ci(v) —v.i/2,
in which Si(v) and Ci(v) are the exponential sine and

XcosL8&v —g/2) . (4.15)

The exp( —gv/2z) term gives rise to a Lorentz-broadened
analog of a zero-phonon line. The (—g/2) factor in the
argument of the cosine make the line asymmetric and
is the origin of the Stokes' shift for the point charge.

The final form of the spectral function used for
numerical evaluation is given by

p' '(q, 8&)=v ' LF (v) —F.(v) jdv+ p. ' & (q, 8&),

g(g+ 1)F,(v) = cosL8&v —g/2jexp( —ggln(g/x)+&+~/2zj/&r) 1+ +
7r 2' 2

((g+2v n)/2x] cos(g/2)+ 8& sin(g/2)
p, &-&(q, 8&) =v-' exp( —gLy+ln(z/v) j)Q c„

vt~ (g+ 2v.n)'/4z2+ 8&2

cp ——1, c&
——g/v, c2 g(g+1)/2 '—— v

(4.16a)

(4.16b)

(4.16c)

(4.16d)

The II=0 term in (4.16c) causes most of the structure
in the analog zero-phonon line, and in the g~ 0 limit

"See, e.g., T. J. I'a Bromwich, An Intradectimt to the Theory of
Infinite Series (MacMillan and Company, London, 1955},
pp. 295-296.

reduces to the zero-phonon delta function. The analog
zero-phonon line consists of the superposition of a
Lorentzian peak of width (g8) and its derivative (which
peaks at &g8) with relative weights 1:EP(tang/g).
The shift for large values of g of the peak in the spectral
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function to higher energies is illustrated in Fig. 1 for
the case g= v/2.

We recall that the value of p' '(q, E) represents the
relative probability that the point charge coexists with
a cloud of phonons whose total energy is E—A(q). The
high-energy tail of the spectral function, evident in
Fig. 1, rejects the probability that for large values of
the coupling constant (g) many phonons will be created.
The exponential edge of the spectral function for E(0
rejects the probability that the electron absorbs
phonons from the thermally excited phonon bath
in the crystal. This edge is a pure exponential for
E&(A(tt) g~T/v j—as far as we calculated it (two
decades), and is reminiscent of Urbach's rule for optical
absorption below a band (exciton) edge."

Actual materials usually exhibit smaller values of g
than v./2 and the shift in the maximum of the spectral
function is less evident. The zincblende semiconductor
with the strongest piezoelectric coupling is ZnS for
which the spectral function associated with a point
charge is shown in Fig. 2. The line shape is that of
t4' '(q, E) for E)0.5tt(q). The exponential low-energy
edge is evident for E&0.56(q) as is the large high-
energy tail for E&0. The exponential edge begins at
that value of the energy at which the integrals of
[F(v) —F,(v)) and F,(v) alone are approximately equal.
A comparison of Figs. 2 and 3 indicates that the analog
zero-phonon line exhibits the same shape for both the
(deep-donor) point charge and the shallow S-wave
donor.

V. S-WAVE HYDROGENIC SHALLOW DONOR
WITHOUT SHIELDING

minimum in an 5-like conduction band at the center of
the Brillouin zone. ~ Shallow donor states can be
constructed" which are coupled to deformation potential
phonons via Eq. (2.9). For shallow acceptor states, a
modi6cation of the electron-phonon coupling due to the
degeneracy of the valence bands must be introduced. "
Ke neglect this rednement in Sec. VII, however, and
treat the hole band as possessing an equal and opposite
deformation-potential constant to the electron band.

The electron-phonon vertex for the shallow-donor
state is taken to include the influence of both the
unshielded piezoelectric interaction and the deforma-
tion-potential interaction. Because of the ortho-
normality of the Bloch functions at the zone center,
only the effective-mass envelope function enters the
Fourier transform of the charge distribution (2.2b).
For an S-wave envelope we obtain

M, „(k)= [1+(kav/2)'j-', (5 1)

v(lt, s) ' 2v'g
[8+yk'j

~

M'. ..(k) ~'

tt4v(it) Qk'
(5.2a)

5=+1;piezoelectric coupling

0; no piezoelectric coupling,

y=Dp'/4v kv.vgpp.

(5.2b)

(5.2c)

in which a~ is the Bohr radius of the impurity state and
the e6'ective charge on the impurity is taken to be the
free-electron charge. The electron-phonon weighting
function in (2.19b) can be written as

For both zincblende and Wurtzite structures most In order to perform the lt sum in (2.19b), we replace it
II—VI and III—V semiconductors are thought to have a by an integral and use the partial-fraction expansion of

the meromorphic function" coth(x)
IO

1 ~ x
coth(x) =—+2 Qx» x+s7r

(5 3)

IO

I

C9

UJ

W~
IO gv'(t) = exp( g[i sgn—(t)F(t)+I(t)]),

sgn(t) =+1;t)0
= —1 t&0,

(5.4a)

(5.4b)

Inserting (5.1), (5.2), and (5.3) into (2.19b), neglecting
zone-boundary e6'ects, the integral can be performed
by contour-integral methods with the result:

L L. L- I -0.75 -0.5 -0.25 0 0.25 0.5 0.75

t E-s(q) ] lzcq)

Fio. 2. The spectral function at T=4'K for a point charge in
ZnS. Only the piezoelectric electron-phonon interaction is in-
corporated in the calculation. The symbols are defined by Eqs.
(4.5), (4.12), and (4.16). The selection of parameters is specified
following Eq. (5.4) in the text.

~ See, e.g., D. E. McCumber, Phys. Rev. 135, A1676 (1964).

Z

F(t)=b[1—v *j/2+ [(ykv2 b)v'+3(ykv' —38)s'—
96

+3(ykp' —11b)zj, (5.4c)

~ See, e.g., M. Cardona, Phys& s of Semiconductors (Dunod Cie,
Paris, 1964), p. 181, for detailed references.

"W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334
(1959).
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I(t) = 6
l tl /P&+CI(1 e—*)-+e *)Cps+Cps'+C4s']

10—
C4Te

g=.OI8, gfKO = &4

E0=.44 tn e V

s=2iti p,/us,

kp ——2/as,

x=php, /as .

L1—exp( —2s.n[t (/hp)]
X (5.4d)

(x'—n'H)4

(S.4e)

(5.4f)

(5 4g)

1.0

IO= ZnS

g =.I5, g7KO s6.3
E&p 2.76 I e V

I

104J

10

The C; are coefBcients depending only upon k0 and x.
They are given in Appendix B. As in the case of the
point charge, the 8I t ~/pIt term in (5.4d) eliminates the
zero-phonon line and replaces it by a Lorentzian of
width ge. The 8(1—e *)/2 term in F(t) contributes an
asymmetry to the analog zero-phonon line.

The Fourier transform of Eqs. (5.4) is calculated, as
in Sec. IV, by explicit subtraction of the large —t
Lorentzian form. Computations were carried out on the
GE 235 using an integration accuracy of 1 part in 10 .
The calculations were made using parameters suitable
for the description of three materials: ZnS, CdTe, and
CdS. For the two zinc-blende materials, ZnS and CdTe,
we employ the piezoelectric electron-phonon interaction
given by (2.10c). The elastic constants, densities,
dielectric constants, and piezoelectric constants are
obtained from Serlincour t et u/. "The CdTe deformation

IO

-2.0 -I.5 -I.O -0.5 0 0.5 1.0 1.5 2.0

~E+Es ssl/Eo

FIG, 4. The spectral functions at T=4, 20, and 77'K for a
shallow s-wave hydrogenic donor in CdTe. The unshielded piezo-
electric and deformation-potential electron-phonon interactions
are included in the calculation. The symbols are de6ned by Eqs.
(5.2), (5.4), and (2.19). The parameters are speci6ed following
Eqs. (5.4) in the text.

potential constant is estimated from Thomas~ to be
3 eV. The ZnS and CdS deformation potential constants
are arbitrarily set equal to 5 eV. The conduction-band
eBective mass for CdTe is taken from Kanazawa and
Brown" to be nt~=0. 096nt, and leads to as=53 A. No
conduction-band masses have been measured for cubic
ZnS. However, we do not expect the value of m* to be
excessively sensitive to the crystal structure so we use
the value m*=0.28m, given by %heeler and Miklosz"
for Wurtzite ZnS which leads to as ——15.2 A. For CdS
we use as =24 A, s,= 1 8)& 10' cm/sec, and g=4 1 whose
calculation is described by Hutson. ""

In ZnS and CdTe the coupling constant g assumes the
values 0.148 and 0.018, respectively. Therefore they
are both weakly piezoelectric in the sense that g&&1.
The spectral functions for each of these crystals at
4, 20, and 77'K, respectively, are shown in Fig. 3
for ZnS and Fig. 4 for CdTe. Energies are measured in
units of

Ep ——2hp, /as, (5.5)

-2.0 - I.5 - I.O -.5 0

IE+ E~-hs)/Eo

I,O I.5 2.0

which is the uncertainty energy associated with the
transit time of a sound wave across the impurity. The

FIG. 3. The spectral functions at T=4, 20, and 77'K for a
shallow 5-wave hydrogenic donor in ZnS. The unshielded piezo-
electric and deformation-potential electron-phonon interactions
are included in the calculation. The symbols are de6ned by Eqs.
(5.2), (5.4), and (2.19). The parameters are speci6ed following
Eqs. (5.4) in the text.

~ D. Berlincourt, H. JaEe, and L. R. Shiozawa, Phys. Rev. 129,
1009 (1963).

~ D. G. Thomas, J. Appl. Phys. Suppl. 32, 2298 (1961).
~K. Kanazawa and F. C. Brown, Phys. Rev. 135, A1757

(1964).
3'R. G. Wheeler and J. C. Miklosz, The Physics of Semi-

comfgctors (Dunod Cie., Paris, 1964), p. 873; R. G. Wheeler
(private communication).

"Our value of g is found from g=(k')q~/e(0)hv„where the
electromechanical coupling constant (k') was obtained from
Hutson. Only shear phonons were considered for CdS as they
have the dominant interaction.
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l0-i

«z'-
4d
4l
4J
«A

l0 s

polaron binding energy of the shallow donor state is
given by

(5.6)

For weakly piezoelectric crystals the deformation-
potential electron-phonon coupling contributes more
to the polaron shift and the wings of the spectral func-
tion than does the piezoelectric coupling. For ZnS and
CdTe the quantity ykg is equal to 42.3 and 41.1,
respectively. As 5= 1.0 and y= 0 gives the contribution
of the piezophonons alone, we And that the deformation-
potential phonons contribute about eight times as
much to the polaron energy as do the piezophonons.
The Lorentzian peak in the spectral function near
E=—E,+3, is characteristic of the piezoelectric inter-
action in weakly piezoelectric crystals. It is referred to
as the analog zero-phonon line and is a consequence
of the k ' divergence in (5.2a). The relative contri-
butions to the spectral function due to the two kinds
of phonon interactions can be seen by comparison of
Fig. O with Fig. 5 in which the spectral functions for
CdTe in the absence of piezophonon coupling are
illustrated. At 77'K the spectral functions calculated
with and without the piezoelectric electron-phonon
interaction are identical. At the two lower tempera-
tures, 20 and O'I, the dominance of the deformation-
potential interaction is reflected in the indistinguish-
ability of the wings of the spectral functions calculated
with and without the piezophonon interaction. In its
absence the area under the analog zero-phonon line is
absorbed in a bolo /de zero-phonon delta function
(not shown in Fig. 5) with the strength

So= exp[—gl-o], (5.7a)

n
Lo=Ci(&=o)—ory&o'xo Q

(x' n's')'—(5.7b)

-2.0 -1.5 -l.0 -0.5 0 0.5 l.0 l 5 2 0

E+Es ~sI/Eo

Fro. 5. The spectral functions at T=4, 20, and 77'K for a
shallow $-wave hydrogenic donor in CdTe. Only the deformation-
potential electron-phonon interaction is included in the calculation.
Zero-phonon delta functions are not shown. The symbols are
dehned by Eqs. (5.2), (5.4), and {2.19). The parameters are
speci6ed following Eqs. (5.4) in the text.

l0-' =

-50
I -l l

-25 0 25

(E+Es -b, sl j«lKT

50

FIG. 6. The spectral functions at T=4, 20, 77'K for a shallow
S-wave hydrogenic donor in CdTe. The energy scale is propor-
tional to the temperature. The unshielded piezoelectric and
deformation-potential electron-phonon interactions are incorpo-
rated in the calculation. The symbols are de6ned by Eqs. {5.2),
(5.4), and (2.19). The parameters are speci6ed following Eqs.
(5.4) in the text.

In ZnS, for which the piezocoupling is ten times stronger,
the low-energy wing as well as the center peak is
modified by the piezocouphng. However, as the de-
formation-potential constant for ZnS is chosen arbi-
trarily, the results have no quant. ative significance.

The emergence at low temperatures of the analog
zero-phonon line of width g8 is illustrated for CdTe in

Fig. 6 in which the center portion of the spectral
function is shown on an energy scale of g8. This portion
of the spectral function is strongly modified by the
static screening of the piezoelectric interaction by
mobile charge carriers. As the carrier density needed to
obtain an appreciable e6'ect is n, 10+'4 cm ', we
anticipate that the center portion of the spectral
function for laboratory samples is usually better
represented by the results presented in the next
section.

CdS, with g=4.1, is a strongly piezoelectric crystal.
Our arbitrary selection of a deformation potential of 5
eV leads to yko' ——2.9 so that the piezophonon and
deformation-potential phonon contributions to the
polaron shift are comparable. The piezocoupling is
suSciently strong that we no longer obtain a simple
Lorentzian analog zero-phonon line but rather 6nd a
broad, shifted spectral function even at O'K. This result
is illustrated in Fig. 7 in which the spectral functions
at O'K are presented both with and without piezo-
electric coupling. The extreme broadening of the wings
due to the piezophonons is evident from the figure.
These strong-coupling results are not discernably
altered by the shielding of the piezoelectric interaction

by a mobile carrier density of e, 10" cm '. At higher
temperatures the spectral functions become still
broader. This is shown in the next section for the case
in which static screening is incorporated.
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resulting integral by contour integration techniques

(neglecting zone-boundary effects). A tedious calcu-

lation yields the result

l I

Cds T=4'K
l l

SO=0 23

cs:
LaJ

W

4J
cd

CL,

ge'(t) = en( —g[f sgn(t)F (t)+I(t)]), (6.4a)

F(t) =b([exp( —rz) —exp( —z)][(1+3r')/2(1 —r')']

—rs exp (—rz)/4 (1—r')')

+exp( —s)[Fis+Fsz'+Fss'], (6.4b)

lp '

io-t =
I

-0.5 05 I 0 l 5

(E+Es ~s&/Eo

-IO 20 25 3.0

b(xn)'
I(t) =x' P

[(rx)'—n'ss]'

mnykp'

g'FIG. 7. Spectral functions at T=4'K for a shallow 5-wave
hydrogenic donor in CdS. The solid line shows the spectral func-
tion calculated with both the unshielded piezoelectric and de-
formation-potential electron-phonon interactions. The dashed
line shows the calculation using the deformation-potential inter-
action alone. The zero-phonon line is indicated and has the
strength 5o——0.23. The symbols are defined by Eqs. {5.2), (5.4),
(2.19), and (5.7). The parameters are specified following Eqs.
(5.4) in the text.

[1—exp( —2xn~ t~/hP)]
X +Ii(1 e"')—

[e—n'e]4

+Isse "*+I3(1—e *)+e —'[I-4s+Iss'+I6s'],

(6.4c)

VI. 8-WAVE HYDROGENIC SHALLOW'
DONOR WITH SHIELDING in which r is defined by (6.3b); s, x, and ko are defined

in (5.4); and the coefficients F and I„aregiven in

Appendix C. From Eqs. (6.4) we see that the large ~t~

limit of ge'(t) leads to a zero-phonon line of strength
The static screening of the piezoelectric electron-

phonon interaction by mobile charge carriers of density
n, and charge q alters the weighting function in (2.19b)
from (5.2a) to (6.5a)5,= exp( —gL.),

b(xn)'
L,= Ii+I3+x' Q

[(rx)'—n'w'7'

nxykp'

x'
s(k, s) ' 2m'g bk +- ~m, , , (k) ~', (6.1)
Aced(k) 0 (k'+ko2)' k

k D2= 4vrq'n, P/e (0) . (6.2) y [x'—n'n'7 4, (6.5b)
Therefore the mobile carrier screening removes the
k ' singuhrity in (5.2a) which caused the analog
zero-phonon line. Equation (6.1) yields instead a

bona/de zero-phonon line with shoulders which rise to a
maximum on either side of it on the energy scale

centered at E= F.,+h. (i.e.,—at the bound-state energy
E, of the impurity lowered by the polaron shift). This
zero-phonon line is not shown in the figures although
its strength is indicated. .

The primary e6ect of mobile-carrier shielding in
weakly piezoelectric materials is the suppression of the
analog zero-phonon line and the appearance of a bona

/de zero-phonon line. This result is clearly illustrated
in Fig. 8 in which the spectral functions associated
with a mobile-carrier density of n, =1.6&(1 Oi32(' K)

cm—' are shown. A comparison of Figs. 4, 5, and 8
reveals the sensitivity of the behavior of the low-

temperature spectral functions near the zero-phonon
line to the existence of the piezophonon coupling and
to the presence of extremely low concentrations of
mobile-charge carriers. The spectral function at 77'K
is essentially unaffected by either the piezophonon
coupling or the presence of mobile-charge carriers.

The mobile-carrier shielding of the piezoelectric
electron-phonon interaction has no appreciable effect
on the wings of the spectral function. This result is
evident from a comparison of Figs. 8 and 4 and also
from Fig. 9 in which the spectral functions for ZnS
at 4'K with various concentrations of mobile carriers

ED= rEp, (6.3a)

r=ki)aa/2. (6.3b)

Although the mobile-carrier density associated with a
given value of r depends on the parameters of any given
material, rough estimates of the carrier density may be
made by noting that for the three materials discussed
herein, at 4 K the value r=0.1 corresponds to n,

10"—10" cm—'. More precisely, (6.3b) yields the
formula

r'e (0)T('K)
ng X1.9X&0".

aa'(A')
(6.3c)

Carrier freeze-out can cause a spectacular rise in the
height of the shoulders accompanying the zero-phonon
line in weakly piezocrystals when (a) the temperature
is 20'K or lower a,nd (b) the freeze-out mechanism
reduces r below 1.0.

Using (6.1), (5.1), and (5.3) in (4.4) we perform the

PHO NON —B ROAD EX E D I EI PURITY SPECTRA. I



C. B. DUKE AND G. D. MAHAN

r,=a e(e)/2, (electron)

ro=ae(k)/2, (hole).

(7.1b)

(7.1c)

io- '

CK
lal

)0 2

LU

This form factor neglects the Coulomb correlation
between the electron and the hole, and is only useful
for deformation-potential coupling when the de-
formation-potential constant associated with the hole
band is equal in magnitude but opposite in sign to that
associated with the electron band. For simplicity we
assume that such is the case:

Io-'
Do (e) = —Do (k) =Do (7 2)

f-!.0

Eo=.44 m IV

I

0
(E+E, -~,)/E,

l

f.0

This assumption is qualitatively correct" but neglects
eGects due to the degeneracy of the valence band. ""'s
Using (7.2) we obtain the spectral function for the
bound exciton exactly as in Sec. V but employing (7.1)
instead of (5.1) in (5.2). The result is given by

FIG. 8. Spectral functions at T=4, 20, and /7'K for a shallow
S-wave hydrogenic donor in CdTe. The deformation-potential
and shielded electron-phonon interactions are incorporated in the
calculation. The symbols are dered by Eqs. (2.19), (5.4), (6.2),
(6.3), (6.4), and (6.5). The numbers in parentheses associated
with each spectral function are the strengths S, of the zero-
phonon lines which are not shown in the 6gure. The selection of
parameters is speciled foHoming Eqs. (5.4) in the text.

gesz(t) = exp( —g(i sgn(t)F(t)+I(t) 7), (7.3a)

F(t) =A (b,ykpP, M ',s)+A (b,y3Pko', M,Mz), (7.3b)

A (b'ykp', y z) = e *(Fp+Fgz+Foz'+Foz'), (7.3c)

M= m*(k)/~'(e), (7.3d)
are presented. At low carrier concentrations k~a~ =0.03
(n, =6X10"cm ') the mobile carriers give rise to the
zero-phonon-line-plus-two-shoulder structure charac-
teristic of CdTe. However, at the higher carrier concen-
tration kDae=0. 3 (no=6X10' cm ') the low-energy
shouMer is completely suppressed giving rise to a
structure similar to those which will be presented in
Sec. VII for excitons bound to neutral impurities.

The influence of shielding by no=7.6X10"2'('K)
cm ' mobile carriers in strongly piezoelectric CdS is
illustrated, in Fig. 10. A comparison of Figs. 7 and 10
indicates that the shielding introduces a slightly larger
slope of the wings of the spectral function and reduces
the Stokes' shift of its maximum. At both 20 and O'K
the spectral functions computed with and without
shielding are almost identical; a result which is rejected
in part by the small strengths of the zero-phonon lines.
The insigni6cance of the zero-phonon line in CdS
contrasts sharply to its relatively large weight in the
weakly piezoelectric materials. Both this result and
the absence of the analog zero-phonon line without
shielding are consequences of the suppression the
asymptotic values of the integrands (5.4) and (6.4)
relative to their value at $=0 for large values of the
piezophonon coupling constant g.

VII. SOUND EXCITON %ITHOUT SHIELDING

The spectral function of an exciton bound to a
neutral defect has been discussed by Hop6eld' using
the charge-distribution form factor

Maa(lr) =L1+ (kr )'7 '—
f 1+ (kro)'7 ' (7.1a)

I(t) =I (b,ykp', x,M ',z)+I(b,yMPkp', Mx,M,Mz)'

+x
(x2 npxo)o (Mope no+)2

yk0'+
X

S X'

p
—2xnft

f

1—exp f
(7.3e)

kP

I(b,ykpo, x,y,z) = Io(1—e *)+e *(Izz+Ipz'+Iozo), (7.3f)

z=2ftfo, /ae(e), (7 3g)

k p
——2/ae(e), (7.3h)

x=Pko, /ae(e), (7.3i)

"H. R. Phillip, W. C. Dash, and H. Ehrenreich, Phys. Rev.
127, 762 (1962).' G. D. Mahan, J. Phys. Chem. Solids 26, 751 (2965),

in which z, ko, and x are dehned as in Sec. V for the
electron; M is the hole/electron mass ratio; and F and
I are coeScients depending upon yk 0', 8, x, and y
which are given in Appendix D.

The fact that the bound exciton is an electrically
neutral system whereas the shallow donor (acceptor)
exhibits a net (electronic) charge leads to several
signilcant differences in the spectral functions as-
sociated with these two charge distributions. In contrast
to Eqs. (5.4), Eqs. (7.3) do not yield an analog zero-
phonon line. Instead the spectral function associated
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and the notation A. (g,y,'/2, /3R(i)) is used for the shallow
donor (acceptor) polaron shift with i= e, k denoting the
electron and hole deformation potentials y " and
Bohr radii aR(i), respectively. For the case in which
(7.2) is satisied, i.e. , y "'=—yh'/2 ——y'/' the polaron
shift is given by

plus wings whose form depends sensitively on the
relative strengths of the piezoelectric and deformation-
potential electron-phonon interactions. The total po-
laron shift in the energy of the bound-exciton state is
not simply the sum of the electron and hole polaron
shifts, but is reduced by an interference term. Energies
are measured in units of Eo associa. ted with the electron,
i.e.,

io-s
0.0 I.o

[E+ Es Q}/Eo

2.0

with (7.3) has the general form of a zero-phonon line
of strength

Sp= exp( —gLp),

Ip=Ip(b, ykp', z,M ')+lp(b, yM'kp', Mx,M)

(7.4a)

FIG. 9. Spectral functions at T=4'K for a shallow S-wave
hydrogenic donor in ZnS. The solid line represents the spectral
function calculated using the unshielded piezoelectric and de-
formation-potential electron-phonon interactions. The dashed
lines show the spectral functions calculated using the deformation-
potential and shielded piezoelectric interactions for two concen-
trations of mobile carriers. The symbols are defined by Eqs.
(2.19},{5.2), (5.4), (6.2), (6.3), (6.4}, and {6.5). The numbers in
parentheses for the shielded-interaction spectral functions are the
strengths 5, of the zero-phonon lines which are not shown in the
figure. The selection of parameters is specified following Eqs.
(5.4) in the text.

131 R=g (g y'",aR(e))+/31, (g —y'" aR(h))
—gEpf fM(M2+3M+1)8+Mpykppj/2(1+M)3)

(7 6)

and provides an extra energy shift of the bound-
exciton absorption lines relative to their free-exciton
counterparts.

The charge-distribution form factor (7.1) for a
bound exciton is similar to that which is to be used in
Eqs. (2.22) for donor-acceptor recombination fluo-
rescence. The weighting function in (2.22b) for these
transitions depends explicitly on the separation r of the
donor-acceptor pair. This has the interesting conse-
quence that both the polaron shift d and the spectral
density depend upon the value of r. Ef the (S-band)
donor has an S-wave form factor (5.1), then the form
factor associated with a (P-band) acceptor with an
S-wave envelope is given by

M, ,, & '(k) = exp( —3k r)(1+fkaR(k)/2j') —'. (7.7)

x' M4x'
+—p

(x'—2323r')2 (M pz3322r')'

nyk0'm
X

n g'
(7.4b)

Using the form (2.10a) for the piezoelectric electron-
phonon interaction the Fourier transform of the spectral
function for the recombination radiation can be calcu-
lated like the bound-exciton results presented in Eqs.
(7.3). The polaron shift in the energy of the recombina-
tion radiation is given by

N4
Q/3~ —+I(g pl/2 /3R (e))+Q (g ~1/2 /3R (k))+gjpp + f (Qk 2)1/2(&—R (3+M2) M—3 (3M2+ 1)e //rR)

E E(1—Mp)3

+8(e "(2—M )+M '(1—2M2)e 2'")+2ykp'(e R—e™)j+ fykp'(e R+e ~R/M)
2 (1—M2)2

+// (e R+ g //1 R/M3) 2 (b~—k„2)1/2 (e R+ g
—31R/M2) j —

(7 8a)—
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defect. But (8.1) appears valid down to 15'K, and
deviations from this form are small at even lower
temperatures.

When the Debye screening from free carriers is
unimportant, neither the point charge nor the hydro-
genic donor density of states have a zero-phonon line.
This arises from the piezoelectric coupling of these
states to long-wavelength phonons. The zero-phonon
line arises when there is a finite probability of the
electronic state not being coupled to any phonons at
any given time. But when coupling is allowed to
long-wavelength phonons, which can have vanishingly
small energies, this probability goes to zero. Instead,
the center of the density of states is dominated at low

temperatures by a Lorentzian peak of width g~T. This
interesting physical result can only be deduced by
finding gs" (t) exactly. The Lorentzian behavior is the
result of processes involving many phonons, and would
be dificult to obtain by perturbation theory.

The efI'ect of free carriers is to screen out the elec-
tronic coupling to the long-wavelength phonons. This
will cause the density of states to now have a zero-
phonon line. The relevant parameter for the hydrogenic
donor is r= kDa&/2 which is proportional to the square
root of the mobile charge density. When r —+ 0 there is
a Lorentzian, and, when r is large, there is a strong
zero-phonon line. As shown in Sec. VI, intermediate
values of r give rise to unusual behavior in the density
of states. Thus the density of states of a donor is
sensitively dependent upon the density of mobile
charges in the lattice. This result leads to the rather
unusual consequence that removing impurities from a
solid. , which reduces the mobile charge-carrier density,
broadens rather than sharpens the density of states near
the zero-phonon line.

The experimentalist is interested in measurable
results such as theoretical optical-absorption spectra.
Our calculated density of states for the point charge
and for the donor are not simply related to optical
spectra. In optical absorption (or fluorescence) of
donors, an electron is taken from (or dropped into)
the valence band. The calculation of optical spectra
must involve averaging over the valence band density
of states and thermal occupation, which is also altered
by phonon interactions. Yet it is clear that in the
averaging procedure the most important part of the
donor density of states is just the Lorentzian and
zero-phonon structure. The remaining wings will just
contribute background. Our formulas for the tem-
perature-dependent spectral weight of the Lorentzian
zero-phonon structure do provide direct information on
the possible observation of these donor spectra.

The results of Sec. VII for the exciton bound to a
defect are much more directly related to optical-
absorption spectra. Indeed, the calculated p' '(X,E) is
directly proportional to absorption or emission spectra.
Our exact formulas for gs"(/) allows p& '(X,E) to be

evaluated and compared directly with experiments.
Our sample calculations show that p& &(X,E) has a
strong dependence upon the ratio of electron and hole
masses. This is unfortunate in view of our simplifying
assumptions concerning the hole mass. We assume that
the valence band was nondegenerate and parabolic,
whereas most semiconductors have degenerate valence
bands characterized by several parameters. Since a
more realistic calculation is intractable, our results
are still quite useful in understanding the nature of these
optical spectra.
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APPENDIX A: ERROR ESTIMATES FOR
THE POINT CHARGE

In this Appendix we outline the estimation of the error
terms in (4.9). These terms come from two sources:
the use of only the leading term of (4.10) in (4.8) and
the fact that if v) 1 the power series in (4.8) diverges
and can only formally be summed to give a logarithm.
We consider both sources of error simultaneously by ob-
serving that y (2s,2mx) = (0.95)I'(2s) when nx = 10s/7~s.
Thus when n)s/x we make errors of at most 5%%uz by
replacing y(2s, 2nx) by I'(2s). However, when n(s/x,
the use of only the leading term in (4,10) is unjustified.
To estimate our errors in this case we use the small
Nx expansion" p (2s,2nx) e'"*—(2nx) "/2s The .region
which is cross hatched in Fig. 15 shows the region of
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Fro. j.5. A schematic diagram of the e-s plane over which the
summations in Eqs. (4.8b) and (Ai) are treated by using different
approximations. The symbols are defined in Appendix A.

the n-s plane in which we use this expansion. We next
write (4.8b) as

(A1a)

( )e+1( p ) 2e

S„(s,x)—P
s &2nx]

e+I

+ Q e '"* s" (A1b)
(2s)!(2s)
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The sum in the last term is completed and the resulting

power series is related to Ci(v) by a standard expan-
sion."The terms added into the first term are bounded

by
e 2s*

2(2.)! 2e Un*i

with the equality occurring at s=nx: the last term in
the first series. Thus the errors incurred by neglecting
the added terms to the first series are of the same order
as those incurred by our limiting expressions for
y(2s, 2nx) and will be ignored. The final result is

ss ( )s+1~ v 2s

S (v,x)=Z
s 2nx

+(y+lnv —Ci(v))e '"* (A2)

We found in Eq. (4.15) that it was the term resulting
from replacing the sum in (A2) by a logarithm which
gave the Lorentzian broadening of the "analog zero-
phonon" line. We subsequently con6ne our attention
to estimating (A1) and (A2) in the large v limit in
order to verify that our use of (4.9) in (4.8b) does not
lead to a spurious result. In this limit, using (4.14b)
Eq. (A2) becomes

2» t ss ( )s+1 ( V
2e

S.(v,x) -+ Q ~

+e-'"'lnv. (A3)
s 12nx

Case I:2x&v&&1: The sum consists of the first nx
terms of a convergent power series for In(1+2r222/4x2)
and we obtain the bound for the largest error (obtained
when n=1).

(XV
2 ~ ( )s+1 V 2e

51(vx) —ln 1+~ — &~e 2*lnv~+ P — &)e 'ln(2x)(+x '(v/2x) '/L1+(v/2x)'7 (A4)
&2x -. s 2x

(—)4+'/ [(v/2x)2i '& —17&Z Z exp( —V2/4) &exp( —V2/4)
s E2x(a+1)I 1+ (2x/v)'

ng 1 (v/2x)'&~'i —1- v&&2@&&1 ( V 2(s-1)
X g — «xp( —v'/4)t'(2) :exp( —v'/4)i'(2) X~—

(42+1)2 1+ (2x/v)' &2x

(—)s+1 -
v/2ZZZ~ s-1 s-s n n —S+X(42+1)

(A5)

which can be made arbitrarily small for a fixed value of e by increasing x.
Case II: v) 2x)&1: In this case the power series in (A3) represents the 6rst terms of a convergent logarithmic

expansion only for values of n) n, = [v/2x7. We therefore sum explicitly those terms in the unshaded region of the
n —s plane in Fig. 15 along diagonal lines parallel to those shown in the figure. Labeling the value n at which
the diagonal line begins by 0.+1, the contribution of the terms in the unshaded region is bounded by

where f'(s) is the Riemann zeta function. "Maximizing v'* exp( —v'/4) we obtain from (A1), (A2), and (A5)

V&2X» 1 es (s—ee )2s (—)~1 te V

S(v,x) - Q Q ~ ~

+e-'* lnv+R(v, x)
s (2nxl

(A6a)

R (v,x) & (1.645)e—*(2x)-*. (A6b)

Equations (A6) are the basis for the error estimates given in Eqs. (4.9). The lnv term in (A6) is slpwly varying
relative to the linear term in (4.15) and hence does not spoil the Lorentzian broadening of the analpg zerp phpnpn
line.

Ci= —~$168 cotx+(1111—yko2)x csc'x+2(38—yk22)Xx' cotx csc2x+22(8 —yk22)x2(3 cpt2x+1) csc2x7 (Ill)

C2= s12L(11b—yk22) cotx+2 (3h—yk22)x csc'x+2 (b—yk22)x' cotx csc'x7, (82)

C2=~L(38—yk2') cotx+ (b ykv')x csc'x7, —
(Il3)

APPENDIX B: SPECTRAL FUNCTION COEFFICIENTS WITHOUT MOBILE-CARRIER SCREENING

The coefficients used in Eqs. (5.4) are given by

C4= (1/96) (8—yk22) cotx.

All symbols are defined in the text.
(I14)

"Higher Transcendent/ Functions I, edited by A. Erdelyi (Me@raw-Hill Itook Company, Inc. , Ne &ork ]95')
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APPENDIX C: SPECTRAL-FUNCTION COEFFICIENTS WITH MOBILE-CARMER SCREENING

It is convenient to define R= (1—r') ', in terms of which the coeflicients of Eq. (6.4) may be written as

F&=yk02/32+ (8/32) (R'+12R' —24R4),

Fs=yko'/32+ (b/32) (2P—4R'),

Fs= (yko' b—R')/96,

I~ (b/4)(——SR' cot(xr) —R'[6 cot(xr)+xr csc'(xr)]),
I2= b(rR'/4) cot(xr),
I3——(ykom/32) [x csc'x+ 2x' cotx csc'x+-,'x'(3 cot'x+ 1) csc'x]—(b/96) [192R' cotx—72R4 (2 cotx—x csc'x)

—12R'(3x csc'x—2x' csc'x cotx) —R'(3x csc'x+6x csc x cotx—2x'(3 cot'x+1) csc'x)],
I4= —(ykP/32)[cotx+2x csc'x+2x' cotx csc'x]+ (b/32)[24R' cotx—4R'(3 cotx—2x csc'x)

—R'(cotx+2x csc'x—2x' csc'x cotx)],

I,= —yk0'(cotx+ x csc'x)+ (b/32) [4R' cotx—R'(cotx —x csc'x)],
I&= [(bR2 yk02)/—96] cotx.

All symbols are defined in the text.

APPENDIX D: SPECTRAL-FUNCTION COEFFICIENTS FOR THE BOUND EXCITON

The coefficients used in Eqs. (7.3) of the text are given by

F,= —b/2+ (1—y2)-~[(1—3y~)b+2yk02y ]
yk0' —11 8—yko'

+
32 2(1—y')'

Fp, (yko' —3b)/32, ——

F3= (yko' —b)/96,

Io [—b/2+5/(——1—y )'—2y2(b —yko')/(1 —y )'] cotx+[(pko' 11b)/32+ (b——yko )/2(1 —y ) ]x csc x

+ (yk02 —3h)x' csc'x cotx/16+ (yk02 —h) x' csc'x(3 cot'x+ 1)/48,

I&——[(11b—yk02)/32+ (y4' —b)/2 (1—y')'] cotx+ (3b—yko') x csc'x/16+ (b —yk o') x' csc'x cotx/16,

Iz= (35—pk02) cotx/32+ (b —ykom)x csc'x cotx/16,

Is= (b—yko') cotx/96.

All symbols are dehned in the text.




