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An attempt is made to distinguish "band-type magnetization" from "alignment-type magnetization" on

the basis of whether the local moments associated with the Wannier functions on the atom sites are "in-
duced" or "permanent. " In general, the local moment is partially induced and partially permanent, and a
criterion is suggested: A local moment is defined to be of the permanent variety if in the presence of magnetic

forces (supposed characteristic of the crystal in a given circumstance) tending to produce a moment in one

sense (s, say) of a direction, it can maintain itself (perhaps altered in magnitude, however) in the opposite
sense (—":},as well as in 3. The internal mechanisms tending to produce permanent moments are simplified

to just the H„of Anderson, and the external inducing mechanism are the Heisenberg interaction and a
magnetic field, H,p;, say. If H„„dominates H,pi, then it is shown that a local moment can maintain itself
to the polarizing tendencies (whence an alignment type of magnetization calculation is appropriate), but if
H p dominates H„, then the local moment has only one sense possible in. this environment (and a band

type of calculation is appropriate). It is suggested that this distinction is relevant to transition metals.

1. INTRODUCTION results occur, the only diBerence being that the spins are
now associated with the Wannier functions on the
atoms. We shall see that since these functions are not
exact solutions of the one-electron problem they can be
regarded as occupied to a fractional extent, in a manner
exactly analogous to the filling up of the localized states
in impurities. ~' This also gives, then, the result of
fractional spins "per atom, "but now the atom is under-
stood in the sense of the Wannier functions on it. When
band magnetization is rephrased in this manner, the
interpretation of the effect of the exchange interaction,
Eq. (1.1), is quite direct: It polarizes the electrons on
the atoms (this is not an sd polarization; it is entirely
within the d band). That is, in contrast to the AM
picture, the redescribed band picture supposes that the
exchange interaction between Wannier functions on
diferent atoms does not simply align the local moments;
it produces them in the first place, the alignment being
taken for granted. Therefore we shall henceforth speak
of this as polarization magnetization (PM).

Thus we interpret band magnetization in terms of
local moments ~educed at the atom sites, and alignment
magnetization in terms of permanent moments at the
atom sites. The transition metals are of interest because
they are in some sense midway between these two
limiting cases. Now, although it may be possible to
make a calculation which ignores the nature of the local
moments and searches for the general solution to the
problem, we should like in this paper to see if there can
exist some criterion which would distinguish situations
which are characterized by predominantly permanent
local moments from situations which are characterized
by predominantly induced local moments. In order to
do this we have to have some model of what produces a
local moment of the permanent type. Fortunately, in
the recent literature' ' there has been a great deal of
work on local moments on impurities that can be

'AGNETISM in transition metals has many un-
- ' answered questions and curious phenomena asso-

ciated with it. In this paper, we shall attempt to corre-
late theories which assume fixed permanent magnetic
moments in the atoms, related to the d electrons
(primarily at least), and theories in which the atomic
magnetic moment is not a consequence of internal
forces, but of the influence of interactions with neighbor-
ing atoms.

If there are fixed magnetic moments, then they map
show ferromagnetic behavior as a result of the align-
ment tendencies caused by the Heisenberg exchange
interactions with neighboring atoms:

H„;,„=—2 P A (f—f')Sg S». (1.1)

Ke shall use f to mean both the position of an atom, and
(later on) a d-band Wannier function on it. Sf here
represents the spin on the f atom (see below for an
explicit definition), and A (f—f') is the exchange
integral. The picture of fixed atomic spins being lined

up by H, „;„weshall call alignment magnetizalion (AM).
On the band theory of magnetization (Slater, '

Stoner, 2 etc.), one envisages the d band split into two
parts, an up-spin part and a down-spin part. The lowest
energy in each of these subbands is not the same,
di6ering by an amount somehow related to the exchange
integral. Ea,ch band electron has a spin associated with
it; thus, this picture can preserve the half-integral
electron spin yet account for the variety of fractional
spins "per atom, " a known property of transition
metals. As just described, this version will be called
band magnetization (BM). On the other hand, the theory
could also be described in terms of Wannier functions
(see Sec. 3 below), in which case exactly the same

*This research has been supported in part by the Advanced
Research Projects Agency of the Department of Defense through
the Northwestern University Materials Research Center.' J. C. Slater, Phys. Rev. 49, 537 (1936).

s E, C. Stoner, Proc. Roy. Soc. (London} A165, 372 (1938).

' J. Friedel, Can. J. Phys. 34, 1190 (1.956). See also A. Blandin
and J. Friedel, J. Phys. Radium 20, 160 (1959).' P. W. Anderson, Phys. Rev. 124, 41 (1961}.' P. Wolff, Phys. Rev. 124, 1030 (1961),
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adapted. The model of the metal is simplified enor-

mously by supposing that there is only one d orbital.
The other d orbitals may have large eBects' " but to
start we shall consider just one. Then Anderson's work'
has indicated that local moments may be produced by
the "correlation" term

Heo~=p Uni+ni (1.2)

in the Hamiltonian. This is one part of the e'/r inter-
action between the electrons (Wannier functions) of
different spin on an atom. Here nf~ is the occupation
number operator for the d-band Kannier functions of
spin ~ on the f site, The term has the efI'ect that two
electrons of different spin do not tend to be at the same
atom, for if they are, an additional energy U is formed.
We shall regard all the internal mechanisms producing
a local moment as being reduced to this simple mecha-
nism. In the extreme case where there is no interaction
between sites, the U term will certainly produce a local
moment, as follows directly from the work of Anderson.
We shall call this the limit of /ocat ntagnetisation (LM).

One way to distinguish AM from PM, we have sug-
gested above, is to decide whether the local moments
at atom sites are permanent or induced. %'e now suggest
that one way to distinguish whether the local moment is
permanent or induced is to find out if the local moment
can exist in, say, the z direction if there are external
torques tending to produce it in the —z direction. That
is, in the perxnanent case, a given local moment can
exist both parallel to the crystal moment (m) and also
antiparallel to it, for example. Thus, if we search for
the stable moments relative to the m direction, there
will, in general, be taboo solutions (see Sec. 4), M and
—M', say. On the other hand, if the local moment is
induced by the environment, it can exist in only one
direction (along s but not —z, say). Thus we suggest
that the problem of AM versus PM is to be reduced to
whether there can exist two or one stable moments in the
presence of a spin-polarizing moment coming from the
environment. This environment will be adjusted to be
as close as possible to what the real crystal presents. The
heart of this argument is contained in the simple
example explored in Sec. 4.

We shall select a Hamiltonian that exhibits the
minimum number of terms required to exhibit AM, PM,
and LM, namely

&=Hp+Hspin+Ircr)rr ) (1.3)

where Hp contains all the one-electron terms. This is to
be put in terms of the Wannier functions of the d band,
and the Bloch functions of the s band. The one-electron
problem

H(r, )y(r, ) =EP(r,) (1.4)

is assumed to have solutions which are Bloch functions:

fi„Ei, for the s band, and if', Ei, for the d band. The
d-band Wannier functions ai(r) are then defined by

p&, (r) =P exp (i3. f)ai (r) . (1 3)

In second quantization, Hp is diagonal in the Bloch
states, but not so in the Wannier states. There appear
the nondiagonal matrix elements

Vf f=— cf *Hpcfd'r. (1.6)

There is, however, no interaction between s and d bands
in the one-electron terms since

V~)=— Pi,(r) Hoar(r)d'r=0

Thus, in second quantization, Hp becomes

Ho=+ E~n~+Q Vi rnpi,

where we have defined a notation

+f'f —~ ~f'fo ~ cf'o cfo )

~f~f+ —Cfef Cf—)

g, , , =,, t,
Si i,=-, (npi+ —npi ),I /'

Si„——Sn, ' (i=+, —,s).
This latter is useful in writing a dot product:

2Si i Se e
——2 Q Spy, Se e,

(1.10)

=Si i~Se e +Si.i S,.g++2Si i,S,.„. (1.11)

The Hamiltonian" in Eq (1.3) ha. s all the parts that
go to make up AM, PM, and LM. In the first, only
H,„;„is needed; in the second Hp+H„;„ is needed, , and
in the third, we need the diagonal part of Ho (in terms
of the Wannier basis) plus H„„.In Sec. 3 we dernon-
strate how these various sub-Hamiltonians lead to the
designated types of magnetization. In Sec. 4, we link up
the diagonal part of Hp, and H,„;„,and H„„,and show
how the criterion mentioned above to distinguish AM
from PM enters. In Sec. 5, we generalize the criterion
calculation to the situation where the oG-diagonal
elements of Hp are also included, and in Appendix A we
consider a still more accurate approximation in solving
this aspect of the problem. Section 6 is more or less

Sf—Sff )

using creation operators c~ and destruction operators c,
and where o means (&), i.e., spin. For completeness, we
add here the corresponding notation' that will be used
when we come to spin-spin interactions

' W. M. Lomer) Proc. Phys. Soc. (I.ondon) 82, 156 (1963).
7D. C. Mattis, IBM research paper RC-1298, 1964 (to be

published).

~ M. Bailyn, Phys. Rev. 137, A1914 (1965).~ This Hamiltonian is essentially the one used by D. C. Mat tis,
Phys. Rev. 132, A2521 (1963).



MAGNETISM I N TRAN S ITION METALS

a digression to indicate what happens to an AM calcu-
lation once one tries to take into account oG-diagonal
terms in Ho.

The general method used in approaching all these
problems is the Green's function method, ' for which the
appropriate definitions and equations are set domn in
Sec. 2, along with a discussion of moments and averages.

In the rest of this introductory section, we shall
describe how the Wannier functions can come to be
regarded as analogous to the resonant states of Friedel
and Anderson, and in fact how each Wannier function
can be imagined as a miniature replica of the whole
d band. To do this, we shall consider the Hamiltonian
to be just Ho, and ask for the probability of occupation
of the d-band Wannier function f, 0. We shall borrow
from the G formalism of Eqs. (2.12)—(2.15) of Sec. 2 to
do this. The de6nitions used there will be assumed in
what folloms here. The probability of occupation of the
f, 0 state is simply related to the diagonal Green's func-
tion G, (f,f~E) Lace Eq. (2.14)j, and the equation for
this G using H=HO is from Eq. (2.15):

which can be solved using energy and lattice Fourier
components such as

V(v) =Q expLiv (f—f')]V« . (1.13)

The a,nswer is easily /see Eq. (3.10)]

dEA(E)f(E). .E= V(v), (1.14)

where f (E) is the Fermi function containing the Fermi
energy E~. Thus, Eq. (1.14) has the interpretation that
the spectral function A (E) for the Wannier functions"
is just the density of one-electron d band Bloch states.
The description here is then quite similar to that of the
localized resonant states (sometimes called "virtual
bound" states) for impurities, as discussed by Friedel, '
Anderson' (whose formulation was the pattern for our
derivation), and Wolff. ' The similarity to Ref. 4 comes
from the fact that our Ho plays the role that Anderson's
sd interaction did. In the present paper we do not con-
template any sd interaction at all, and in any case there

9 For Green's function methods, see V. L. Bonch-Bruevich and
S. V. Tyablikov, The Green's Iignctioe Method in Statistical
Mechanics (North-Holland Publishing Company, Amsterdam,
1962}.

1o See Ref. 9, pp. 13, 14and Kq. (5.3). %'e call the numerator in
Kq. (5.3) the "spectral function. "This corresponds to the de6ni-
tion used in L. Kadanoff and G. Baym, Quantum Statistical
Mechanics {%'.A. Benjamin Company, Inc., Neer York, 1962),
Kqs. (1)-(14).

is rigorously, in transition metals, no sd interaction of
the Anderson type (see Sec. 7)."'

In the result, Eq. (1.14), there is no dependence on

spin on the right-hand side. For this reason, Wannier
functions of both spins are 6lled to the same level EI
starting from the same lowest energy. Ep is itself deter-
mined by normalization of all the electrons, including
the conduction electrons. If the latter are the main
factor, then EI can at least approximately be regarded
as a fixed parameter as far as 6lling up of the d-band
Wannier function goes. This 61ling up is a miniature, in
fact, of the crystal behavior: When the band description
is used, it is the band that gets 6lled up; when the
Wannier functions are used, it is they that get filled up
in exactly the same way LA (E) being the d-band. density
of states) and to exactly the same extent.

Thus when H „is added we may expect unequal
filling of the two Wannier functions (extrapolating from
the work on impurity problems), and when B,„;„is
added, we also expect an unequal filling, the latter
equivalent to BM as shown in Sec. 3. Further, when the
filling is unequal, we interpret the result as a local
moment on the atom, since the Wannier functions are
localized on (or near) the atom. Thus, if BM (or PM
as we shall henceforth denote this type of magnetiza-
tion) exhibits a Curie point, ' our interpretation leads to
the notion that above the Curie point there are no local
moments while below there are both local moments and
a moment for the crystal as a whole. The distinction
between crystal and local moments is discussed in Sec. 2.
Perhaps this interpretation has something to do with
the hypothesis of Wilkinson et cl."concerning just this
behavior of local moments in chromium.

There have been a number of papers on closely related
problems using similar methods. Some of these are con-
cerned with the problem of impurities in a metal, in
which the sd interaction of Anderson plays an important
role. Suhl and Fredkin~ calculated the partition func-
tion directly starting from Anderson's Hamiltonian. One
could do the same (or at least attempt it) starting from
Eq. (1.3) above, but we wished to use Green's function
theory, and further, we wished to be able to say some-
thing about local moments even when there is no crystal
moment, something that cannot be done on Suhl and
Fredkin's approach, as they point out.

'Kim and Nagaoka" have considered the sd exchange
interaction along with the Anderson sd mixing inter-
action, and have looked at the problem of many,
randomly distributed, impurities interacting through
such sd terms. It is known that the sd exchange inter-
action gives an effective ion-ion interaction of the H,~;-
type between impurities, and that the sd mixing term

1 If approximate k-state functions are used, then a mixing sd
term does appear.

"M. K. %ilkinson, E. O. Wollan, %'. C. Koehler, and J. %'.
Cable, Phys. Rev. 127, 2080 (1962}."H. Suhl and D. R. Fredkin, Phys. Rev. 131, 1063 (1963)."D.Kim and Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 30,
743 {1963).
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gives an effective Vf. f term between impurities; hence
their problem begins to resemble ours to some extent.
They 6nd in fact that the ordering of the moments has
an eBect on the local moment magnitude, just as we do.
In a number of respects their paper bears a strong
relevance to ours, although they were looking speci6-
cally at sd e6ects, which do not enter our model at all.

Alexander and Anderson'4 have considered the two-

impurity problem, taking into account an sd mixing
term and a term of the type in Eq. (1.6) above, as well
as H„„.

D. C. Mattis" has considered the sa.me Hamiltonian
as ours and found a detailed spin-wave spectrum, com-
parable to the results in Sec. 6. His paper is thus closely
related to ours.

In the next section, we shall dehne the moments, and
the Green's functions appropriate to the calculation
of them.

=tY ' g&ni, (1 nt) n, f —(1 ni, .)—),
s'= &Si Si)=3&5).Si,),
where the grand canonica. l average is meant:

Psi&X
~
exp (—PH+tiX) X

~
Ot)

&X)=-
Psi&X~e~(—Pa+„S)

~
X)

(2.1)

(2.2)

(2.3)

The sums are over all conhgura. tions X of the occupa-
tions of the 2X states nfg+nf nf~, P= (kT); and
p is the chemical potential.

These definitions can be rewritten using Eqs. (1.9)
and, (1.10) as follows:

m=—m~=Ar ' Q(Si Si —Sf&i+), (2.4)

S'=—f g'= ((nf+ nf )) (Sf+Sf——+SfMf~). (2.5)

S is introduced because of its convenient normalization.
Notice the simple relation between the two types of
moments, S' and m, as shown on the right in these last
equations.

It follows immediately from the above that

~2&S .
The proof follows from the inequalities

1~& &nf~(1 ni ))=P= &Sf-Sf—+)= &Si+tSi+) &&0,

1&(nf (1—nf+))=Q —&Sf tSf )&&0,

(2.7)

(2 g)

'4S. Alexander and P. O'. Anderson, Phys. Rev. 133, A1594
(1964).

2. MOMENTS, AVERAGES, AND GREEN'S
FUNCTIONS

The crystal moment m and the spin magnitude S are
considered to arise from the properties of the d-band
Wannier functions on the various atoms. We limit our-
selves in this paper to just one d band, for which the
Wannier states on the f site are called simply "fo.,

"
(0 =a). Then

m. =&V 'P(ni. —n-i, .)
f

In the sta.ndard calculation of the crystal moment m,
the local moment is chosen so that either f+ is occupied,
and not f—;or f—is occupied and not f+, whence
S=1. In that case, which we call the case of "fixed
spin, " Eq. (2.10) becomes

m+= 2&Si+Si )—1. (2.11)

The calculation of m on this basis has been made by
Green's function methods with great success. ' It corre-
sponds to the AM approximation defined in the Intro-
duction. The method is, however, more general, pro-
vided one knows how to estimate S.

To evaluate the averages two types of Green's func-
tions may be employed. First there are the functions
that lead to a. direct evaluation of (ni+), namely

G.+(f, f'
~

t —t') —= Witt(&tWt')&Lci, (t),cp. (t') tj+)
=« .(t)l "'(t')))( )', (2.12)

6I being a step function, and the notation identical to
that of Ref. 9. The subscripts (&) refer to the type of
commuta, tor employed. The & superscripts denote func-
tions that have energy components analytic in difterent
parts of the complex energy plane, but the combination

G.(f, f'~ E.wiE, ) = (2~)-' d(t —t')G, +(f, f'~t —t')

X exp[i (Eo+iEi) (t—t')j E,& 0 (2.13)

may be regarded a,s a, single function defined over al] E
space, with a discontinuity along the real axis. We
henceforth leave superscripts off.

The desired s component of the moment is then by
sta.ndard arguments

Mt= &ni+) &ni );— —

(ni. )=
(2.14)

dEf(E)2 ImG, (f, fj E+i0),

where f(E) is the Fermi function. This type of Green's
function corresponds to what Anderson used to get local
moments, a.s shown by Kim and Nagaoka. " We shall

valid since among other things all averages of the form
&LtL) are non-negative. But, then

m+'= (P—Q)'(
~

P—Q ~
(~ P+Q=5' (2.9)

the first inequality occurring because ~P—
Q~ (1, the

second because both P and Q are positive. This com-
pletes the proof. From this it follows that if S=O, then
m+=0, and if m+/0, then S/0. Or in words: If no
moment exists on any atom, then no moment exists in
the crystal; and, if there exists a crystal moment, then
there must also exist local moments. These are certa, inly
necessary conditions on the problem.

Again, because of the definitions in Eqs. (2.4) a.nd
(2.5), we can get an explicit relation between m and S:

m+ =S'—2&Si&i+)= 2&Si+Sg )—5'. (2.10)
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g~(ff", f'I t—t') —=wit&(atilt')(LS„", (t),S, (t')) )
—= (&S«-,+(t) I S(,-(t')))(-&' (2 16)

with energy components

1
g(f,f", f'I Eo~iE() =— d (t—t')g'(ff", f'

I
t—t')

2'
Xexp(i (EoaiE&) (t—t')] E& & 0, (2.17)

but for the purpose of the averages in Eqs. (2.4) and
(2.5), all we need are

g(f, f'IE)=—g(ff,f IE). (2.18)

Then, by standard arguments,

&S(+S( )= dE(1 eeE) —'2 Img(f, fIE). (2.19)

The other average &S(M(+) differs from this by having
an extra factor exp( —PE) in the integrand. " The
averages in Eqs. (2.4) and (2.5) are then

find also that it will be giving us information about the
local moments. To determine G itself, one solves the
equation of motion

i(a/at)G, (f, f'It —t') = —s(t —t')s, , ,
—«IH,c.(t)] Ic ..(t')t)), , (2.15)

For the crystal moment, one usually computes
directly the averages of the type in Eqs. (2.4) and (2.5).
Ke shall have occasion to use the rather more general
Green's functions

dEI 2 Img(f, f
I E)] coth-', &8E. (2.21)

3. STANDARD CALCULATIONS

In this section we shall discuss (1) the standard case
of d-band magnetization, but handled here in terms of
the Wannier functions; the PM situation of the Intro-
duction; (2) the simplest local moment calculation; the
LM situation of the Introduction; and (3) magnetism
via the Heisenberg interaction and with fixed local spins,
as worked in the basic Green's function literature; the
AM situation of the Introduction.

For PM, we use

H Q Vf'fnf'f 2 Q A(f —f')Sf'Sf', (3.1)

It would seem as if we could get both m and S from
these results, but that is not so, for the Green's functions
turn out to be functions of m in such a way that Kq.
(2.20) is nothing more than the identity m= m (in the
standard calculation: see Sec. 3). Further, although
Eq. (2.21) looks like an expression for S2, in fact the
right-hand side is a function of ns, and the relation is
usually conceived as an equation for ns as a function of
the temperature T, with S' as a parameter, as we
indicated apropos of Eqs. (2.10) and (2.11).

To obtain the Green's function, one solves

i((t/Bt)g(ff'
I
t —t') = —t'&(t t') tt «—m+

—«LH, S(+(t)) IS( (t )))( &. (2.22)

This completes the outline of de6nitions and averages
to be used.

dE2 Img (f,f I E), (2.20)

which corresponds to atoms interacting via Bloch terms
and via a Heisenberg interaction. Equation (2.15)
becomes

i(a/at)G. (ff'I t t') = t(t t')—8«+Q—V«"—G.(f", f'I t—t')

A (f—f")((2(n(",—n(. ,)c(,,+S(, c(, , I
c(,(t')t))(+&. (3.2)

fll~f

Ke chain break according to the Hartree-Fock approximation:

last term in Eq. (3.2) ~ ——,'LQ A (f—f")(n(",.—n(", ,))G,(ff"
I
t—t')

—LP A (f—f")(S,", .)]G, .(f, f'I t—t'), (3.3)

where
G-. ..(ff'I t —t') = ««,—.(t)

I
«', .(t')))(+& (3 4)

We shall suppose that the second sum in Eq. (3.3) is
zero, since we shall at the least assume that the magneti-
zation of any neighbor shell is the same as that of the
lattice as a whole„and we assume the crystal magneti-
zation is in the s direction. (S(,, is a linear combination
of the components in the x and y directions. ) For the
same reason we shall replace &n(, n()in —the , first

"Reference 9, Eq. (2.8).

after the energy Fourier component is taken. Here

A'(v) =P exp$iv (f—f'))A(f —f'). (3.6)

Similarly, as in Eq. (1.13), we shall use

V(v)=P exp(iv (f—f'))Vff . (3.7)

sum in Eq. (3.3) by m. . Thus Eq. (3.2) reduces to

LE+-',A '(0)m, ]G.(ff'
I E)
1

(&f, f +Q V(( G, (f",f'
I
E), (3.5)

2~
'
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We solve Eq. (3.5) by taking the Fourier components

G.(vlE)=g expr iv (f—f'))G. (ff'lE). (3.8)

Then from Eq. (2.14)

(n(.)= f(Vp+ U(n(, ,)). (3.18)

Now, if we can treat Ep as a given parameter in Eq.
(3.10), and if we invoke a density n(V) of states

& max

)( —i p ~
&(

then Eq. (3.10) provides

Mf =—(n(+)—(n( )

n(V)dV, (3.11)

(n&)= &n&~—)+(n( )
(3.12)

d Vn(V)Lf(V ——,'A'(0)m+)+f(V+-&, A'(0)m+) j.
(3.13)

These two equations form the basis of Stoner's theory
of magnetism Lsee Eqs. (2.10), (2.11) in Ref. 2j. The
only diGerence is that we have the description in
miniature as it were, in terms of the Kannier functions,
whereas he talks in terms of the crystal as a whole.

The result, Eq. (3.10), corresponds to filling up a
sub-band of particular spin to a certain extent; but, in
our case, it corresponds to an identical filling up of the
%annier function of particular spin.

Note that there is always the solution M=O. If there
is a~other solution M', say, then there is also —M' as a,

solution. Thus, the calculation does not distinguish
between up and down magnetizations.

This completes the discussion of PM. We turn now to
LM. For this we use the Hamiltonian

The answer is

G, ( lE)= —(2 )-'LE—V( )+'A'(0)m, j-'. (3.9)

Then, from Eq. (2.14),

(n(.)=X ' Q f(V(v) ——,'A'(0)m, ). (3.10)

We can write this in a form analogous to Eqs. (3.12),
(3.13):

M(= (n(+) (n—( )= f(Vp+ ', U&-n&) ,' U—M—&)

f(—Vp+ ,'U(n-()+ ,' UM-(), (3.19)

&(&() (n=(+)+(n( )=f(Vp+ ,'U(1(f)-pUM()
+f(Vp+ ,' U(n()-+ ', UM()-. (3.20)

These are again two equations in two unknowns. It is
sometimes easier to regard Eq. (3.18) as the two equa-
tions, in which case the solutions can be exhibited as
the intersections of the two curves n(+(n( ) and
n( (n( +), leaving oif the average signs. These curves are
just two Fermi functions.

It can easily be seen that for small U there is one
solution only, M=O, whereas, for la.rger U, there are
three, M=O, M=M', say, and M= —M'. Again, the
calculation has not averaged over the orientations of the
moment. For U suS.ciently large, the two extreme
solutions M' and —M' are approximately ~i and
fairly independent of whatever interactions exist between
atoms. This then tells us nothing about the crystal
moment, it tells that there is a loca.l moment which is
more or less fixed in magnitude. This is the LM limit,
as discussed in the Introduction.

Finally, if the local moment magnitudes are in fact
firmly fixed, there still is the problem of how to calculate
the crystal magnetization resulting from the alignment
of the local moments. For this problem the Hamil-
tonian is

H=H„;„=—2 Q A(f —f')S( S&, (3.21)

and the second Green's function formalism of Sec. 2 is
utilized. From Eq. (2.22)

i(&/Bt)g(ff'
l
t —t') = t) (t t') t)(, ( m++—2 Q—A (f—f")

X(((n,+ „, )(S,+ S,„+)lS,, (t')))& ) (3 22)

Making the chain break according to

(((n&+ n& )(S&+—S& +)l S—, (t-')))( )

=mpLg(ff'
l
t —t') —g(f", f'

l
t—t')], (3.23)

H= Vp(n(++n( )+Un(+n( (3.14)

corresponding to an isolated atom with internal electro-
static interaction between s in states. The Green'see spl states The Green's and taking energy Fourier components, we findfunction equation, Eq. (2.15), becomes

(i (a/at) Vp)G. (ff—
l
t—t') = —6 (t—t')
—U«n&, —.c&.

l «.(t') '))&+) (3 15)

If we chain break according to

((n( .c(, l c(.(t')())(+)=(n&, .)G, (f) fl t—t'), (3.16)

where (n(, ) is an average of the occupation of the f, —
state, and take energy Fourier components, we get

G.(ffl E)= —(2(r)-(l E—V()—U(n(, .)j—'. (3.17)

Eg(ff'l E)= —(1 2/)(rti«m+,
+2m+ E A(f—f")Lg(ff'lE) —g(f"f'lE)j.

Taking the lattice Fourier component

g(vlE)=g exp(iv (f—f')jg(ff'lE), (3.25)

we can solve

g(vlE) = —(2(r)-&m+LE —2m'(A'(0) A'(v)) j ' (3 26)
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Substitution into Eq. (2.21) gives

5'=.V ' Q np+ coth(Pnp+PA'(0) —A'(v) j). (3.27)

And Eq. (2.20) is just np=np. These are the standard
Green's function results. They constitute the AM limit
of the Introduction. Notice that for every solution m+
there is also a solution —m+.

4. THE CMTEMON CALCULATIOÃ I
In the previous section, the simplest versions of the

basic types of magnetization calculations were reviewed.
Band magnetization is usually not associated with local
moments, but rather with itinerant electrons which
carry the spins. However, when put in terms of Wannier
functions, the magnetization can be reinterpreted as the
spin polarizing of the Wannier functions on a given atom
by interactions with neighboring atoms. ~ If this inter-
action is turned off, there is no net moment associated
with any atom. On the other hand, alignment magneti-
zation is usually regarded as the eSect of the permanent
moments on neighbor atoms in attempting to line up
the given atom's permanent moment. If the interaction
is turned o6', then there are still the local moments M
on the atoms, produced by interactions within each
atom.

Thus we are led to distinguish PM from AM on the
basis of whether the local moment is induced or perma-
nent. To de6ne a permanent local moment on atom 3,
say, we shall imagine that the moments of the other
atoms of the crystal are "frozen" either parallel or anti-

parallel to the crystal moment m in such a way that
every neighbor shell of A has an averaged moment equal
to the true crystal moment np. (Alternatively, we could
replace the Heisenberg interaction by an external
magnetic field 3: designed to give the same molecular
field at the atom A.) If, then, a calculation of the local
moment on A exhibits two stable states, one parallel to
m, one antiparallel to m, the two not necessarily equal
in magnitude, then we shall say that the moment on
A is "permanent. "If only one stable moment (parallel)
is possible, then the local moment at A will be called
"induced. " (See below for an example. )

In this way, we propose a criterion between when PM
is the appropriate type of magnetization and when AM
is the appropriate type. As always, in such arguments,
the extremes and situations close to the extremes are
the situations best described by the criterion. Neverthe-
less, we shall propose that some idea of the transition
can be obtained by continuing the distinction to more
intermediate situations.

To indicate how this criterion appears, let us consider
the following Hamiltonian:

H=Q Vp(ng++ng )+P Ung+ng
—2 Q A(f—f')Sf ~ Sf' gl (4.1)

containing both a term trying to form a local moment
through internal interactions (the U term) and the
usual Heisenberg term.

%e search for the local moment by calculating
drectly the averages for n&, Equat. ion (2.15) becomes

—Q A (f f")(($-,'—( f nnf ", )Cfo+''5,—f cfj'~ C, f' ', (t') ))+. (4.2)

Chain breaking as in Eq. (3.16) for the U term, and as
in Eq. (3.3) for the A term, we get

G. (ffi 8)= —(2s-)—'1.E—Vp —U(ng, .)
+ ',A'( )0njp-', -(4.3)

where we used the stipulation that each shell has an
averaged moment m. Thus

)=f(Vo+U(,—)—lA'(0) -) (44)
This is the mathematical result, whose physical impli-
cations we shall now try to assess.

Let us treat the Fermi function as a step function.
Then (ng+) can be either 1 or 0 depending on whether
the argument in the Fermi function, Eq. (4.4), is either
less than E& or greater than Er. Similarly for (n& ). We
assume m+)0. By then looking for when M=(n&, +)—(n~ ) is 1, 0, —1 we get the diagram of Fig. 1, giving
us possible Has as functions of m. These are the stable
solutions referred to above. Here we see that sometimes
the atom can have two stable moments, oriented

oppositely, and sometimes only one. If two moments
are possible in an environment characterized by m, then,
as stated above, we regard the local moment as sufFi-
ciently strong to be labeled "permanent, "and conclude
that an AM calculation is appropriate. If, however, only
one stable moment is possible, then we conclude that
production of the local moment depends entirely on the
external interactions, and that the appropriate pro-
cedure is to set M= m, and look for the self-consistent
solutions, i.e., to perform a PM calculation. In the
former case, we still have the problem of determining 5',
but from Fig. 1 on our present model, it is quite simple:
S'=1. In general, however, this will be a more formi-
dable problem (see Sec. 5).

It should be emphasized here that the attempt of this
argument is not primarily to evaluate the magnetiza-
tion, but to decide whether or not local moments exist
in a "permanent" sense. %e could call the argument a
"criterion calculation. " For example, the two stable
states that the moment could have in the above model
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are not meant to describe what actually takes place in
the real crystal. An atom could undergo spin waves and
what not in an AM calculation starting from Eq. (4.1)
that is well beyond what the two stable moments imply.
All that is attempted by the criterion calculation is to
see whether or not a moment on the atom could exist in
say the s direction if the environment tends to line it
up in the —s direction. This gives some idea of the
strength of the internal interactions tending to produce
the local moment, and is perhaps an arbitrary criterion.
Nevertheless is seems plausible at the least, and is
rather simple to handle. Once a distinction is made, then
one performs a quite different calculation to find out
what the magnetization is. For the PM case, the difkr-
ence lies in the self-consistency condition M = nz

imposed on the equations after which solutions are
attempted. In the AM case, one has a different Green's
function formalism altogether.

One could object to the whole procedure and say that
if one identihes M with m in a PM type of calculation,
and solves the problem to arbitrary accuracy, one has
the crystal moment solved to arbitrary accuracy no
matter how one wishes to think about the local mo-
ments. This is a valid argument, it seems to us, but
irrelevant to the present purpose, which is to under-
stand in some sense when permanent moments may be
said to exist on atoms.

To finish this section, we shall make a few remarks
concerning situations in which the external moment m
comes not from atoms of the same sort, but say from an
impurity or a magnetic field. Suppose, for example, that
a strongly magnetic impurity is placed in a nonmagnetic
transition metal. Then we can appeal to Fig. 1 for a
rough idea of what could happen. If a&1, then, before

the impurity is placed in the metal, the moment of the
neighbor shell of atom A may be below m, (suppose only
one shell is of importance). If, now, the impurity enters
this shell, the moment of the shell may go electively
beyond m, . Thus the moment of the atom under con-
sideration could go from either +1 or —1 to necessarily
+1~ That is, the impurity could line up all its neighbors.
On the other hand, if a& 1, then it may be that initially
there are no local moments on the metal atoms. Then
when the impurity is introduced, an atom A in a
neighbor shell may see the moment of its neighbor shell
(containing the impurity) increase enormously /go
beyond (a—1)(b electively, tha, t is] and set off the
moment on A itself. Thus the impurity could produce
(or more drama. tically: trigger) the moments on its
neighbors. Such a view is quite consistent with experi-
ments in which giant moments are found associated
with magnetic impurities in nonmagnetic transition
metals. This result could also be viewed as an extremely
large band susceptibility, but it seems to us a much more
natural description to regard it as a setting-o6 of large
induced local moments.

5. THE CRITEMON CALCULATION II
The remainder of this paper is devoted to an attempt

to generalize the results of the previous section by using
the more realistic Hamiltonian

H=Q Vg gnrg+Q Ung~ng
—Q 2A (f'—f)Sp. Sg—Q poXSg, ) (5.1)

where at times we shall include the magnetic field term
in X. To start, we again search for the occupation
number averages, and hence use the G formalism of
Eqs. (2.12)—(2.15). Equation (2.15) becomes

(5.2)

Eg. U&ng .)——,'A'(0)m——., (5 5)

m. =~.$1+&Pc(,'A'(0)l « l)---'] (5.6)

Equation (5.4) is the basic equation to solve. The
environment of the f atom enters the equation in two

Following the ideas of Sec. 4, we use a Hartree
chain-breaking approximation

«nfcf
l
cf.,t(, t') »—&nq )G, (ff'

l
t —t'), (5.3a)

2 A(f —f")«L ]lc ""(&')»+
—-,'m, A'(0)G, (ff'

l
t —t') . (5.3b)

The energy Fourier component of Eq. (5.2) is then
sllTlply

( — .) ('l )= —( )'«
+P V«"G. (f",f'l E), (5.4)

where

places: in the m term of E, and in the nondiagonal
Vf f 's. In Sec. 4, only the diagonal V«= Vo term ap-
peared. Thus Eq. (4.3) incorporates the approximation
that as far as the Bloch energy terms are concerned, the
atom under consideration does not see any neighbors.
In the present section we shall go one step beyond this.
We shall assume that as far as the Bloch energy terms
are concerned, the atom under consideration sees neigh-
bors which are replicas of itself; that is, in Eq. (5.4) we
shall treat the G's on the right-hand side as of the same
type as the G on the left-hand side. On this approxima-
tion, the solution can be obtained by taking the Fourier
component

G, (v l
J') =P exp jiv (f—f')]G, (f f'

l E) (5.7)

whence Eq. (5.4) becomes

G.(vl F) = —(27r)-'l E—E .—V (v)]-' (5.8)
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?
4;n„ a(i

By the same token an averaged S' may be estimated by"

S'=
2 (1+x)M„'+,'(1-—x)M~', (5.11)

or, using x determined from Kq. (5.10)

g'= m+(M(, M~—)+M„M~. (5.12)

(B)

n;n

FIG. 1. Local moments as functions of an environment moment
m, according to Eq. (4.4). t See the discussion following Eq. (4.4).j
The notation is the following: a= U '(Ey —V0) and b=gU 'A'(0).
Further, es, is the smaller of (1—a)b 'and ab '. In (A), for m&m„
the possibility of the two local moments +1 and —1 implies that
the local moment is "permanent. " For larger m, the —1 solution
is no longer possible; hence we describe the local moment as
"induced. " In (B), only the induced moment is possible.

The problem is then carried through by going back to
Eq. (5.4) and considering Fourier components of the
G's that sum only over parallel atoms (or alternatively
only over antiparallel atoms). In this way, the Bloch
energy terms will reAect in a more realistic way the
effect of the environment being characterized by a
crystal moment m+. The details are carried out in
Appendix A, Sections 4 and 5 and Appendix A therefore
represent a progression of approximations in how the
Bloch energy terms are handled.

We shall now make some numerical estimates of
Eq. (5.9). For variety, we shall allow here the Fermi
level E& to be determined by the d band alone (in Sec. 4,
it was the s band that determined it). Thus imposing
one electron per atom, we get

(n(+)+(n( )=1. (5.13)

Next we shall use a free-electron or effective-mass
approximation for the d-band energies

and the average occupation number is

(n~, )=X ' Q f(V(v)+U(n~, ,)——,'A'(0)m, ). (5.9)

X ' Q = -', C V"'d V

3C 3+ —3/Q

(5.14)

~n~= ,'(1+x)M„——,'(1-—x)M~. (5.10)

Comparing this with Kq. (4.4) we see that the Vo
term has been replaced by V(v), and a sum on v taken.
This corresponds to the view adopted in Sec. 1 that the
Wannier functions are miniatures of the d bands con-
taining a spectral function proportional to the d-band
density of states. Thus the diRerence between Kq. (4.4)
and Eq. (5.9) is that the former considers the atom
isolated as far as the Bloch energies go, and hence the
atom has a unique energy Vo, whereas the latter con-
siders the atom to have a spectrum of energies corre-
sponding to the d-band density of states. Equation (5.9)
merges into Kq. (4.4) as the d-band width converges to
the value Vo.

An approximation in which the effect of the rest of
the crystal on a given atom is given more accurately is
the following. At any instant, we may imagine the atom
moments as participating in spin waves or what not,
but providing nevertheless a crystal moment m+ along
some direction. Let us replace the eGect of any atom by
the e6ect of one of two averaged moments N» and M+,
whose values are to be determined ultimately. Such a
replacement will preserve the crystal moment m+ if we
stipulate that the fraction of atoms with Mz is x~ and
the fraction with MII is x», with x=x» —x+ deter-
mined by

= yLs/2 —np&xm+], (5.16)

where we use the dimensionless abbreviations

x= (2U) 'A'(0); y=C+'U; s=2EpU '(5.17)—
If, now, Eq. (5.13) is used, and we subtract the —from
the + equation, we get

(1—n+)'"—n+"'
y= (S.IS)

1—2n+ —2xm+

The solutions of this equation are portrayed in Figs. 2
and 3. In Fig. 2, we have 6xed 2xm+ at some value and
plotted the right-hand side of Eq. (5.18) as a function
of n+. The solutions of the equation are given by the
intersection of these curves with y= const Lnamely, the
equation of the left-hand side of Eq. (5.18) as a function
of n+j. The case y=y —0.84 is a critical value. For if
y&y. , there are never two solutions for n+, so that no
matter what ns is, the only moments are induced ones

"Note added ie proof. Of course S is really the average of the
s component squared Lsee Eq. (2.5)j.The above identi6cation is
only a crude estimate, the better the more "permanent" the local
moment is. Even if &II——M4 ——0, S can still exist.

If we integrate Eq. (5.9) allowing f(E) to be a step func-
tion, and take the s3 power of the result, we get (we call
nf+ by n+ from now on)

n~'&'= C"'PE p Unp&—-,'m~3'(0) j, (5.15)
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Og ~

o.4-

4f ~

0.3 ~

FIG. 2. Graphical solutions of
Eq. (5.18). The solutions are ob-
tained corresponding to the crystal
parameters x and y by 6nding the
intersections of the straight lines
y= const with the curves drawn in
the figure. For y(y, =0.84, there
is always only one solution for e+.,
hence, the moments on the atoms
are of the induced variety. For
y) y„ there comes a situation
(small enough m) when two solu-
tions are possible (really three, the
third unphysical) indicating that
the moments are of the permanent
variety.

41 d't

by our criterion. For the limiting case m=0, we have
that above y, there are always two solutions for e+,
whence the moments are "permanent. " If m&0, then
the induced region keeps up to y's higher than y„but
at some value for y, there suddenly becomes available
three solutions. The intermediate one we shall regard as
unphysical, following Anderson's interpretation of a
similar solution in his paper. The other two solutions
exhibit the parallel and antiparallel moments that are
the analogs of those found in Sec. 4.

In Fig. 3, we have plotted the values of M as a func-
tion of 2xm+, for particular values of y, assuming A'(0)
positive. These curves are the generalizations of those in
Fig. 1.For y&y„ the local moments are always induced,
and M ~ 0 as m —+ 0. But for y&y„ for the small m's,
there are two solutions for M, the antiparallel ones given
by the negative ones at the lower end. The 6rst case
resembles the curves in Fig. 1(B), the second those in
Fig. 1(A).

This completes the analysis of Eq. (5.9).

a. THE AM CALCULATION

In this section we shall discuss what happens to an
AM calculation when we use more general Hamiltonians

than just H,~;„.~ There are two such to consider. 'Kqs.
(4.1) and (5.1). In the former, there is no change at all
over what we found in Sec. 3. The reason for this is that
the commutator of Sf+ with the new H is no different
from that of just B.„,since 5f+ commutes with H„„,
and with ng++ef . Thus the standard result can be
regarded as coming from this H of Eq. (4.1) in the region
of Fig. 1(a) with ns(m, . Since in this region S'=1,
the result is in fact just the ordinary spin-wave
expression.

For Eq. (5.1), however, a number of differences ap-
pear. First of all, from Secs. 5 or Appendix A, it is
clear that the local moment itself is not simply equal
to 1. If" we identify 5' with an average of M&, and M~
such as found in Eq. (5.12), then we have S' as a func-
tion of m. Thus the resulting equation of the Green's
function calculation, Eq. (2.21), becomes considerably
more complicated, and one is probably justi6ed in turn-
ing to graphical solutions to the problem. In words the
situation is this: Not only is the crystal moment a func-
tion of the local moment, as given directly by Eq. (2.21),
but the local moment 5' must also be a function of the
crystal moment. The solution must therefore be a self-
consistent one for these two relations.
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In Eq. (6.4), quantities like nff' y will be taken out at averaged values (unchanged in notation), as will Sl, also.
The result is then finally for the energy Fourier component [see Eq. (2.17)] of Eq. (6.1):
Eg(ff",f'lE) = (2z) '(gi i nn ~—5/ i nii, i)+Uti+g(ff", f'l F)(1—bn") —P [V|ig(lf",f'l E) Vi"—|g(fl f'lF)]

1

—P [2A(l f—")n// + 2—A(1—f)nff ]g(l,f'lE)+2 'm+P [2A(f—1)+2A(f"—1)]g(ff",f'lE), (6.7)

where
2A (f—1)= A (f—1)+A (1—f) . (6 8)

The usual method for solving the standard f= f" equation is to take the Fourier component

g(v
l
E)=P exp[iv (f—f')]g(f, f'

l
E) .

Since there is a new type of Green's function in Eq. (6.6), we define also

g(v', v" lE)= Q P exp[iv' (f—f') —iv". (f"—f')]g(ff",f'lE).
f f/ f// f/

(6.9)

(6.10)

The lattice Fourier component of Eq. (6.6) is then

[E ti+U 2A'—(0)m++—V(v') —V(v")]g(v', v"
l E)= —(2ir) '[n+(v') —n (v")]

—{[n+(v')—n (v")]2A'(v' —v")+Um+)g(v' —v"
l
E), (6.11)

~here
n, (v) =P exp[iv (f—f.') ]n ff. ,

The relationship between g(v l
E) and g(v', v"

l
E) can be seen from the definition

g (v', v"
l E)= g (v' —v"

l E)+ P exp[i v' (f—f') —iv" (f"—f')]g (ff",f'
l E) .

(6.12)

(6.13a)

If we introduce an average denoted by double angle brackets &( )&„such that v' roams over the first Brillouin
zone, and v" is given by v' —v"= v [even if this means that v" goes beyond the first zone, in which case, the periodic
nature of Eqs. (6.9) and (6.10) is implied], then operation by this average on Eq. (6.13a) gives

Not&ce also
«g(v' v"

I E)&) ' —"'= =g(vlE).

«n+(") —n-("')» =m+.

(6.13b)

(6.13c)

Further, if we operate on Eq. (6.11) as it stands by this average, we obtain the component equation that would
have come directly from Eq. (6.7) with f"=f.

If, however, we solve Eq. (6.11) for g(v', v"
l E) in terms of g(v' —v"

l
E) and then average, we obtain an equation

for g(vl E), namely

(6.14)

where
E'(v', v")= //+ U+ 2A'(0) m+ V(v')+ V (v"), —

E„"(v',v")= 2m+A'(0) —2[n+(v') —n (v")]A'(v) —V(v')+ V(v") .

(6.15)

(6.16)

Equation (6.14) is the basic result of the present section. It is obviously extremely complicated, and we shall limit
ourselves to rather simple observations. First of all, what enters Eq. (2.21) is the imaginary part of g in the limit
as e goes to zero where the complex energy is written E+ie. In constructing the imaginary part of Eq. (6.14), we
shall use the familiar relation (x+i0) =P(x) i7/5(x), and, —for reasons that will appear later, we shall in addition
keep along the ie that goes with the E—E"+i&in the numerator of the denominator. After a bit of rearranging and
clearing imaginaries from denominators, we find

1 —v+D+ I~&'+ eon'+
Img(vlE) =-

2m. C'+ (D—

equi)'

where we have made use of the following abbreviations B, C, and D:
8( lE) =v«[n+z( )—nv(v")]b(E—E'(v', v"))))„,
~(»

l
E)=«F (E—E")/(E—E')».

D( lE)= «(E—E")g(E—E')»

(6.17)

(6.18)

(6.19)

(6.20)
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and the following averages
~.( IE&=«[E-E (,"&7- ». ,

v+(«I E)= &&[~+(v') —~-(v")7[E—E'(»' «")7 ')&.

yv( I
E)= «LV(v') —V( ")7[E—E'( ', "&7 '&), .

The last one here is useful when we write out C in detail

(6.21a)

(6.21b)

(6.21c)

C(«IE)=yq[E —2tn+A'(0)+2y+yx 'A'(v)+ytryx '7.

The result in Eq. (6.17) can be separated into two parts, one involving the e in the numerator, the other contain-
in the rest:

(6.22)

(6.23)

(6.24)

g
Img (v

I
E)=gi (v I E)+g2(v I E),

g ( IE)= (1/2 )y [ y /(C'+D'+ '7 ')7=le+~[(C'+D')"7,
1 y+D+—BC 1 —y+(«IE)(E—E"(v', v"))+[n+(v') —n (v")7C(vIE)

g ( IE) =— =- ~(E—E'( ',"')) (6»)
2+ C'+D' 2 C(v IE)'+D(vIE)'

The contribution from g~ can be regarded as a
generalized spin-wave contribution. For if, say, U is very
large and p+ not zero, then E'(v', v") is large for all v', v".
Thus, if E is small, then the delta function b(E—E') will

not be satisfied and D (and 8) is zero. Then Eq. (6.24)
is just

e(«I E)= 2 (v+/v i)
Xb(E—2m+A'(0)+2y+y~ 'A'(v)+y~& '), (6.26)

which is a modihed spin-wave spectrum.
The contribution from g2 would seem to be quite

complicated and dificult to interpret, but it may be
surmised that it corresponds to the optical branches of
Mattis' spectrum. "We shall not pursue the calculation
any further at this time.

We wish to conclude this section with two remarks.
The 6rst is that when the bandwidth reduces to zero,
i.e., when V(v') becomes a constant, then E' no longer
depends on v' or v", and the denominator of the
numerator in Eq. (6.12) cancels with the denominator of
the denominator, and the result is the standard spin-
wave solution.

The second remark is that in the approximation cited
above Eq. (6.26), i.e., when U is very large, the two
parts of the spectrum, from g~ and g2, are mell separated
and distinct. However, as U gets smaller and smaller,
the two parts can begin to merge and it becomes
meaningless to separate out the spin-wave part from the
other. Since the size of U is indicative of how "perma-
nent" the local moment is, as discussed in earlier sec-
tions of this paper, it is clear that the distinguishability
of the ordinary spin-wave spectrum depends explicitly
on the existance of permanent moments. As the local
moments become less and less "permanent" and more
and more "induced, " the spectrum starts to deviate
from the standard spin-wave type and turns to a
complicated mixture.

7. SUMMARY AND EXTENSIONS

In the preceding sections we have attempted to
correlate diGerent approaches to the magnetization in

transition metals. The basic problem has been conceived
as tying together internal eGects, which tend to pro-
duce magnetic moments on the atoms through forces
inside the atoms, external effects, which tend to produce
magnetic moments on the atoms through forces between
atoms, and realignment eGects. We have classi6ed the
solutions of the local moment problem into two types:
(1), where only one orientation of the local moment is
possible, s,nd (2) where two orientations are possible. In
type 1, the problem is just a generalization of the band
theory of magnetism. In type 2, the problem is twofold:
first to calculate an average local moment (which turns
out to depend in genera1 on the environment, i.e., on
the crystal moment and hence on the temperature),
and second to calculate the crystal moment (which
depends parametrically on the local moment), the two
folds to be solved then simultaneously.

In order to improve the theory, a number of addi-
tional e8ects can be contemplated. First among these is
the sd interaction. It is known that the conduction
electrons get polarized by the local moments, and this is
taken into account by the exchange term

(7.1)

The eEect of this term would be the 6rst thing to look at.
There is, however, another sd interaction term which we
studied in a previous paper' on the impurity problem,
namely

H"'=g Mf«,"nf&.nf, ,+p hfdf"n~~, ,nf, , (7.2)

This is a mixing term having similar characteristics to
the sd interaction of Anderson. It is the only mixing
term at work in the (pure) transition metal problem. '"
Its inRuence is probably as signihcant as that of H, .

A second, improvement in the theory would be to take
into account more d orbitals. Mattis' has emphasized
the view that a proper understanding of the magneti-
zation problem in transition metals must ultimately
depend on a kind of analogy with the atomic orbital
situation, Hund rules and all. We agree that higher
orbital e6ects will prove to be important considerations, '
and should be incorporated in more complete theories.
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Finally, we point to the fact that none of the prob- values corresponding to f being ll or +, and 0 being +
lems'~ associated with the use of orthogonalized func- or —.Thus
tions (the Wannier functions) have been dealt with here. E,&,.= Un&i., +-', A'(0) m, , (A1
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APPENDIX A: THE CMTEMON CALCULATION

In Sec. 5 we outlined the various stages of approxima-
tion used in this paper. Above Eq. (5.10), a final calcula-
tion was indicated in which the crystal is approximated
by atoms with 6xed moments Mff or M+ such that every
neighbor shell has a resultant average moment m+. In
this Appendix, the details of the calculation are carried
through.

The notation is similar to that of Sec. 5. An atom with
a parallel moment M» will have averaged occupation
numbers ef f,+ and e, f, , and similarly for the antiparallel
case. The E's of Eq. (5.5) will then take on four possible

E»,,= Un», .+-,'A'(0)m,

3ff}=nfl,+ nfl —&0&

—M~= n~+ —n~ &0.

)

(A2)

(A3)

(A4)

Now x will characterize what we shall call an "arrange-
ment. "It is equivalent to stipulating a crystal magneti-
zation. But this may occur with the distribution of
moments Mf} and M& in many ways among the sites.
We shall call each one of these ways a "configuration.

"
We shall consider Eq. (5.4) for every configuration con-
sistent with a given arrangement and then average, the
averaging of this type indicated by the symbol {{ }}.

Finally, as regards notation, we shall rewrite
G.(f,f'lE) as G, &" *'(f,f'lE) for the case where f is a
parallel site and f' an antiparallel one, and analogously
for the other possibilities for f and f'. We can then define
a unique Fourier component of the G's by summing f
over all parallel sites [the sum denoted by f(ll)j with f'
a parallel site and then averaging over conhgurations:

G."' "'(»lE)={{Z exp[» (f—f')jG "' "'(f f'lE)}}

=x„Q exp[iv (f—f')jG," "(f,f'lE) (A5)

and similarly for a sum over all antiparallel sites

G '*'"(»lE)={{Q exp[iv (f—f')jG &*"&(f,f'lE)}}. (A6)

We are now in a position to solve Eq. (5.4) on this two-moment modeL Let us choose f to be a parallel site, and
sum the equation over parallel f's:

1
(E—E»,.)G."' "'(»IE)= ——+Z l'(v')t '{{E Z e~[i(»—«') (f—f")jexp[iv (f"—f')jG, (f",f'lE)}}. (A7)

2' f(ff) f"

Summing over antiparallel f's gives

(E—E»„)G,&*"'(vlE)=p V(v')~V '{{p g exp[i(v —v') ~ (f—f")j exp[iv (f"—f')]G, (f'f'lE)}}. (Ag)
f(4) f"

In both these equations, f" is summed over all sites.
To solve the equations we make one approximation, namely that the average of the product is the product of the

averages. Thus, in Eq. (A7), there emerges

and in Eq. (A8) there emerges

The result is then

{{.V ' Q exp[if (v —v')j}}=x„g„„,,
f(fi)

{{X' Q exp[if (v—v')j}}=@»l&„,„.
f(4)

(A9)

(A10)

(E E„)G ""(vlE)= —(2s—)-'+x„p'(v)[G &""&(vlE)+G &» ~»(»lE)j

(E E*')G '*'"(»lE)=*»V(»)[G &""&("lE)+G '»'"(»IE)j

"T.Arai, Phys. Rcv. 134, A824 t', 1964};Q6, 47k (1962}.

(A11)

(A12)
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The solutions are then easily obtained:

G &""&(v~E)=—(2x) 'LE—E„,—x, (V—x((x»V'(E —E»,,—x»V) '] '
= —(2m.) '(E—E —x»V)(E—Eg.) '(E—Es ) ',

where the roots Ej,~ are

E .. .= 2 '(LE,.+E,.+V( )]~L(E,.—E*,-)'+»V( )(E,.—E*..)+V( )']"').
The inverse is

G, ~" "&(f,f'~ E)= X-' g exp[iv (f—.f')]G." "(v~ E),

(A13)

(A14)

(A15)

whence, from Eq. (2.14), the desired averages are

Eg,—E», ,—x» V(v) Eg —E», ,—x» V(v)
n„.=X, 'p-f(E&.) +f(E2.)

E jv
(A16)

Eg,=E.'+ V(v),
(A18)

and then

where

M)) =x))A+x~8,
—M»=+Lx»A+x„B],

(A19)

'g(f(E, '+-V) f( E'+ V—)), —

B=f(E+') f ( E+')— —

A similar equation exists for the antiparallel case. It is
obtained from Eq. (A16) by interchanging

~~
with +

everywhere (notice that Eq and E2 remain unaltered by
this interchange). The coeKcients of the Fermi func-
tions in Eq. (A16) are essentially positive as can be
verified by writing out E& and E& and noting that the
square root in Eq. (A 14) is always larger than
(L(E,-—E»,.)+xV]')"'.

This completes the derivation of the basic equations.
The next step is to look for when the four equations in
n [ ),+, n) ), , n+,+, and n+, have roots. %e shall not do
this in this paper. However, we can see in a simple way
that the situation with vanishing small U does not have
any solutions for M&. For in this limit

E„,.=E»,.=——,'A'(0)m. =—E.', (A17)
whence

Now E+' is probably small compared to the Fermi level.
If we accept this, then 8 is negligible compared to A.
Thus M)) and —M+ will have the same sign, which
contradicts the notion of M» /see Eq. (A4)]. The con-
clusion is that for small U there is only one moment.
This fits in with our previous results. Ke shall not
pursue the consequences of these equations any further
here.

To sum up this Appendix: Ke have shown that, if
each atom is assumed to have one of two possible
moments, oppositely oriented, and an environment
characterized by m, then a set of equations can be
developed for the local moments which may or may
not have solutions with both M)) and M+ the same sign.
If there are solutions, then we conclude that the local
moments are of the permanent variety and that an AM
calculation is appropriate, with M given by Kq. (5.12).
If the only solutions have M)) of opposite sign to M+,
then we regard this as an inconsistency and conclude
that only moments of the induced variety can exist, and
that the PM calculation is the appropriate one. The
difI'erence between this Appendix and Sec. 5 is that here
we have a somewhat better estimate of how the Bloch
energy terms are altered by the presence of a magneti-
zation in the crystal.


